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THE M-SET OF λ exp(z)/z HAS INFINITE AREA

GUOPING ZHAN and LIANGWEN LIAO

Abstract. It is known that the Fatou set of the map exp(z)/z defined on the
punctured plane C

∗ is empty. We consider the M -set of λ exp(z)/z consisting
of all parameters λ for which the Fatou set of λ exp(z)/z is empty. We prove
that the M -set of λ exp(z)/z has infinite area. In particular, the Hausdorff
dimension of the M -set is 2. We also discuss the area of complement of the
M -set.

§1. Introduction and main results

The exponential family Eλ(z) = λ exp(z) is the simplest family of tran-

scendental entire functions which is topologically complete. For λ= 1, the

Julia set of ez is the whole complex plane C (see [11, Main Theorem]). More-

over, it is proved in [8] that for almost all z ∈ C, the ω-limit set consists

of the infinity and the postsingular orbit; in particular, ez is not recurrent.

(A map f is recurrent if, for every set K of positive area, there is an integer

n ≥ 1 such that fn(K) ∩K has positive area, where fn is the nth iterate

of f .) For the exponential family Eλ(z) = λ exp(z), the M -set of all λ-values

for which Eλ has no Fatou set was first studied in [7], where some topological

structure of the M -set was described. From [12], one knows that the M -set

has Hausdorff dimension 2. But it is still unknown whether the M -set has

positive area. (For more information about the dynamics of the exponential

family, see, e.g., [4]–[6], [15], [13], [14], [16]–[18].)

The family of functions Fλ with parameter λ ∈C
∗ mapping the punctured

plane C
∗ to itself, defined by Fλ : z �→ λ exp(z)/z, may be regarded as the

simplest family of transcendental meromorphic functions on C with exactly

one pole which is a Picard exceptional value. For λ= 1, it is proved in [19,

Theorem 1.6] that the set Λ of all points in C
∗ whose ω-limit set of exp(z)/z

does not equal {0,∞} has zero Lebesgue measure. In particular, the map
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exp(z)/z is not recurrent. Moreover, the set Λ has Hausdorff dimension 2

(see [20, Theorem 1.1]). In this paper, we consider theM -set of Fλ consisting

of all parameters λ for which the Fatou set of Fλ is empty. Before stating

the main result, let us introduce some notation and definitions.

Notation. Let C denote the complex plane, let C∗ =C \ {0} denote the

punctured plane, and let Ĉ=C∪ {∞}. Let Fn
λ be the nth iterate of Fλ for

all n ∈ N, and let J (Fλ) be the Julia set of Fλ for each λ ∈ C
∗. For ρ > 0

and z ∈C, let D(z, ρ) denote an open disk centered at z with radius ρ. For

a bounded set X ⊂C, let area(X) denote the Euclidean area of X .

Definitions.

(1) The ω-limit set of Fλ at z ∈ C
∗, denoted by ωFλ

(z), consists of all

accumulation points of {Fn
λ (z)}∞n=0 on Ĉ.

(2) As in [19], we denote

F (z) = exp(z)/z

for all z ∈C
∗. Recall that 1 is the only critical point ofFλ : z �→ λ exp(z)/z.

Furthermore, let

Gn(λ) = Fn+1
λ (1)

for n≥ 1 and λ ∈C
∗. Moreover, define

W =
{
λ ∈C

∗ ∣∣ ωFλ
(1)⊂ {0,∞}

}
,

M =
{
λ ∈C

∗ ∣∣ J (Fλ) =C
}
,

and

M c =C
∗ \M.

We prove the following.

Main Theorem. The M -set of the family Fλ has infinite area. In par-

ticular, the Hausdorff dimension of the M -set is 2.

Remark. The Main Theorem leads us to pose the following question:

Does the complement of the M -set have infinite area? In the end, we show

that the area of complement of the M -set is positive. In this paper, we are

not able to prove that the complement of the M -set has finite or infinite

area.
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§2. Preliminary lemmas

Lemma 2.1. The set W is contained in the set M .

Proof. Note that for each λ ∈ C
∗, Fλ has exactly one critical point 1

and one asymptotic value 0, which implies that Fλ has exactly two finite

singular values, 0 and λe. It follows that Fλ has neither Baker domains nor

wandering domains (see [1], [2], [9]).

If λ ∈W , then any accumulation point of forward iterations of the critical

point can be only either 0 or ∞; this implies that the closure of the forward

orbit of the critical point contains no line segment. Using the facts that the

boundary of a Siegel disk or a Herman ring is contained in the closure of

the forward orbits of the singular values and that any periodic attracting

or parabolic component of Fλ will attract the forward orbit of a singular

value (see [2]), we can conclude that F has no Siegel disks, Herman rings,

or attracting or parabolic periodic components. Therefore, the Fatou set of

Fλ is empty, and the Julia set of Fλ is the whole complex plane C. Hence,

the set W is contained in the set M .

The following is well known (refer to [3, Chapter I, Theorem 1.4]).

Lemma 2.2. If f is univalent on a domain D, and if z0 ∈D, then

1

4

∣∣f ′(z0)
∣∣dist(z0, ∂D)≤ dist

(
f(z0), ∂

(
f(D)

))
≤ 4

∣∣f ′(z0)
∣∣dist(z0, ∂D).

For two Lebesgue measurable subsets A and B of C, we call

dens(A,B) :=
area(A∩B)

area(B)

the density of A in B.

Let us introduce a criterion due to McMullen [10], which provides a tool

for constructing a nested intersection of dynamically defined sets with pos-

itive area.

Lemma 2.3 (Nesting conditions). For all k ≥ 0, let Ek denote a finite

collection of subsets in C such that every two elements in Ek have an inter-

section of measure zero, and let Ek denote the union of all elements in Ek.
Suppose that the sequence (Ek)k≥0 satisfies the following nesting conditions:

(C1) every U ∈ Ek+1 is contained in a unique U ′ ∈ Ek;
(C2) every U ′ ∈ Ek contains at least one element of Ek+1;
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(C3) for all k and all U in Ek,

dens(Ek+1,U)≥Δk.

Then for the set E :=
⋂∞

k=0Ek, we have

dens(E,E0)≥
∞∏
k=0

Δk.

§3. Proof of Main Theorem

For m, l ∈ Z, define

Sm,l :=
{
λ ∈C

∣∣m≤Re(λ)≤m+ 1, l≤ Im(λ)≤ l+ 1
}

and

B := {Sm,l |m, l ∈ Z}.

For all t > 0, let

V +
t =

{
λ ∈C

∣∣Re(λ)≥ t
}
,

V −
t =

{
λ ∈C

∣∣Re(λ)≤−t
}
.

Let K ⊆ C be a bounded subset. Suppose that f is a univalent function

in a neighborhood of K. We call

T (f|K) :=
supz∈K |f ′(z)|
infz∈K |f ′(z)|

the distortion of f on K. It is easy to see that

(3.1) T (f|K) = T (f−1
|f(K))

and that, for any two Lebesgue measurable subsets A and B of K,

(3.2) dens
(
f(A), f(B)

)
≤ T (f|K)2 dens(A,B).

