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ON THE HOMOLOGY OF BRANCHED COVERINGS
OF 3-MANIFOLDS

JUN UEKI

Abstract. Following the analogies between 3-manifolds and number rings in
arithmetic topology, we study the homology of branched covers of 3-manifolds.
In particular, we show some analogues of Iwasawa’s theorems on ideal class
groups and unit groups, Hilbert’s Satz 90, and some genus-theory–type results
in the context of 3-dimensional topology. We also prove that the 2-cycles valued
Tate cohomology of branched Galois covers is a topological invariant, and we
give a new insight into the analogy between 2-cycle groups and unit groups.

§1. Introduction

The analogy between 3-dimensional topology and number theory was

first pointed out by Mazur [Ma] in the 1960s, and it has been studied sys-

tematically by Kapranov, Reznikov [Re], and Morishita [Mo3], [Mo4]. In

their analogies, for example, knots and 3-manifolds correspond to primes

and number rings, respectively. The study of these analogies is now called

arithmetic topology.

The purpose of this article is to study the homology of branched coverings

of 3-manifolds by following the analogies in arithmetic topology. In particu-

lar, we show the topological analogues of Iwasawa’s theorems on ideal class

groups and unit groups in number field extensions, and we give some appli-

cations to topological analogues of genus theory. In the course of our proof,

we show the 3-manifold analogue of Hilbert’s Satz 90. In addition, we prove

that the 2-cycles valued Tate cohomology of branched covers is a topological

invariant, which gives a new insight into the analogy between 2-cycles and

units.
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This article is organized in the following manner. In Section 2, we review

the basic analogies between 3-dimensional topology and number theory,

which will be used throughout this paper, and Hilbert theory for 3-manifold

following [Mo4]. In Section 3, we recall Iwasawa’s theorems and so forth on

ideal class groups and unit groups in number field extensions, and we state

their topological analogues as our main theorems. We also give some remarks

on the 2-cycles valued Tate cohomology of branched covers. In Section 4,

we prove our main theorems. In Section 5, as applications of our theorems,

we give genus theory-type results, which give balances between homology

groups and branch information.

§2. Hilbert theory for 3-manifolds

Hilbert theory deals with, in a group-theoretic manner, the decomposition

of a prime in a finite Galois extension of number fields. In this section, we

recollect Hilbert theory for 3-manifolds, which describes the decomposition

of a knot in a finite Galois branched cover of 3-manifolds.

First, we recall in the following table some of the basic analogies between

number theory and 3-dimensional topology which will be used in this paper.

For a number field k, Ok denotes the ring of integers in k.

Number ring Spec(Ok) 3-dimensional manifold M
Prime ideal p Knot K

Prime ideals S = {p1, . . . ,pr} Link L= {K1, . . . ,Kr}
Étale fundamental group π1(Spec(Ok)) π1(M)

π1(Spec(Ok)− S) Link group π1(M −L)
Number field extension �/k (Branched) Cover h :N →M

Ideal group I(k) 1-Cycle group Z1(M,Z)
k∗ → I(k); a �→ (a) C2(M,Z)→ Z1(M,Z); S �→ ∂S

Principal ideal group P (k) 1-boundary group B1(M,Z)
Ideal class group Cl(k) = I(k)/P (k) First homology

H1(M,Z) = Z1(M,Z)/B1(M,Z)
Unit group O∗

k Second homology
H2(M,Z), or 2-cycles Z2(M,Z)

Artin reciprocity Hurewicz isomorphism
Cl(k)∼= Gal(kurab /k)

∼= π1(Spec(Ok))
ab H1(M,Z)∼= Gal(Mab/M)∼= π1(M)ab

kurab : Hilbert class field of k Mab: maximal abelian cover of M
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Particularly, we have parallel exact sequences

1 O∗
k k∗ I(k) Cl(k) 1,

0 Z2(M) C2(M) Z1(M) H1(M) 0.

Because of this, in this paper we consider 2-cycles of 3-manifolds, rather than

2-homologies, as an analogue of units of Ok, and we pursue some analogies

with number fields (see Theorems 5, 10, and 11 below). Reznikov [Re] also

considered surfaces without boundaries for this.

Since Cl(k) is finite, to get the precise analogies for manifold it is natural

to assume that H1(M,Z) is finite, that is, that manifolds are rational homol-

ogy 3-spheres. However, by considering the torsion subgroup tor(H1(M,Z))
as the counterpart of Cl(k), some analogies work (see [Si], [Mn1]).

For more analogies, we refer to [Mo3], [Mo4], or [Mn2].

Now, based on the above dictionary, we present a topological analogue of

Hilbert theory following [Mo4, Chapter 3].

Let h :N →M be a finite Galois covering of connected oriented closed 3-

manifold branched over a link L⊂M , let X :=M −L, let Y :=N −h−1(L),

let G := Gal(Y/X) = Gal(N/M), and let n := #G(1). Let K be a knot in M

which is a component of L or disjoint from L, and suppose that h−1(K) =

K1 ∪ · · · ∪Kr (r = rK -component link). For a tubular neighborhood VK of

K, let VKi be the connected component of h−1(VK) containing Ki. (They

are canonical up to isotopy, in any category.) Note that G acts transitively

on the set of knots SK := {K1, . . . ,Kr} lying over K. We call the stabilizer

DKi of Ki the decomposition group of Ki:

DKi :=
{
g ∈G

∣∣ g(Ki) =Ki

}
.

Since we have the bijection G/DKi
∼= SK for each i, #DKi = n/r is indepen-

dent of Ki. In fact, if g(Ki) =Kj , then DKj = gDKig
−1. Since each g ∈G

induces a homeomorphism g|∂VKi
: ∂VKi

∼=−→ ∂Vg(Ki), g|∂VKi
is a covering

transformation of ∂VKi over ∂VK for each g ∈DKi , and the corresponding

g→ g|∂VKi
gives an isomorphism

DKi
∼=Gal(∂VKi/∂VK).

The Fox completion of the subcovering space of Y over X corresponding

to DKi is called the decomposition covering space of Ki and is denoted by
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ZKi . The map g �→ ḡ = g|∂VKi
induces the homomorphism

DKi →Gal(Ki/K),

whose kernel is called the inertia group of Ki and is denoted by IKi :

IKi := {g ∈DKi | ḡ = idKi}.

If Kj = g(Ki) (g ∈G), one has IKj = gIKig
−1, and hence #IKi is indepen-

dent of Ki. Set e = eK := #IKi . The Fox completion of the subcovering

space of Y over X corresponding to IKi is called the inertia covering space

of Ki and is denoted by TKi :

N TKi ZKi M

1
e

IKi

f
DKi

r
G

Here we have the equalities

#DKi = ef, #IKi = e, #Gal(Ki/K) =: f.

By comparing the orders, we see that the homomorphism DKi � g �→ ḡ ∈
Gal(Ki/K) is surjective:

1−→ IKi −→DKi −→Gal(Ki/K)−→ 1 (exact).

Let Ki,T be the image of Ki under N → TKi , and let Ki,Z be the image of

Ki,T under TKi → ZKi . Then one has the following.

Theorem ([Mo4, Chapter 3]). The map N → TKi is a branched cover

of degree e such that the branching index of Ki over Ki,T is e. The map

TKi → ZKi is a cyclic cover of degree f such that the covering degree of

Ki,T over Ki,Z is f . The map ZKi →M is a cover of degree r such that

K is completely decomposed into an r-component link containing Ki,Z as a

component.

§3. Iwasawa’s theorems and their topological analogues

3.1. Iwasawa’s theorems

Now we recall Iwasawa’s theorems on ideal class groups in number field

extensions.
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Theorem 1 ([I2]). Let �/k be a finite extension of number fields (finite

extensions of Q), and suppose that �/k has no nontrivial unramified abelian

subextension; that is, if �/m/k and m/k are unramified abelian, then m= k.

(This assumption is obviously satisfied if �/k is totally ramified at some

prime p.) Then the norm map of ideal class groups N�/k :Cl(�)→Cl(k) is

surjective, and hence #Cl(k) |#Cl(�).

Theorem 2 ([I2], [W, Theorem 10.4]). Let �/k be a Galois extension of

number field with degree pν , where p is a prime number and ν is a natural

number, and suppose that �/k is ramified over at most one prime. Then

p | #Cl(�) implies that p | #Cl(k). In particular, when k = Q, it follows

that p 	 |#Cl(�).

Corollary 3 ([F]). We have

p |#Cl
(
Q(ζp)

)
⇐⇒ p |#Cl

(
Q(ζpν )

)
,

where p is a prime number, ν is a natural number, and ζn is a primitive

nth root of unity.

Remark. For the asymptotic behavior of the order of the p-part of

Cl(Q(ζpν )) as ν → ∞, Iwasawa’s class number formula [I1, Theorem 12]

is known.