In the following, all squares are closed squares whose sides are parallel

to the coordinate axes. Applying the argument of [21, Lemma 2.5], we have

the following.
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Lemma 3.1. Let t > 0 and Q⊂C be a square with side length 1. Suppose

that f is a univalent map defined in a neighborhood of Q and that there is

a constant C > 0 such that T (f|Q)<C. Then for any z0 ∈Q,

dens
(⋃

Sm,l, f(Q)
)
≥ 1−C3

(2√2t+ 21

|f ′(z0)|
+

12

C|f ′(z0)|2
)
,

where the union set takes over all Sm,l ∈ B and Sm,l ⊂ f(Q)∩ (V +
t ∪ V −

t ).

Remark. Lemma 3.1 is for the case of vertical strip {λ ∈ C | |Re(λ)| ≥
t}, which is a version of [21, Lemma 2.5] for the case of horizontal strip

{λ ∈ C | | Im(λ)| ≥ t}; [21, Lemma 2.5] is crucial for estimating the area of

escaping parameters of the sine family λ sin z in squares lying away from the

imaginary axis, since the forward orbits of escaping parameters go away from

the imaginary axis. However, for the family λ exp(z)/z, the forward orbits

of parameters in the set W go away from the real axis or approach 0 (the

pole), so Lemma 3.1 is crucial for estimating the area of the set W in squares

lying away from the real axis. By the way, the constant C is not essential

for application, since the distortion of forward orbits of parameters in the

set W is controlled by a power of e, while the derivative of their forward

orbits is larger than an iterate of the exponential.

To prove the Main Theorem, it suffices to prove the following.

Lemma 3.2. For each square Sm,m ∈ B with m≥ 102, there is a constant

α> 0 such that

area(Sm,m ∩M)≥ α.

3.1. Proof of Lemma 3.2

Take a fixed square Sm,m ∈ B with m≥ 102. For simplicity, denote

Q0 = Sm,m, Q0 = {Q0}

and

x0 = 2m, xn = 2 · expn(m)

for all integers n≥ 1, where expn(m) is the nth iterate of m under exp. Let

Q̃0 be an open square with the same center of Q0 and side length 2, which

is a neighborhood of Q0.

Proposition 3.3. The map G1 is univalent in Q̃0 with

inf
λ∈Q0

∣∣G′
1(λ)

∣∣≥ exp(me)
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and

T (G1|Q0
)≤ exp(e).

Proof. Recall that

G1(λ) = F 2
λ (1) = exp(λe)/e.

Since Q̃0 is contained in a horizontal strip of width less than 2π/e and

parallel to the real axis, G1 is univalent in Q̃0.

For all λ ∈Q0, we have |G′
1(λ)|= exp(λe)| ≥ exp(me). Hence,

inf
λ∈Q0

∣∣G′
1(λ)

∣∣≥ exp(me)

and

T (G1|Q0
) =

supλ∈Q0
|G′

1(λ)|
infλ∈Q0 |G′

1(λ)|
≤ exp(me+ e)

exp(me)
= exp(e).

Since Q0 is mapped away by G1, we consider the set G1(Q0). It follows

from Lemma 2.2 and Proposition 3.3 that G1(Q0) ∩ (V +
x1

∪ V −
x1
) contains

many squares in B. So we can define for μ ∈ {+,−}

Pμ
1,1 :=

{
S ∈ B

∣∣ S ⊂G1(Q0)∩ V μ
x1

}
,

P1 :=
⋃

S∈Pμ
1,1|μ∈{+,−}

S,

Qμ
1,1 :=

{
K ⊂Q0

∣∣G1(K) ∈ Pμ
1,1

}
,

Q1 :=
{
K ∈Qμ

1,1

∣∣ μ ∈ {+,−}
}
,

Q1 :=
⋃

K∈Q1

K.

From the definitions, we can see that Q+
1,1 ∩Q−

1,1 = ∅ and that every two

elements in Qμ
1,1 with μ ∈ {+,−} have an intersection of measure zero. So

Q1 is a finite collection of subsets in C satisfying that every two elements

in Q1 have an intersection of measure zero.

Proposition 3.4. For Q0, we have

dens(Q1,Q0)≥ 1− exp
(
−x0

8

)
.
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Proof. By Proposition 3.3, G1 is univalent in a neighborhood of Q0. We

can take an inverse branch of G1 which maps G1(Q̃0) to Q̃0, denoted by ϕ1.

Using (3.1) and Proposition 3.3, we have

(3.3) T (ϕ1) := T (ϕ1|G1(Q0)) = T (G1|Q0
)≤ exp(e).

Since m≥ 102, applying Lemma 3.1 and Proposition 3.3 we have

dens
(
P1,G1(Q0)

)
≥ 1− exp(3e)

( 2
√
2x1 + 21

infλ∈Q0 |G′
1(λ)|

+
12

exp(e) · (infλ∈Q0 |G′
1(λ)|)2

)

≥ 1− exp(3e)
(2√2x1 + 21

exp(me)
+

12

exp(2me+ e)

)

≥ 1− exp
(
−x0

4

)
.

(3.4)

Since ϕ1 ◦G1 = id on Q0 and G1(Q0 \Q1) ⊂G1(Q0) \ P1, applying (3.2)–

(3.4) we obtain

dens(Q1,Q0) = 1− dens(Q0 \Q1,Q0)

= 1− dens
(
ϕ1 ◦G1(Q0 \Q1),ϕ1 ◦G1(Q0)

)
≥ 1− T (ϕ1)

2 dens
(
G1(Q0 \Q1),G1(Q0)

)
≥ 1− T (ϕ1)

2 dens
(
G1(Q0) \P1,G1(Q0)

)
≥ 1− exp(2e)

(
1− dens

(
P1,G1(Q0)

))
≥ 1− exp

(
−x0

8

)
.

(3.5)

Proposition 3.5. For each K ∈Q+
1,1, the map G2 is univalent in a neigh-

borhood K̃ of K with

inf
λ∈K

∣∣∣G′
2(λ)

G′
1(λ)

∣∣∣≥ exp
(3x1

4

)

and

T (G2|K)≤ exp(2e).
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For each K ∈Q−
1,1, G3 is univalent in a neighborhood K̃ of K with

inf
λ∈K

∣∣∣G′
3(λ)

G′
1(λ)

∣∣∣≥ exp
(3x1

4

)

and

T (G3|K)≤ exp(3e).

Proof. If K ∈Q+
1,1, then there is a unique S ∈ P+

1,1 such that G1(K) = S.

Note that G1(Q̃0) is a simply connected domain and contains S. Denote

r =
1

2
min

{
1,dist

(
S,∂

(
G1(Q̃0)

))}
> 0.

Let S̃ be an open square with the same center of S and side length 1+2r.

Then S̃ is a neighborhood of S and contained in V +
x1−1. Recall that ϕ1 is the

inverse branch of G1 which maps G1(Q̃0) to Q̃0. Define K̃ := ϕ1(S̃); then

K̃ is a neighborhood of K with K̃ ⊂ Q̃0.

Recall that F (z) = exp(z)/z. Suppose that G2(a) =G2(b) with a, b ∈ K̃.

That is,

aF
(
G1(a)

)
= bF

(
G1(b)

)
.