We also recall Iwasawa’s theorems on unit groups in number field exten-

sions. We denote by Ĥn(G,A) the Tate cohomology of a group G acting on

an abelian group A, which is equal to the Galois cohomology Hn(G,A) if

n> 0 (see [Se, Chapter 8]). The following lemma proves Theorem 5.

Lemma 4 (Hilbert’s Satz 90). Let �/k be a finite Galois extension of

number fields with Galois group G; then we have

Ĥ1(G,�∗) = 0.

Theorem 5 ([I1, Chapter 2]). Let �/k be a finite Galois extension of

number fields with Galois group G; then

Ĥ1(G,O∗
k)

∼= P (�)G/P (k),

where P (k) is the group of principal ideals in k and P (�)G is the group of

principal ideals in k on which G acts trivially.
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3.2. Main theorems

Next, we state our main theorems, which are topological analogues of Iwa-

sawa’s theorems and so forth given in Section 3.1. Hereafter, all manifolds

in the statements are assumed to be closed (i.e., compact and ∂M = φ),

oriented, and connected. Note that a finite branched cover over a closed

manifold is always closed.

On the first homologies, we have Theorems 6 and 7 and Corollary 8,

which are regarded as analogues of Theorems 1 and 2 and Corollary 3.

Theorem 6. Let h :N →M be a (branched) cover of n-manifolds, and

suppose that h has no nontrivial unbranched abelian subcover; that is, if

h = g ◦ f :N → S →M for some continuous map f and some unbranched

abelian cover g of M , then g is a homeomorphism. (This assumption is

satisfied if n = 3 and h is totally branched over some knot K.) Then the

induced map h∗ : H1(N,Z) → H1(M,Z) is surjective. In particular, if N

and M are rational homology spheres, then #H1(M) |#H1(N).

Theorem 7. Let h :N →M be a (branched) Galois cover of 3-manifolds

branched over at most one knot and of degree pν , where p is a prime number

and ν is a natural number. If N and M are rational homology spheres, then

p |#H1(N,Z) implies that p |#H1(M,Z). In particular, when M is S3 or

an integral homology sphere, it follows that p 	 |#H1(N,Z).

Corollary 8. Let Mn denote the cyclic branched cover of S3 branched

over a knot K, and of positive degree n. Assume that Mn are all rational

homology spheres. Let p be a prime number, let m be a positive integer, and

let ν be a natural number. Then we can show that

p |#H1(Mm,Z) ⇐⇒ p |#H1(Mmpν ,Z).

Remark. For the asymptotic behavior of the order of p-part ofH1(Mmpν ,

Z), we refer to [HMM, Chapter 5] and [KM].

On 2-chains and 2-cycles valued Tate cohomology groups of Galois cov-

ers, we have Lemma 9 and Theorem 10, which are 3-manifold analogues of

Lemma 4 and Theorem 5.

For the remainder of this article, we assume that manifolds admit finite

CW-structures that are compatible to covering maps and include branching
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sets, and we fix such structures on them.† Then we can consider branched

Galois covers with Galois group G as G-complexes (see [B, Chapter I.4]).

The following Lemma 9 implies our Theorem 10.

Lemma 9 (Analogue of Hilbert’s Satz 90). Let h : N →M be a Galois

cover of 3-manifolds branched over some link with Galois group G; then

Ĥ1
(
G,C2(N,Z)

)
= 0.

Theorem 10. Let h :N →M be a Galois cover of 3-manifolds branched

over some link; then

Ĥ1
(
G,Z2(N,Z)

) ∼=←−B1(N,Z)G/h!B1(M,Z),

where B1(N,Z)G is the G-invariant subgroup of 1-boundaries.

Here, we denote by h! : C∗(M,Z) ↪→ C∗(N,Z) the canonical injection,

called transfer, which is defined as follows. For any open chain c⊂M , take

one connected component of h−1(c), say, c1, and put h!(c) =
∑

σ∈G σc1 and

extend linearly on the whole C∗(M,Z).
Although Z2(N,Z) depends on the choice of CW-structure, there is a

remarkable fact.

Theorem 11. We have the following isomorphism:

Ĥr
(
G,Z2(N,Z)

) ∼=−→ Ĥr
(
G,Zsing

2 (N)/Zsing
2

(
h−1(L)

))
,

where Zsing
2 (N) is the singular 2-cycle group of N and L is the branching

link of h. Especially, the Tate cohomology Ĥr(G,Z2(N,Z)) (r ∈ Z) is a

topological invariant of branched covers, that is, independent of the choice

of CW-structure.