Then

(3.6) |a− b|
∣∣F (

G1(a)
)∣∣= |b|

∣∣F (
G1(b)

)
− F

(
G1(a)

)∣∣.
Since G1(K̃) = S̃ ⊂ V +

x1−1 and K̃ ⊂ Q̃0, applying Proposition 3.3 we have

∣∣F (
G1(b)

)
− F

(
G1(a)

)∣∣≥ |a− b| inf
λ∈K̃

∣∣∣dF (G1(λ))

dλ

∣∣∣
≥ |a− b|

(
inf
λ∈K̃

∣∣∣F (
G1(λ)

)
G′

1(λ)
G1(λ)− 1

G1(λ)

∣∣∣)

≥ |a− b|
(
inf
ν∈Q̃0

∣∣F (ν)
∣∣)( inf

λ∈Q̃0

∣∣G′
1(λ)

∣∣)( inf
ν∈S̃

∣∣∣ν − 1

ν

∣∣∣)

≥ |a− b|
(
inf
ν∈Q̃0

∣∣F (ν)
∣∣) · 1

2
exp(me− e).

Moreover, ∣∣F (
G1(a)

)∣∣≤ sup
ν∈Q̃0

∣∣F (ν)
∣∣
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and
sup

ν∈Q̃0
|F (ν)|

inf
ν∈Q̃0

|F (ν)| ≤ 2e2.

Since |b| ≥m− 1≥ 99, it follows from (3.6) that

4e2|a− b| ≥ 99|a− b| exp(99e).

This implies that a= b. Therefore, G2 is univalent in K̃.

By calculation,

G′
2(λ) = F

(
G1(λ)

)(
1 + λG′

1(λ)
G1(λ)− 1

G1(λ)

)
,(3.7)

G′
2(λ)

G′
1(λ)

= F
(
G1(λ)

)( 1

G′
1(λ)

+ λ
G1(λ)− 1

G1(λ)

)
.(3.8)

Note that G1(K) = S ⊂G1(Q0)∩ V +
x1

and K ⊂Q0. Then |λ| ≥m≥ 102 for

all λ ∈K and |ν| ≤ exp(2x0) for all ν ∈ S. Using Proposition 3.3 with (3.7)

and (3.8), we have

inf
λ∈K

∣∣∣G′
2(λ)

G′
1(λ)

∣∣∣≥ inf
ν∈S

∣∣F (ν)
∣∣ · 1

2
inf
λ∈K

|λ| ≥ m

2
· exp(x1)

exp(2x0)
≥ exp

(3x1
4

)

and

T (G2|K)≤ supν∈S |F (ν)|
infν∈S |F (ν)| ·

supλ∈K |1 + λG′
1(λ)

G1(λ)−1
G1(λ)

|

infλ∈K |1 + λG′
1(λ)

G1(λ)−1
G1(λ)

|

≤
√
2e ·

√
2T (G1|Q0

)≤
√
2e ·

√
2exp(e)≤ exp(2e).

If K ∈Q−
1,1, then there also exists a corresponding neighborhood K̃ of K

such that K̃ ⊂ Q̃0 and G1(K̃) is an open square contained in V −
x1−1 with

side length no more than 2.

Suppose that G3(a) =G3(b) with a, b ∈ K̃. Similar to (3.6), we have

(3.9) |a− b|
∣∣F (

G2(a)
)∣∣= |b|

∣∣F (
G2(b)

)
− F

(
G2(a)

)∣∣.
Let A=G2(K̃); then A is contained in a small annulus with outer radius no

more than exp(−x1) and mod(A)≤ 2e2. In particular, |G2(λ)| ≤ exp(−x1)
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for each λ ∈ K̃. Also note that K̃ ⊂ Q̃0; combining |G1(λ)| ≥ x1 for each

λ ∈ K̃ with Proposition 3.3 and (3.7), we have

inf
λ∈K̃

∣∣∣G2(λ)− 1

G2(λ)
G′

2(λ)
∣∣∣≥ 1√

2
inf
λ∈K̃

∣∣∣G′
2(λ)

G2(λ)

∣∣∣
≥ 1

2
inf

λ∈Q̃0

∣∣G′
1(λ)

∣∣≥ 1

2
exp(me− e).

(3.10)

Hence,

∣∣F (
G2(b)

)
− F

(
G2(a)

)∣∣
≥ |a− b| inf

λ∈K̃

∣∣∣dF (G2(λ))

dλ

∣∣∣
≥ |a− b|

(
inf
λ∈K̃

∣∣F (
G2(λ)

)∣∣)( inf
λ∈K̃

∣∣∣G2(λ)− 1

G2(λ)
G′

2(λ)
∣∣∣)

≥ |a− b|
(
inf
ν∈A

∣∣F (ν)
∣∣) · 1

2
exp(me− e).

Moreover, ∣∣F (
G2(a)

)∣∣≤ sup
ν∈A

∣∣F (ν)
∣∣

and

(3.11)
supν∈A |F (ν)|
infν∈A |F (ν)| ≤mod(A) · exp

(
2 · exp(−x1)

)
≤ 4e2.

Since |b| ≥m− 1≥ 99, it follows from (3.9) that

8e2|a− b| ≥ 99|a− b| exp(99e).

This implies that a= b. Therefore, G3 is univalent in K̃.

By calculation,

G′
3(λ) = F

(
G2(λ)

)(
1 + λG′

2(λ)
G2(λ)− 1

G2(λ)

)
,(3.12)

G′
3(λ)

G′
1(λ)

= F
(
G2(λ)

)(G2(λ)

G′
1(λ)

+ λ
(G1(λ)− 1)2

G1(λ)

)
.(3.13)
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Note that G2(K) ⊂ A, G1(K) ⊂ V −
x1
, K ⊂ Q0, and |λ| ≥ m ≥ 102 for all

λ ∈ K. Then |ν| ≤ exp(−x1) for all ν ∈ G2(K) and |G1(λ)| ≥ x1 for all

λ ∈K. Using Proposition 3.3 and (3.13), we have

inf
λ∈K

∣∣∣G′
3(λ)

G′
1(λ)

∣∣∣≥ inf
ν∈A

∣∣F (ν)
∣∣ · 1

2
inf
λ∈K

|λ|

≥ m

2
· exp(x1)

2

≥ exp
(3x1

4

)
.

By Proposition 3.3 with (3.11) and (3.12),

T (G3|K)≤ supν∈A |F (ν)|
infν∈A |F (ν)| ·

supλ∈K |1 + λG′
2(λ)

G2(λ)−1
G2(λ)

|

infλ∈K |1 + λG′
2(λ)

G2(λ)−1
G2(λ)

|

≤ 4e2 · 2
supλ∈Q0

|G
′
2(λ)

G2(λ)
|

infλ∈Q0 |
G′

2(λ)
G2(λ)

|

≤ 4e2 · 4T (G1|Q0
)≤ 4e2 · 4exp(e)≤ exp(3e).

Note that if K ′ ∈ Q+
1,1, then K ′ is mapped away by G2; if K ′ ∈ Q−

1,1,

then K ′ is mapped into a neighborhood of 0 (the pole) by G2, before being

mapped away by G3. So we consider the set G2(K
′) for each K ′ ∈Q+

1,1 and

the set G3(K
′) for each K ′ ∈Q−

1,1. By Lemma 2.2 with Propositions 3.3 and

3.5, G2(K
′) ∩ (V +

x2
∪ V −

x2
) contains many squares in B for each K ′ ∈ Q+

1,1,

and G3(K
′) ∩ (V +

x2
∪ V −

x2
) contains many squares in B for each K ′ ∈ Q−

1,1.

Define for μ ∈ {+,−}

Pμ
2,1 :=

⋃
K′∈Q+

1,1

{
S ∈ B

∣∣ S ⊂G2(K
′)∩ V μ

x2

}
,

Pμ
2,2 :=

⋃
K′∈Q−

1,1

{
S ∈ B

∣∣ S ⊂G3(K
′)∩ V μ

x2

}
,

P2 :=
⋃

S∈Pμ
2,j |μ∈{+,−},1≤j≤2

S,

Qμ
2,1 :=

{
K ⊂Q1

∣∣G2(K) ∈ Pμ
2,1

}
,
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Qμ
2,2 :=

{
K ⊂Q1

∣∣G3(K) ∈ Pμ
2,2

}
,

Q2 :=
{
K ∈Qμ

2,j

∣∣ μ ∈ {+,−},1≤ j ≤ 2
}
,

Q2 :=
⋃

K∈Q2

K.

From the definitions, for μ ∈ {+,−} and 1≤ j ≤ 2, we have Q+
2,j ∩Q−

2,j =

∅, and every two elements in Qμ
2,j have an intersection of measure zero.

Using Q+
1,1 ∩ Q−

1,1 = ∅ and the facts that, for μ ∈ {+,−}, every K ∈ Qμ
2,1

(resp., Qμ
2,2) is contained in a unique K ′ ∈Q+

1,1 (resp., Q−
1,1) and that every

K ′ ∈ Q+
1,1 (resp., Q−

1,1) contains at least one element of Q+
2,1 ∪Q−

2,1 (resp.,

Q+
2,2∪Q−

2,2), we have Q
μ1
2,j1

∩Qμ2
2,j2

= ∅ for any two distinct pairs (j1, μ1) and

(j2, μ2).

Therefore, Q2 is a finite collection of subsets in C satisfying that every

two elements in Q2 have an intersection of measure zero and that every

K ∈Q2 is contained in a unique K ′ ∈Q1, with each K ′ ∈Q1 containing at

least one element in Q2.

Proposition 3.6. For each K ∈Q1, we have

dens(Q2,K)≥ 1− exp
(
−x1

8

)
.

Proof. If K ∈Q+
1,1, by Proposition 3.5 G2 is univalent in a neighborhood

K̃ of K. We can take an inverse branch of G2 which maps G2(K̃) to K̃,

denoted by ϕ2. Using (3.1) and Proposition 3.5, we have

(3.14) T (ϕ2) := T (ϕ2|G2(K)) = T (G2|K)≤ exp(2e).

Recall that ϕ1 is the inverse branch of G1 which maps G1(Q̃0) to Q̃0. By

construction of Q+
1,1, there is a unique square S ∈ P+

1,1 such that K = ϕ1(S)

for each K ∈Q+
1,1, so Proposition 3.5 implies that G2 ◦ ϕ1 is univalent in a

neighborhood S̃ of S. By (3.1) with (3.3) and (3.14), we have

T (G2 ◦ϕ1|S)≤ T (G2|K) · T (G1|K)≤ T (ϕ2) · T (ϕ1)≤ exp(3e)

and

inf
ν∈S

∣∣(G2 ◦ϕ1)
′(ν)

∣∣= inf
λ∈K

∣∣∣G′
2(λ)

G′
1(λ)

∣∣∣≥ exp
(3x1

4

)
.
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This, together with Lemma 3.1 and Proposition 3.5, implies that

dens
(
P2,G2(K)

)
= dens

(
P2,G2 ◦ϕ1(S)

)
≥ 1− exp(9e)

(2√2x2 + 21

exp(3x1
4 )

+
12

exp(3e+ 3x1
2 )

)
(3.15)

≥ 1− exp(10e)

exp(x1
4 )

.

Since ϕ2 ◦G2 = id on K and G2(K \Q2)⊂G2(K)\P2, we can repeat the

argument of (3.5) with (3.14) and (3.15) to obtain

dens(Q2,K)≥ 1− exp(4e)
(
1− dens

(
P2,G2(K)

))
≥ 1− exp(14e)

exp(x1
4 )

≥ 1− exp
(
−x1

8

)
.

If K ∈Q−
1,1, then by (3.1) and Proposition 3.5, G3 is univalent in a neigh-

borhood K̃ of K and there is an inverse branch ϕ3 of G3 which maps G3(K̃)

to K̃ with

(3.16) T (ϕ3) := T (ϕ3|G3(K)) = T (G3|K)≤ exp(3e).

By construction of Q−
1,1, there is a unique square S ∈ P−

1,1 such that K =

ϕ1(S), so Proposition 3.5 implies that G3 ◦ϕ1 is univalent in a neighborhood

S̃ of S. By (3.1) with (3.3) and (3.16),

T (G3 ◦ϕ1|S)≤ T (G3|K) · T (G1|K)≤ T (ϕ3) · T (ϕ1)≤ exp(4e)

and

inf
ν∈S

∣∣(G3 ◦ϕ1)
′(ν)

∣∣= inf
λ∈K

∣∣∣G′
3(λ)

G′
1(λ)

∣∣∣≥ l · exp
(3x1

4

)
.

This, together with Lemma 3.1 and Proposition 3.5, implies that

dens
(
P2,G3(K)

)
= dens

(
P2,G3 ◦ϕ1(S)

)
≥ 1− exp(12e)

(2√2x2 + 21

exp(3x1
4 )

+
12

exp(4e+ 3x1
2 )

)
(3.17)

≥ 1− exp(13e)

exp(x1
4 )

.
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Since ϕ3 ◦G3 = id on K and G3(K \Q2)⊂G3(K)\P2, we can also repeat

the argument of (3.5) with (3.16) and (3.17) to obtain

dens(Q2,K)≥ 1− exp(6e)
(
1− dens

(
P2,G2(K)

))
≥ 1− exp(19e)

exp(x1
4 )

≥ 1− exp
(
−x1

8

)
.

Let μ ∈ {+,−}. From the above construction, Q1 consists of two members

Q+
1,1 and Q−

1,1, where Qμ
1,1 is generated by pullback of G1(Q0) ∩ V μ

x1 with

an inverse branch of G1, so Q+
1,1 and Q−

1,1 can be viewed as the “twins” of

generation 1 of Q0; Q2 consists of four members Q+
2,1, Q−

2,1, Q+
2,2, and Q−

2,2,

where Qμ
2,1 is generated by pullback of G2(K

′)∩V μ
x2 with an inverse branch

of G2 for each K ′ ∈Q+
1,1, and Qμ

2,2 is generated by pullback of G3(K
′)∩V μ

x2

with an inverse branch of G3 for each K ′ ∈ Q−
1,1, so Q+

2,1 and Q−
2,1 can be

viewed as the “twins” of generation 2 of Q+
1,1, and Q+

2,2 and Q−
2,2 can be

viewed as the “twins” of generation 3 of Q−
1,1.

For integers 1 ≤ n ≤ 2 and 1 ≤ i ≤ 2n−1, let tn,i denote the number of

generations of Q+
n,i and Q−

n,i. Then

t1,1 = 1, t2,1 = 2= 1+ t2−1,(1+1)/2, t2,2 = 3= 2+ t2−1,2/2.