Remarks.

(1) Theorems 10 and 11 strengthen our reason to consider the 2-cycle group

Z2(N,Z), rather than the 2-homology group H2(N,Z), as an analogue

of unit group O∗
k. There are two merits of our point of view.

†It is known that compact manifold M always admits CW-structure if dim M �= 4,
while the case for dim M = 4 is an open problem (see [H, p. 529]). Although a CW-
structure on a 3-manifold is not unique, we can discuss closer analogies with number
fields, such as Lemma 9 and Theorems 10 and 11 below, once such a structure is chosen.
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(i) Z2(N,Z) has more information (of the topology of h : N → M )

than does H2(N,Z). Indeed, if N is a rational homology sphere,

H2(N,Z) is always finite, and Ĥq(G,H2(N,Z)) = 0, while usually

Ĥq(G,Z2(N,Z)) 	= 0.

(ii) There are parallel exact sequences (see Section 2) that enable us to

“translate” cohomological discussions in number theory into topo-

logical context word by word. Our Section 4 will be an example.

For example, we will consider in Proposition 16 the Herbrand quo-

tient Q= (#Ĥ0(G,Z2(N,Z)))/(#Ĥ1(G,Z2(N,Z))) as an invariant

of branched covers.

(2) Since Hilbert’s Satz 90 is a very basic fact, we can expect various appli-

cations of this, such as analogues of Kummer theory, for example. An

analogue of Hilbert’s Satz 94 is also proved in [Mo2, Chapter 1].

(3) Lemma 9 and Theorems 10 and 11 hold for any dimension n > 1;

that is, we have Ĥ1(G,Zn−2(N,Z))∼=Bn−1(N,Z)G/h!Bn−1(M,Z) and

Ĥ1(G,Cn−2(N,Z)) = 0 for covers of n-manifolds branched over (n− 2)-

submanifolds.

§4. Proofs of main theorems

In this section we prove our main theorems in Section 3. We will some-

times omit the coefficients Z to make the notation brief in the following.

Proof of Theorem 6. First, let usparaphrase the conclusion.ByHurewicz’s

theorem, we have H1(M,Z)∼= π1(M)/D(π1(M)) for any manifold M , where

D(G) := [G,G] denotes the commutator group of a group G. Note also

that we have h∗(D(π1(N))) � D(π1(M)). Then we see that the following

conditions are equivalent:

h∗ :H1(N,Z)→H1(M,Z) is surjective

⇐⇒ h∗ : π1(N)/D
(
π1(N)

)
→ π1(M)/D

(
π1(M)

)
is surjective

⇐⇒ π1(M) is generated by h∗
(
π1(N)

)
and D

(
π1(M)

)
.

Now we prove the contraposition of the theorem. Suppose that π1(M) is

not generated by h∗(π1(N)) andD(π1(M)), that is, that π1(M)� h∗(π1(N)) ·
D(π1(M)) � D(π1(M)). Then by Galois theory for covers, we have a non-

trivial subcover g : S → M of the maximal (unbranched) abelian cover

Mab → M which satisfies π1(S) = h∗(π1(N)) · D(π1(M)), where the last

term is the group generated by the elements of h∗(π1(N)) and D(π1(M)).
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Since g : S → M is a cover and h : N → M is a continuous map with

h∗(π1(N)) � π1(S), we have a lift of h, a continuous map f :N → S with

h = g ◦ f , by general theory of cover (which is proved by using lifts of

homotopies):

N

h
f

�

M Sg Mab,

h∗
(
π1(N)

)

�

π1(M) π1(S) = h∗
(
π1(N)

)
·D

(
π1(M)

)
D

(
π1(M)

)

Thus, we obtain a nontrivial abelian subcover g of h, and the contraposition

is proved.

We give here a proof of Theorem 7 which is parallel to [W, proof of

Theorem 2], a group-theoretic one. We can observe what is not parallel in

this proof. We may have another proof by taking contraposition and by using

the Wang sequence and the fact that p 	 |#H1(M,Z) ⇐⇒ H1(M,Fp) = 0.

Proof of Theorem 7. By Hurewicz’s theorem and Galois theory, we see

that p | #H1(M) if and only if M has an unbranched abelian cover of

degree p.