So we can use induction to define, for all integers n≥ 3 and 1≤ i≤ 2n−1,

tn,i = 1+ tn−1,(i+1)/2 (if i ∈ I1,n), tn,i = 2+ tn−1,i/2 (if i ∈ I2,n),

where

I1,n := {i ∈N : i is odd and 1≤ i≤ 2n−1},

I2,n := {i ∈N : i is even and 1≤ i≤ 2n−1}.

We check that, for all integers n≥ 1 and 1≤ i≤ 2n−1,

n≤ tn,i ≤ 2n− 1.

Let μ ∈ {+,−}. For each integer n≥ 3, we shall use induction to construct

Qn consisting of 2n members Q+
n,i and Q−

n,i (1≤ i≤ 2n−1) such that Qμ
n,i is

generated by pullback of Gtn,i(K
′)∩V μ

xn with an inverse branch of Gtn,i for

each K ′ ∈Q+
n−1,(i+1)/2 (resp., K ′ ∈Q−

n−1,i/2) if i ∈ I1,n (resp., i ∈ I2,n), and

then tn,i is the number of generation of Q+
n,i and Q−

n,i, so Q+
n,i and Q−

n,i can



THE M -SET OF λ exp(z)/z HAS INFINITE AREA 147

be viewed as the “twins” of generation tn,i of Q+
n−1,(i+1)/2 (resp., Q−

n−1,i/2)

if i ∈ I1,n (resp., i ∈ I2,n). This can be seen in the following structure of

sequence (Qn)n∈N:

Q0

Q1 : Q+
1,1 Q−

1,1︸ ︷︷ ︸
generation 1 of Q0

Q2 : Q+
2,1 Q−

2,1︸ ︷︷ ︸
generation 2 of Q+

1,1,

Q+
2,2 Q−

2,2︸ ︷︷ ︸
generation 3 of Q−

1,1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Qn : · · · Q+
n,i Q−

n,i︸ ︷︷ ︸
generation tn,i of Q+

n−1,(i+1)/2
(resp., Q−

n−1,i/2
) if i∈I1,n (resp., i∈I2,n)

· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
structure of sequence (Qn)n∈N

)
Let n≥ 2 be an integer. Assume that, for all integers 2≤ s≤ n, 1≤ i≤

2s−1, and μ ∈ {+,−}, all such Pμ
s,i, Ps,Qμ

s,i, Qs, and Qs are well defined,

satisfying the following properties.

(i) For each K ∈Q+
s−1,i, the map G1+ts−1,i is univalent in a neighborhood

K̃ of K with

inf
λ∈K

∣∣∣G′
1+ts−1,i

(λ)

G′
ts−1,i

(λ)

∣∣∣≥ exp
(3xs−1

4

)
and

T (G1+ts−1,i|K)≤ exp
(
(1 + ts−1,i)e

)
.

For each K ∈Q−
s−1,i, the map G2+ts−1,i is univalent in a neighborhood K̃ of

K with

inf
λ∈K

∣∣∣G′
2+ts−1,i

(λ)

G′
ts−1,i

(λ)

∣∣∣≥ exp
(3xs−1

4

)
and

T (G2+ts−1,i|K)≤ exp
(
(2 + ts−1,i)e

)
.

(ii) Each Qs is a finite collection of subsets in C satisfying that every two

elements in Qs have an intersection of measure zero and that every K ′ ∈Qs
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is contained in a unique K ∈Qs−1, with each K ∈Qs−1 containing at least

one element in Qs.

(iii) For each K ∈Qs−1, we have

dens(Qs,K)≥ 1− exp
(
−xs−1

8

)
.

For s= n+ 1, we can inductively prove the following.

Proposition 3.7. Let 1≤ i≤ 2n−1. For each K ′ ∈Q+
n,i, the map G1+tn,i

is univalent in a neighborhood K̃ ′ of K ′ with

inf
λ∈K′

∣∣∣G′
1+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ exp
(3xn

4

)

and

T (G1+tn,i|K′)≤ exp
(
(1 + tn,i)e

)
.

For each K ′ ∈ Q−
n,i, the map G2+tn,i is univalent in a neighborhood K̃ ′ of

K ′ with

inf
λ∈K′

∣∣∣G′
2+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ exp
(3xn

4

)
and

T (G2+tn,i|K′)≤ exp
(
(2 + tn,i)e

)
.

Proof. If K ′ ∈Q+
n,i with i ∈ I1,n (resp., i ∈ I2,n), then there exist a unique

K ∈ Qn−1,(i+1)/2 (resp., K ∈ Qn−1,i/2 ) and a unique S′ ∈ P+
n,i such that

K ′ ⊂K and Gtn,i(K
′) = S′. Note that tn,1 = 1+ tn−1,(i+1)/2 if i ∈ I1,n, and

tn,i = 2+ tn−1,i/2 if i ∈ I2,n. By the hypothesis (i) for s= n, Gtn,i is univalent

in a neighborhood K̃ of K, so Gtn,i(K̃) is a simply connected domain and

contains S′. Denote

r =
1

2
min

{
1,dist

(
S′, ∂

(
Gtn,i(K̃)

))}
> 0.

Let S̃′ be an open square with the same center of S′ and side length 1+2r.

Then S̃′ is a neighborhood of S′ and contained in V +
xn−1. Define K̃ ′ :=

ϕtn,i(S̃
′), where ϕtn,i is the inverse branch of Gtn,i which maps Gtn,i(K̃)

to K̃. Then K̃ ′ is a neighborhood of K ′ with K̃ ′ ⊂ K̃.

Recall that F (z) = exp(z)/z. Suppose that G1+tn,i(a) = G1+tn,i(b) with

a, b ∈ K̃ ′. Similar to (3.6), we have

(3.18) |a− b|
∣∣F (

Gtn,i(a)
)∣∣= |b|

∣∣F (
Gtn,i(b)

)
− F

(
Gtn,i(a)

)∣∣.
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By K̃ ′ ⊂ K̃ ⊂ Q̃0 and hypothesis (i) for 2≤ s≤ n,

inf
λ∈K̃′

∣∣G′
tn,i

(λ)
∣∣≥ inf

λ∈Q̃0

∣∣G′
1(λ)

∣∣≥ exp(me− e).

Combining this and Gtn,i(K̃
′) = S̃′ ⊂ V +

xn−1, we have

∣∣F (
Gtn,i(b)

)
− F

(
Gtn,i(a)

)∣∣
≥ |a− b| · inf

λ∈K̃′

∣∣∣dF (Gtn,i(λ))

dλ

∣∣∣
≥ |a− b|

(
inf
λ∈K̃′

∣∣∣F (
Gtn,i(λ)

)
G′

tn,i
(λ)

Gtn,i(λ)− 1

Gtn,i(λ)

∣∣∣)

≥ |a− b|
(
inf
ν∈S̃′

∣∣F (ν)
∣∣)( inf

λ∈K̃′

∣∣G′
tn,i

(λ)
∣∣)( inf

ν∈S̃′

∣∣∣ν − 1

ν

∣∣∣)

≥ |a− b|
(
inf
ν∈S̃′

∣∣F (ν)
∣∣) · 1

2
exp(me− e).

Moreover, ∣∣F (
Gtn,i(a)

)∣∣≤ sup
ν∈S̃′

∣∣F (ν)
∣∣

and
sup

ν∈S̃′ |F (ν)|
inf

ν∈S̃′ |F (ν)| ≤ 2e2.

This, together with (3.18) and |b| ≥m− 1≥ 99, implies that

4e2|a− b| ≥ 99|a− b| exp(99e).

So a= b. Therefore, G1+tn,i is univalent in K̃ ′.
By calculation,

G′
1+tn,i

(λ) = F
(
Gtn,i(λ)

)(
1 + λG′

tn,i
(λ)

Gtn,i(λ)− 1

Gtn,i(λ)

)
,(3.19)

G′
1+tn,i

(λ)

G′
tn,i

(λ)
= F

(
Gtn,i(λ)

)( 1

G′
tn,i

(λ)
+ λ

Gtn,i(λ)− 1

Gtn,i(λ)

)
.(3.20)

Recall that x0 = 2m,xj = 2 · expj(m) for all integers j ≥ 1, and note that

Gtn,i(K
′) = S′ ⊂ V +

xn
and that K ′ ⊂ K ⊂ Sm,l. Then |λ| ≥ m ≥ 102 for all
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λ ∈K ′ and |ν| ≤ exp(2
∑n−1

j=0 xj) for all ν ∈ S′. By hypothesis (i) for s= n

with (3.19) and (3.20), we have

inf
λ∈K′

∣∣∣G′
1+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ inf
ν∈S′

∣∣F (ν)
∣∣ · 1

2
inf
λ∈K′

|λ|

≥ m

2
· exp(xn)

exp(2
∑n−1

j=0 xj)
≥ exp

(3xn
4

)

and

T (G1+tn,i|K′)≤ supν∈S′ |F (ν)|
infν∈S′ |F (ν)| ·

supλ∈K′ |1 + λG′
tn,i

(λ)
Gtn,i (λ)−1

Gtn,i (λ)
|

infλ∈K′ |1 + λG′
tn,i

(λ)
Gtn,i (λ)−1

Gtn,i (λ)
|

≤
√
2e ·

√
2T (Gtn,i|K)≤

√
2e ·

√
2exp(tn,i · e)

≤ exp
(
(1 + tn,i)e

)
.

If K ′ ∈ Q−
n,i with i ∈ I1,n (resp., i ∈ I2,n), then there also exist a unique

K ∈ Qn−1,(i+1)/2 (resp., K ∈ Qn−1,i/2 ) and a unique S′ ∈ P−
n,i such that

K ′ ⊂ K and Gtn,i(K
′) = S′. By hypothesis (i) for s = n, there is also a

corresponding neighborhood K̃ ′ of K ′ such that K̃ ′ ⊂ K̃ ⊂ Q̃0 and Gtn,i(K̃
′)

is an open square contained in V −
xn−1 with side length no more than 2.

Suppose that G2+tn,i(a) =G2+tn,i(b) with a, b ∈ K̃ ′. Similar to (3.18), we

have

(3.21) |a− b|
∣∣F (G1+tn,i)

∣∣= |b|
∣∣F (

G1+tn,i(b)
)
− F

(
G1+tn,i(a)

)∣∣.
Let A′ = G1+tn,i(K̃

′); then A′ is contained in a small annulus with outer

radius no more than exp(−xn) and mod(A′) ≤ 2e2, so |G1+tn,i(λ)| ≤
exp(−xn) for each λ ∈ K̃ ′. By K̃ ′ ⊂ K̃ ⊂ Q̃0 and hypothesis (i) for 2≤ s≤ n,

inf
λ∈K̃′

∣∣G′
tn,i

(λ)
∣∣≥ inf

λ∈Q̃0

∣∣G′
1(λ)

∣∣≥ exp(me− e).

This, together with (3.19) and |Gtn,i(λ)| ≥ xn for each λ ∈ K̃ ′, implies that

inf
λ∈K̃′

∣∣∣G1+tn,i(λ)− 1

G1+tn,i(λ)
G′

1+tn,i
(λ)

∣∣∣≥ 1√
2
· inf
λ∈K̃′

∣∣∣G′
1+tn,i

(λ)

G1+tn,i(λ)

∣∣∣
≥ 1

2
· inf
λ∈K̃′

∣∣G′
tn,i

(λ)
∣∣≥ 1

2
· exp(me− e)



THE M -SET OF λ exp(z)/z HAS INFINITE AREA 151

and that

∣∣F (
G1+tn,i(b)

)
− F

(
G1+tn,i(a)

)∣∣
≥ |a− b| inf

λ∈K̃′

∣∣∣dF (G1+tn,i(λ))

dλ

∣∣∣
≥ |a− b|

(
inf
λ∈K̃′

∣∣F (
G1+tn,i(λ)

)∣∣)( inf
λ∈K̃′

∣∣∣G1+tn,i(λ)− 1

G1+tn,i(λ)
G′

1+tn,i
(λ)

∣∣∣)

≥ |a− b|
(
inf
ν∈A′

∣∣F (ν)
∣∣) · 1

2
· exp(me− e).

Moreover, ∣∣F (
G1+tn,i(a)

)∣∣≤ sup
ν∈A′

∣∣F (ν)
∣∣

and
supν∈A′ |F (ν)|
infν∈A′ |F (ν)| ≤mod(A′) · exp

(
2 · exp(−xn)

)
≤ 4e2.

This, together with (3.21) and |b| ≥m− 1≥ 99, implies that

8e2|a− b| ≥ 99|a− b| exp(99e).

So a= b. Therefore, G2+tn,i is univalent in K̃.

By calculation,

G′
2+tn,i

(λ) = F
(
G1+tn,i(λ)

)(
1 + λG′

1+tn,i
(λ)

G1+tn,i(λ)− 1

G1+tn,i(λ)

)
,(3.22)

G′
2+tn,i

(λ)

G′
tn,i

(λ)
= F

(
G1+tn,i(λ)

)(G1+tn,i(λ)

G′
tn,i

(λ)
+ λ

(Gtn,i(λ)− 1)2

Gtn,i(λ)

)
.(3.23)

Note that G1+tn,i(K
′) ⊂ A′, Gtn,i(K

′) ⊂ V −
xn
, K ′ ⊂ Q0, and |λ| ≥ m ≥

102 for all λ ∈ K ′. Then |ν| ≤ exp(−xn) for all ν ∈ G1+tn,i(K
′) ⊂ A′ and

|Gtn,i(λ)| ≥ xn for all λ ∈K ′. By hypothesis (i) for s = n with (3.22) and

(3.23), we have

inf
λ∈K′

∣∣∣G′
2+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ inf
ν∈A′

∣∣F (ν)
∣∣ · 1

2
inf
λ∈K′

|λ| ≥ m

2
· exp(xn)

2
≥ exp

(3xn
4

)
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and

T (G2+tn,i|K′)≤ supν∈A′ |F (ν)|
infν∈A′ |F (ν)| ·

supλ∈K′ |1 + λG′
1+tn,i

(λ)
G1+tn,i

(λ)−1

G1+tn,i
(λ) |

infλ∈K′ |1 + λG′
1+tn,i

(λ)
G1+tn,i

(λ)−1

G1+tn,i
(λ) |

≤ 4e2 · 2
supλ∈K′ |

G′
1+tn,i

(λ)

G1+tn,i
(λ) |

infλ∈K′ |
G′

1+tn,i
(λ)

G1+tn,i
(λ) |

≤ 4e2 · 4T (Gtn,i|K)

≤ 4e2 · 4exp(tn,i · e)≤ exp
(
(2 + tn,i)e

)
.