When h is a nontrivial unbranched cover, Gal(N/M ) is a p-group, and it

has a normal subgroupG1 with index p, so we obtain a subcoverN/G1 →M ,

which is an unbranched cover of M of degree p.

If h is branched at a knot K, we denote by g :H →N the maximal p-

abelian (unbranched) cover of N , we put L :=
⊔
{Li}= h−1(K), and we put

J := g−1(L) =
⊔
{Jij}, where g(Jij) = Li.

We claim that the branched cover f := h ◦ g :H →M is Galois . . .(�).
(For number field extensions, this follows immediately from the maximality

of H .) We check this later.

Now let G be the Galois group of the branched cover f :H →M , and let

Iij <G be the inertia groups of knots Jij (see Section 2 for inertia groups).
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By the assumption that p |#H1(N), the cover H →N is not trivial, and

since g : H → N is unbranched, we have #Iijdeg(h) < deg(f), and hence

Iij �G.

Because G is p-group, there is a normal subgroup G1 of G with index

p which includes one of inertia groups, say, I11. But at this moment, since

f :H →M is Galois, all the inertia groups are conjugate of I11 in G, and all

Iij are included in G1. Therefore, H/G1 →M is an unbranched cover with

degree p:

N

h

H
g

f

G
G1

M H/G1
(p)

Mab,

π1(N −L)

�

� π1(H − J) � D
(
π1(N −L)

)

π1(M −K)

�

Proof of claim (�). Let X =M −K,Y =N − L,Z =H − J be the link

complement spaces. Notice that π1(Z) is the pullback of the unique Syllow

p-group Sp of H1(N,Z) by the map π1(Y ) � π1(N) � π1(N)ab
∼=→H1(N,Z).

Since h :N →M is Galois, π1(Y )� π1(X) is a normal subgroup, and we

have an action of π1(X) on π1(Y ) by conjugation: π1(X)� π1(Y ). Then,

since Sp is stable under the induced action of π1(X) on H1(N,Z), the group

π1(Z), which is the pullback of Sp in π1(Y ), is also stable under the action

π1(X)� π1(Y ). Therefore, π1(Z) is a normal subgroup of π1(X), and hence

f :H →M is Galois.

Proof of Corollary 8. We prove the result when m and p are coprime,

from which the other cases follow:

Mmpν Mm S3.

Since the cover Mmpν → Mm has no nontrivial unbranched subcover,

Theorem 6 implies that #H1(Mm) | #H1(Mmpν ), and hence that p |
#H1(Mm) =⇒ p |#H1(Mmpν ).
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On the other hand, since this is a cover of degree pν and its branching set

is a knot K, Theorem 7 implies that p |#H1(Mmpν ) =⇒ p |#H1(Mm).

Remark. In Corollary 3, only one prime (p) is ramified in Q(ζpν )/Q, and

its extension degree is (p− 1)pν−1. If we put m= p− 1 in Corollary 8, we

get the strict analogue of Corollary 3.

Proof of Lemma 9 (Analogue of Hilbert’s Satz 90). Since h is Galois and

N is a G-complex with its branching set being 1-dimensional subcomplex,

C2(N,Z) is a Z[G]-free module. The result is immediate from this, because

Ĥq(G,F ) = 0 for any q ∈ Z, finite group G, and G-free module F (see [B,

Chapter 6]).

Remark. Note that since multiplicative group of number field �∗ is not

Z[G]-free, Hilbert’s Satz 90 for number field extensions is more nontrivial.

It is proved by using Dedekind’s lemma, or linear independence of automor-

phisms, which needs both addition and multiplication. We cannot prove the

two lemmas in parallel ways.

Proof of Theorem 10. We omit the coefficients Z in the following. Note

that H1(G, ) = Ĥ1(G, ).

We consider the following short exact sequence of Z[G]-module:

0→ Z2(N)→C2(N)
∂−→B1(N)→ 0.

By taking Galois cohomology, we obtain a long exact sequence

0→ Z2(N)G →C2(N)G
∂−→B1(N)G →H1

(
G,Z2(N)

)
→H1(G,C2(N) = 0,

where the last equality is by Lemma 9.

Now the transfer map h! : C2(M)
∼=−→ C2(N)G and the map (1/n)h∗ :

C2(N)G
∼=−→C2(M) induce the isomorphism

B1(M) = ∂
(
C2(M)

) ∼=−→
h!

∂
(
C2(N)G

)
,

and hence we have an exact sequence

0→B1(M)
h!

−→B1(N)G →H1
(
G,Z2(N)

)
→ 0.