Let 1 ≤ i ≤ 2n−1. Note that if K ′ ∈ Q+
n,i, then K ′ is mapped away by

G1+tn,i ; if K ′ ∈ Q−
n,i, then K ′ is mapped into a neighborhood of 0 (the

pole) by G1+tn,i , before being mapped away by G2+tn,i . So we consider the

set G1+tn,i(K
′) for each K ′ ∈ Q+

n,i, and the set G2+tn,i(K
′) for each K ′ ∈

Q−
n,i. By hypothesis (i) for 2≤ s≤ n with Lemma 2.2 and Proposition 3.7,

G1+tn,i(K
′)∩ (V +

xn+1
∪V −

xn+1
) contains many squares in B for each K ′ ∈Q+

n,i,

and G2+tn,i(K
′)∩ (V +

xn+1
∪V −

xn+1
) contains many squares in B for each K ′ ∈

Q−
n,i. For each integer 1≤ j ≤ 2n, we have two cases.

If j ∈ I1,n+1, then tn+1,j = 1+ tn,(j+1)/2. Define for μ ∈ {+,−}

Pμ
n+1,j :=

⋃
K′∈Q+

n,(j+1)/2

{
S ∈ B

∣∣ S ⊂Gtn+1,j (K
′)∩ V μ

xn+1

}
,

Qμ
n+1,j :=

{
K ⊂Qn

∣∣Gtn+1,j (K) ∈ Pμ
n+1,j

}
.

If j ∈ I2,n+1, then tn+1,j = 2+ tn,j/2. Define for μ ∈ {+,−}

Pμ
n+1,j :=

⋃
K′∈Q−

n,j/2

{
S ∈ B

∣∣ S ⊂Gtn+1,j (K
′)∩ V μ

xn+1

}
,

Qμ
n+1,j :=

{
K ⊂Qn

∣∣Gtn+1,j (K) ∈ Pμ
n+1,j

}
.

Furthermore, we define

Pn+1 :=
⋃

S∈Pμ
n+1,j |μ∈{+,−},1≤j≤2n

S,

Qn+1 :=
{
K ∈Qμ

n+1,j

∣∣ μ ∈ {+,−},1≤ j ≤ 2n
}
,

Qn+1 :=
⋃

K∈Qn+1

K.



THE M -SET OF λ exp(z)/z HAS INFINITE AREA 153

By the definitions, for 1 ≤ j ≤ 2n and μ ∈ {+,−}, Q+
n+1,j ∩ Q−

n+1,j = ∅,
and every two elements of Qμ

n+1,j have an intersection of measure zero. By

hypothesis (ii) for s = n, we have Qμ1
n,j1

∩ Qμ2
n,j2

= ∅ for any two distinct

pairs (j1, μ1) and (j2, μ2); for μ ∈ {+,−}, every K ∈Qμ
n+1,j with j ∈ I1,n+1

(resp., Qμ
n+1,j with j ∈ I2,n+1) is contained in a unique K ′ ∈ Q+

n,(j+1)/2

(resp., Q−
n,j/2); and every K ′ ∈Q+

n,j (resp., Q−
n,j) contains at least one ele-

ment in Q+
n+1,2j−1 ∪Q−

n+1,2j−1 (resp., Q+
n+1,2j ∪Q−

n+1,2j). This implies that

Qμ1
n+1,j1

∩Qμ2
n+1,j2

= ∅ for any two distinct pairs (j1, μ1) and (j2, μ2).

Therefore, Qn+1 is a finite collection of subsets in C satisfying that every

two elements in Qn+1 have an intersection of measure zero and that every

K ∈Qn+1 is contained in a unique K ′ ∈Qn, with each K ′ ∈Qn containing

at least one element in Qn+1.

Proposition 3.8. For each K ′ ∈Qn, we have

dens(Qn+1,K
′)≥ 1− exp

(
−xn

8

)
.

Proof. Let K ′ ∈Q+
n,i. By Proposition 3.7, G1+tn,i is univalent in a neigh-

borhood K̃ ′ of K ′. We can take an inverse branch of G1+tn,i which maps

G1+tn,i(K̃
′) to K̃ ′, denoted by ϕ1+tn,i . Using (3.1) and Proposition 3.7, we

have

T (ϕ1+tn,i) := T (ϕ1+tn,i|G1+tn,i
(K′))

= T (G1+tn,i|K′)≤ exp
(
(1 + tn,i)e

)
.

(3.24)

Recall that ϕtn,i is the inverse branch of Gtn,i which maps Gtn,i(K̃) to K̃,

where K is the unique element of Qn−1,(i+1)/2 (resp., Qn−1,i/2) such that

K ′ ⊂ K for K ′ ∈ Qn,i with i ∈ I1,n (resp., I2,n). By construction of Q+
n,i,

there is a unique square S′ ∈ P+
n,i such thatK ′ = ϕtn,i(S

′), so Proposition 3.7

implies that G1+tn,i ◦ ϕtn,i is univalent in a neighborhood S̃′ of S′. Since
K ′ ⊂K, by hypothesis (i) for s= n with (3.1) and (3.24), we have

T (G1+tn,i ◦ϕtn,i|S′)≤ T (G1+tn,i|K′) · T (Gtn,i|K)

≤ T (ϕ1+tn,i) · exp(tn,i · e)≤ exp
(
(1 + 2tn,i)e

)
and

inf
ν∈S′

∣∣(G1+tn,i ◦ϕtn,i)
′(ν)

∣∣= inf
λ∈K′

∣∣∣G′
1+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ exp
(3xn

4

)
.
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This, together with Lemma 3.1 and Proposition 3.7, implies that

dens
(
Pn+1,G1+tn,i(K

′)
)

= dens
(
Pn+1,G1+tn,i ◦ϕtn,i(S

′)
)

≥ 1− exp
(
(3 + 6tn,i)e

)
×
(2√2xn+1 + 21

exp(3xn
4 )

+
12

exp(3xn
2 + (1+ 2tn,i)e)

)

≥ 1− exp((4 + 6tn,i)e)

exp(xn
4 )

.

(3.25)

Note that xn = 2expn(m) and that n ≤ tn,i ≤ 2n − 1 for all integers

1 ≤ i ≤ 2n−1. Since ϕ1+tn,i ◦ G1+tn,i = id on K ′ and G1+tn,i(K
′ \ Qn+1) ⊂

G1+tn,i(K
′) \ Pn+1, we can repeat the argument of (3.5) with (3.24) and

(3.25) to obtain

dens(Qn+1,K
′)≥ 1− exp

(
(2 + 2tn,i)e

)(
1− dens

(
Pn+1,G1+tn,i(K

′)
))

≥ 1− exp((6 + 8tn,i)e)

exp(xn
4 )

≥ 1− exp(16ne− 2e)

exp(xn
4 )

≥ 1− exp
(
−xn

8

)
.