Proof of Theorem 11. We prove here that the Tate cohomology Ĥr(G,

Z2(N)) is independent of cellular decompositions of N , where h :N →M is
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a branched Galois cover branched over a link L with Galois group G and of

degree n=#G. We take one G-CW-structure on N which has h−1(L) as a

subcomplex. We denote the singular chains of N by Csing
∗ (N), and so on.

The inclusion from cellular chains into singular chains leads to a commu-

tative diagram of G-chain complexes with exact rows and columns:

0 0 0

0 C∗
(
h−1(L)

) α∗
Csing
∗

(
h−1(L)

)
Coker(α∗) 0

0 C∗(N)
β∗

Csing
∗ (N) Coker(β∗) 0

0 C∗
(
N,h−1(L)

) γ∗
Csing
∗

(
N,h−1(L)

)
Coker(γ∗) 0

0 0 0

Since the inclusions α∗, β∗, γ∗ are chain homotopy equivalences, the cok-

ernels are acyclic complexes. Since G acts freely away from h−1(L), the

complexes in the third row are free G-modules. By diagram chasing (use

Bq(Coker(α∗)) = Zq(Coker(α∗)) by acyclicity), we obtain exact sequences:

0 Zq

(
h−1(L)

)
Zsing
q

(
h−1(L)

)
Zq

(
Coker(α∗)

)
0,

0 Zq(N) Zsing
q (N) Zq

(
Coker(β∗)

)
0,

and so on. We also have an exact column 0 −→ Zq(Coker(α∗)) −→ Zq

(Coker(β∗)) −→ Zq(Coker(γ∗)) −→ 0. Since h−1(L) is 1-dimensional,
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Zq(h
−1(L)) = 0 for all q > 1. Hence, we have following exact diagram:

0 0

0 0 Zsing
2

(
h−1(L)

) ∼=
Z2

(
Coker(α∗)

)
0

0 Z2(N) Zsing
2 (N) Z2

(
Coker(β∗)

)
0

Z2

(
Coker(γ∗)

)
0

0

Hence, 0−→ Z2(N)−→ Zsing
2 (N)/Zsing

2 (h−1(L))−→ Z2(Coker(γ∗))−→ 0 is

exact by the nine lemma, and 0−→ Ĥr(G,Z2(N))−→ Ĥr(G,Zsing
2 (N))−→

Ĥr(G,Z2(Coker(γ∗)) −→ Ĥr+1(G,Z2(N)) −→ 0 is exact by the snake

lemma. SinceZ2(Coker(γ∗)) isG-free andG is finite, Ĥr(G,Z2(Coker(γ∗))) =

0 for all r ∈ Z, and hence Ĥr(G,Z2(N))
∼=−→ Ĥr(G,Zsing

2 (N)) for all r ∈ Z.
The last group is independent of the cellular decomposition. (This proof

holds for all q > 1.)

§5. Application to genus theory

In this section, we give some genus-theory–type theorems obtained as

applications of our Theorem 10. First, we recall the number field case. Here

are some applications of Theorem 5, which give balances between ideal class

groups and ramification indices.

Lemma 12 ([Y, Lemma 1]). Let �/k be a finite Galois extension of number

fields with Galois group G. Then

#I(�)G/P (�)G =#Cl(k)

∏
e

#Ĥ1(G,O∗
k)
,

where
∏

e is the product of the ramification indices of all the finite primes

at �/k.
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Note that in the proof of Lemma 12 we use Theorem 5, Ĥ1(G,O∗
� )

∼=
P (�)G/P (k), and the fact that

∏
e= [I(�)G : I(k)].

Proposition 13 ([Y, Lemma 6]). Let �/k be a cyclic extension with

Galois group G. Then, for the G-invariant subgroup of ideal class group

Cl(�)G,

#Cl(�)G =
#Ĥ0(G,O∗

� ) ·
∏

e ·#Cl(k)

#Ĥ1(G,O∗
� ) · [O∗

k : (η)]
.

Remark. If �/k is abelian, #Cl(�)G is equal to what is called the relative

genus number of �/k.

Proposition 14 ([Y, Lemma 3]). When a group G is acting on A,

Q(A) = #Ĥ0(G,A)/#Ĥ1(G,A) is called the Herbrand quotient. For a

cyclic extension l/k with Galois group G, we have

Q(O∗
� ) :=

Ĥ0(G,O∗
� )

Ĥ1(G,O∗
� )

=

∏
e∞
n

,

where
∏

e∞ is the product of the branching indices at the infinite primes.

Note. In order to see the analogy closely, we sketch the proof of Propo-

sition 13. Precisely, we have

#Cl(�)G =
[⋃

Cl(�)G : P (�)I(�)G
]
×

[
P (�)I(�)G : P (�)I(k)

]
×

[
P (�)I(k) : P (�)

]

=
#Ĥ0(G,O∗

� )

[O∗
k : (η)]

×
∏

e · h0
#Ĥ1(G,O∗

� )
× #Cl(k)

h0
,

where Ĥ0(G,O∗
� ) = O∗

k/N(O∗
� ), (η) := O×

k ∩ N(�), and h0 = #Ker(Tr :

Cl(k)→Cl(�)). Furthermore,

(i) [
⋃
Cl(�)G : P (�)I(�)G] = [(η) : N(O∗

� )] (= #Ĥ0(G,O∗
� )/[O∗

k : (η)]) is

proved by the isomorphism
⋃
Cl(�)G/P (�)I(�)G ∼= (η)/N(O∗

� ),

(ii) [P (�)I(k) : P (�)] = #Cl(k)/h0 is proved by applying the homomor-

phism theorem for the transfer map, and

(iii) [P (�)I(�)G : P (�)I(k)] =
∏

e ·h0/#Ĥ1(G,O∗
� ) follows from the fact that

P (�)I(�)G/P (�)I(k)∼= I(�)G/P (�)G, (ii), and Lemma 12.
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Next, we consider the 3-manifold analogues of the propositions above in

this section, which are related to genus theory for 3-manifolds (see [Mo1],

[Mo3], [Mo4]), as applications of our Theorem 10. They can be seen as more

precise versions of theorems in [Mo1]. Note that we omit coefficients Z in

the following.

Lemma 15 (Analogue of Lemma 12). Let h :N →M be a finite Galois

cover over a rational homology 3-sphere M , of degree n with Galois group G.

Then

#Z1(N)G/B1(N)G =
#H1(M) ·

∏
e

#Ĥ1(G,Z2(N))
,

where
∏

e is the product of the branching indices of all the branching knots

of h.

Proof of Lemma 15. By our Theorem 10, Ĥ1(G,Z2(N)) ∼= B1(N)G/

h!B1(M), and by the fact that
∏

e= [Z(N)G : h!Z(M)], we obtain the fol-

lowing:

#Z1(N)G/BG
1 =

[
Z1(N)G :B1(N)G

]
=

[
Z1(N)G : h!Z1(M)

]
·
[
h!Z1(M) : h!B1(M)

]
/
[
B1(N)G : h!B1(M)

]
=

∏
e ·#H1(M)/#Ĥ1

(
G,Z2(N)

)
.

Proposition 16 (Analogue of Proposition 13). Let h : N → M be a

cyclic cover over a rational homology sphere M , with Galois group G= 〈σ |
σn = 1G〉. Then, for the G-invariant subgroup of the first homology group

H1(N,Z)G, we have

#H1(N)G =
#Ĥ0(G,Z2(N))

#Ĥ1(G,Z2(N))
·
∏

e ·#H1(M).

In particular, the Herbrand quotient Q(Z2(N)) = (#Ĥ0(G,Z2(N)))/

(#Ĥ1(G,Z2(N))) is an invariant of the cover.

Remark. If h :N →M is abelian, the relative genus cover N∗ →N is

defined to be the maximal cover of N which is an abelian cover over M

and is unbranched over N , and gN/M := deg(N∗ →N) is called the relative

genus number with respect to h :N →M .
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When h :N →M is a cyclic cover over an integral homology sphere M

(i.e., H1(M,Z) = 0), we have the following equalities proved by Morishita

[Mo1]:

#H1(N)G =
[
H1(N) : (1− σ)H1(N)

]
=

[
H1(N) :H1(N

∗)
]
= gN/M =

∏
e

n
.

Comparing with our equality in Proposition 16, we obtain the Herbrand

quotient of G acting on Z2(N), as follows.

Proposition 17. Suppose that M is an integral homology sphere in the

assumptions of Proposition 16; then

Q
(
Z2(N)

)
=

#Ĥ0(G,Z2(N))

#Ĥ1(G,Z2(N))
=

1

n
.

This is an analogue of the Herbrand quotient for unit groups of cyclic

extension of number fields �/k with
∏

e∞ = 1 (i.e., without branching at

any infinite prime).

Remarks.