If K ′ ∈Q−
n,i, then by (3.1) and Proposition 3.7, G2+tn,i is univalent in a

neighborhood K̃ ′ of K ′, and there is an inverse branch ϕ2+tn,i of G2+tn,i

which maps G2+tn,i(K̃
′) to K̃ ′ with

T (ϕ2+tn,i) := T (ϕ2+tn,i|G2+tn,i
(K′))

= T (G2+tn,i|K′)≤ exp
(
(2 + tn,i)e

)
.

(3.26)

By construction of Q−
n,i, there is a unique square S′ ∈ P−

n,i such that

K ′ = ϕtn,i(S
′), so Proposition 3.7 implies that G2+tn,i ◦ϕtn,i is univalent in

a neighborhood S̃′ of S′, where ϕtn,i is the same as in the proof of the case

of K ′ ∈K ′ ∈Q+
n,i. By hypothesis (i) for s= n with (3.1) and (3.26), we have

T (G2+tn,i ◦ϕtn,i|S′)≤ T (G2+tn,i|K′) · T (Gtn,i|K)

≤ T (ϕ2+tn,i) · exp(tn,i · e)≤ exp
(
(2 + 2tn,i)e

)
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and

inf
ν∈S′

∣∣(G2+tn,i ◦ϕtn,i)
′(ν)

∣∣= inf
λ∈K′

∣∣∣G′
2+tn,i

(λ)

G′
tn,i

(λ)

∣∣∣≥ exp
(3xn

4

)
.

This, together with Lemma 3.1 and Proposition 3.7, implies that

dens
(
Pn+1,G2+tn,i(K

′)
)

= dens
(
Pn+1,G2+tn,i ◦ϕtn,i(S

′)
)

≥ 1− exp
(
(6 + 6tn,i)e

)
×
(2√2xn+1 + 21

exp(3xn
4 )

+
12

exp(3xn
2 + (2+ 2tn,i)e)

)

≥ 1− exp((7 + 6tn,i)e)

exp(xn
4 )

.

(3.27)

Also note that xn = 2expn(m) and n ≤ tn,i ≤ 2n − 1 for all integers

1 ≤ i ≤ 2n−1. Since ϕ2+tn,i ◦ G2+tn,i = id on K ′ and G2+tn,i(K
′ \ Qn+1) ⊂

G2+tn,i(K
′) \ Pn+1, we can repeat the argument of (3.5) with (3.26) and

(3.27) to obtain

dens(Qn+1,K
′)≥ 1− exp

(
(4 + 2tn,i)e

)(
1− dens

(
Pn+1,G1+tn,i(K

′)
))

≥ 1− exp((11 + 8tn,i)e)

exp(xn
4 )

≥ 1− exp(16ne+ 3e)

exp(xn
4 )

≥ 1− exp
(
−xn

8

)
.

By the above construction, the sequence (Qn)n≥0 satisfies the nesting

conditions of Lemma 2.3. Denote Q=
⋂∞

n=0Qn and

δn = 1− exp
(
−xn

8

)
for all integers n≥ 0. Applying Lemma 2.3, we have

dens(Q,Q0)≥
∞∏
n=0

δn.

Note that x0 = 2m and xn = 2 · expn(m) for all integers n ≥ 1; then

xn ≥ (n+ 1)m for all integers n ≥ 0. This, together with m≥ 102, implies

that

(3.28) exp
(
−xn

8

)
≤ exp

(
−(n+ 1)m

8

)
≤ exp

(
−m

8

)
<

1

2
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for all integers n≥ 0. Using (3.28) and log(1− t)>−2t for all t ∈ (0,1/2),

we have

log
( ∞∏
n=0

δn

)
=

∞∑
n=0

log
(
1− exp

(
−xn

8

))

≥−2

∞∑
n=0

exp
(
−xn

8

)
≥−2

∞∑
n=0

exp
(
−(n+ 1)m

8

)

≥−4exp
(
−m

8

)
.

Using exp(t)≥ 1 + t for all t ∈R, we obtain

(3.29) dens(Q,Q0)≥ 1− 4exp
(
−m

8

)
.

Let λ ∈Q, and let n≥ 1. From the construction of Q, we have three cases

for each Gn(λ).

(i) If Gn(λ) ∈ S for S ∈ P+
k,j with k ≥ 1 and 1≤ j ≤ 2k−1, then ReGn(λ)≥

xk and

Gn+1(λ) ∈ S′ for S′ ∈ P+
k+1,2j−1 ∪P−

k+1,2j−1 with
∣∣ReGn+1(λ)

∣∣≥ xk+1.

(ii) If Gn(λ) ∈ S for S ∈ P−
k,j with k ≥ 1 and 1≤ j ≤ 2k−1, then ReGn(λ)≤

−xk and

Gn+1(λ) ∈G1+tk,j (K) for K ∈Q−
k,j with

∣∣Gn+1(λ)
∣∣≤ exp(−xk).

(iii) If Gn(λ) ∈G1+tk,j (K) for K ∈Q−
k,j with k ≥ 1 and 1≤ j ≤ 2k−1, then

|Gn(λ)| ≤ exp(−xk) and

Gn+1(λ) ∈ S for S ∈ P+
k+1,2j ∪P−

k+1,2j with
∣∣ReGn+1(λ)

∣∣≥ xk+1.

This, together with xk = 2expk(m), implies that each accumulation point

of {Gn(λ)}n≥1 on Ĉ is either 0 or ∞. So ωFλ
(1)⊂ {0,∞} and Q⊂W . By

(3.29),

dens(W,Q0)≥ dens(Q,Q0)≥ 1− 4exp
(
−m

8

)
.

Recall that Q0 = Sm,m. Using meas(Sm,m) = 1 and m≥ 102, we have

area(Sm,m ∩W )≥ 1− 4exp
(
−m

8

)
≥ 1− 4exp

(
−102

8

)
:= α> 0.
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By Lemma 2.1,

area(Sm,m ∩M)≥ area(Sm,m ∩W )≥ α> 0.

Hence, Lemma 3.2 follows.

The Main Theorem then follows from Lemma 3.2.

Remark. The family Fλ has the property that the forward orbit of a

singular point (the only critical point 1) goes far away after visiting a small

neighborhood of 0 (the pole), while this property does not hold for the

exponential family. This leads to the fact that an approach analogous to

the one used in the proof of the Main Theorem cannot be applied for the

exponential family.

Finally, we prove the following.

Proposition 3.9. The area of the complement M c of the M -set is posi-

tive.

Proof. If Fλ has an attracting fixed point, say, t, then λ exp(t)/t= t and

|F ′
λ(t)|< 1. So λ= t2e−t with |t− 1|< 1. Let

Ω = {λ ∈C
∗ | Fλ has an attracting fixed point}.

Then

Ω=
{
λ= t2e−t : t ∈D(1,1)

}
⊂M c.

Denote λ(t) = t2e−t for all t ∈D(1,1). Note that λ(t) is analytic at the

point t= 1, which is not a critical point of λ(t). There exists an r ∈ (0,1)

such that λ(t) is univalent in D(1, r). For all t ∈D(1, r), we have∣∣λ′(t)
∣∣= ∣∣t(2− t)e−t

∣∣≥ (1− r)2e−(r+1).

This implies that

area(M c)≥ area(Ω)≥
∫ ∫

D(1,r)

∣∣λ′(t)
∣∣2 dσ ≥ πr2(1− r)4e−2(r+1) > 0.
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