(1) The Herbrand quotient of Z2(N) for general M is yet to be calculated,

because it is difficult to apply the technique used in [Mo1] for generalM .

However, we have following.

(i) For any branched Galois cover h :N →M with Galois group G, by

definition we have

Ĥ0
(
G,Z2(N)

)
= Z2(N)G/

(∑
σ∈G

σ
)
Z2(N).

(ii) If G is cyclic, by group cohomology theory and our Lemma 9, we

also have

B1(N)G/h!B1(M)∼= Ĥ1
(
G,Z2(N)

) ∼= Ĥ−1
(
G,Z2(N)

)
=Ker

(
h∗ : Z2(N)→ h!Z2(M)/(1− σ)Z2(N)

)
.

(2) We note that topological analogues of the infinite primes are known

to be ends of noncompact 3-manifolds (see [D], [Mo3], [Mo4], [Ra]).

Therefore, since M is closed, the term corresponding to the infinite

primes disappears in Proposition 17.
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Proof of Proposition 16. We have more precise equations:

#H1(N)G =
[⋃

H1(N)G :B1(N) +Z1(N)G
]

×
[
B1(N) +Z1(N)G :B1(N) + h!Z1(M)

]
×

[
B1(N) + h!Z1(M) :B1(N)

]

=#Ĥ0
(
G,Z2(N)

)
×

∏
e · h0

#Ĥ1(G,Z2(N))
× #H1(M)

h0
,

and each term coincides (so, they are integers), where Ĥ0(G,Z2) = Z2(M)/

h∗(Z2(N)) and h0 =#Ker(h! :H1(M)→H1(N)). Indeed,

(i)
⋃
H1(N)G/B1(N) + Z1(N)G

∼=−→ Z2(M)/h∗(Z2(N)) proves the coinci-

dence of the first terms,

(ii) B1(N) + h!Z1(M)/B1(N) is the image of transfer map h! :H1(M)→
H1(N) with #Ker(h!) = h0, and

(iii) [B1(N)+Z1(N)G : h!(Z1(M))+B1(N)] = (
∏

e · h0)/(#Ĥ1(G,Z2(N)))

since B1(N) + Z1(N)G/B1(N) ∼= Z1(N)G/BG
1 and by Lemma 15

and (ii).

Proof of (i). In order to prove the isomorphism
⋃
(H1(N)G)/B1(N) +

Z1(N)G
∼=−→ Z2(M)/h∗(Z2(N)), we consider the following map:

ϕ :
⋃

H1(N)G → Z2(M)/h∗
(
Z2(N)

)
c �→

[
h∗(s)

]
,

where (1−σ)c= ∂s. We will define the map, show it is surjective, and make

its kernel explicit.

First, for c ∈ Z1(N), the following equivalence and equation show that

there is such s:

c ∈
⋃

H1(N)G ⇐⇒ [c] ∈H1(N)G

⇐⇒ (1− σ)c ∈B1(N)

⇐⇒ ∃s ∈C2(N), such that (1− σ)c= ∂s,

∂h∗(s) = h∗(∂s) = 0.

Suppose that (1− σ)c= ∂s= ∂s′; then ∂(s− s′) = 0, s− s′ ∈ Z2(N), and

hence

h∗(s)− h∗(s
′) = h∗(s− s′) ∈ h∗

(
Z2(N)

)
.

Hence, the map ϕ exists and is well defined.
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Next, for any s ∈ Z2(M), there exists s̃ ∈ C2(N) such that h∗(s̃) = s.

Since h∗(∂s) = ∂h∗(s) = 0 and Ker(h∗) = Im(1 − σ) on B1(N), we have

∂s= (1− σ)c for some c ∈B1(N). Hence, ϕ is surjective.

Lastly, take c ∈
⋃
H1(N)G, and put ϕ(c) = [h∗(s)] with (1 − σ)c = ∂s;

then the following equivalence shows the results:

c ∈Kerϕ ⇐⇒ h∗(s) ∈ h∗
(
Z2(N)

)
⇐⇒ s ∈ Z2(N) +Ker(h∗) = Z2(N) + (1− σ)C2(N)

⇐⇒ (1− σ)c= ∂s ∈ (1− σ)∂C2(N) = (1− σ)B1(N)

⇐⇒ c ∈B1(N) +Z1(N)G.

Note that since ϕ(c) = [h∗(s)] is well defined, it is sufficient to consider any

s ∈C2(N) with (1− σ)c= ∂s above.
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