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SOME CONJECTURES ON ENDOSCOPIC
REPRESENTATIONS IN ODD ORTHOGONAL GROUPS

DAVID GINZBURG and DIHUA JIANG

In memory of Hiroshi Saito

Abstract. In this paper, we introduce two conjectures on characterizations
of endoscopy structures of irreducible generic cuspidal automorphic represen-
tations of odd special orthogonal groups in terms of nonvanishing of certain

period of automorphic forms. We discuss a relation between the two conjec-
tures and prove that a special case of Conjecture 1 (and hence Conjecture 2)
is true.

§1. Introduction

Let π denote an irreducible generic cuspidal automorphic representation

of SO2m+1(A). Here A is the ring of adèles of a number field F . We say

that π is an endoscopic representation with respect to SO2r+1×SO2(m−r)+1

if there are generic cuspidal automorphic representations σ1 and σ2 of

SO2r+1(A) and SO2(m−r)+1(A), respectively, such that π is the Langlands

functorial lift of σ1 ⊗ σ2. This functorial lift corresponds to the L-group

homomorphism Sp2r(C)× Sp2(m−r)(C)→ Sp2m(C), which is given by the

direct sum embedding. More generally, we say that π is an endoscopic rep-

resentation with respect to SO2r1+1×· · · × SO2rk+1 if there exists an irre-

ducible generic cuspidal automorphic representation σi of each SO2ri+1(A)

such that π is the Langlands functorial lift of σ1 ⊗ · · · ⊗ σk. Here 1≤ i≤ k

and r1 + · · ·+ rk =m. As above, this lift corresponds to the L-group homo-

morphism

Sp2r1(C)× · · · × Sp2rk(C) �→ Sp2m(C).
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If an irreducible generic cuspidal automorphic representation π of

SO2m+1(A) is not endoscopic, we say that π is stable (or simple, which is

compatible with the notion of simple parameters of Arthur [A]). It follows

from the Langlands functoriality conjecture (or, more precisely, the theory

of endoscopy) that, for any irreducible generic cuspidal automorphic repre-

sentation π of SO2m+1(A), there exists a partition m=
∑k

i=1 ri and there

exists an irreducible, stable, generic cuspidal automorphic representation σi
of each SO2ri+1(A) such that π is an endoscopy lift from σ1 ⊗ · · · ⊗ σk. In

this case, we say that π has a stable endoscopy type (σ1, . . . , σk). Hence, if

π has a stable endoscopy type (σ1, . . . , σk), then π is also endoscopic with

respect to SO2r+1×SO2(m−r)+1 for a suitable value of r.

This suggests two important problems.

(1) Existence. Given a set of irreducible cuspidal automorphic repre-

sentations σi defined on SO2ri+1(A), with i = 1,2, . . . , k, prove the exis-

tence of an endoscopic representation π of SO2m+1(A) with respect to

SO2r1+1×· · ·×SO2rk+1, which is the endoscopic transfer from σ1⊗· · ·⊗σk.

(2) Characterization. Characterize the image of this lift. In other words,

given an irreducible generic cuspidal automorphic representation π of

SO2m+1(A), determine when it is an endoscopic representation. This char-

acterization can be given in terms of poles of L-functions, of nonvanishing

of certain period integrals, or of both.

For problem (1), currently there are constructive methods to prove the

existence of such lifts. The first construction is the so-called descent method.

This method uses a Fourier coefficient of a certain residue of an Eisen-

stein series defined on the even orthogonal groups (see [S] for some details).

Another construction of endoscopic representation is given in [G3], using

an extension of the descent method. We should mention that both con-

structions use the functorial lift from an odd orthogonal group to GLn as

established in [CKPS]. The existence of such endoscopy lifts is in general

expected to follow from the method of the trace formula.

For the characterization of the image, that is, problem (2), some partial

results are known. First, regarding poles of L-functions, the result of [J]

gives a relation between this lifting and the order of the pole of the partial

L-function attached to the second fundamental representation of Sp2m(C).

Regarding the characterization of the image of the lift in terms of period

integrals, we have the following.
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Theorem 1 ([G3, Theorem 6]). An irreducible generic cuspidal automor-

phic representation π of SO2m+1(A) has a stable endoscopy type (σ1, . . . , σk),

with σi being an irreducible stable generic cuspidal automorphic represen-

tation of SO2ri+1(A), i= 1,2, . . . , k, if and only if there exist k irreducible,

nonisomorphic, cuspidal automorphic representations τi of GL2ri(A),

respectively, such that all the period integrals P(π, τi), defined in [G3], are

nonzero for some choice of data.

Even though the above theorem does give a characterization of the image,

there are two problems with it. First, it requires a set of period integrals

and not just one. Second, the period integral is not defined using the repre-

sentation π only but also in terms of cuspidal representations of the group

GLn(A).

In this paper we introduce a family of period integrals which we conjec-

ture to give a certain characterization of the image of the lift. Our main

conjecture is the following.

Conjecture 1. Assume that 2r ≤ m. An irreducible generic cuspidal

automorphic representation π is endoscopic with respect to SO2r+1×
SO2(m−r)+1 if and only if the period integral

(1) Qr(π) =

∫
Sp2r(F )\Sp2r(A)

∫
Ur(F )\Ur(A)

ϕπ(uh)ψUr(u)dudh

is not 0 for some choice of data.

The precise definition of the integrals Qr(π) will be given in Section 2.

The difference between Conjecture 1 and Theorem 1 is that in Conjecture 1,

the period integral involves only the representation π and only one period

integral. In contrast, Theorem 1 is more general and also gives the stable

endoscopy type of π.

The main result related to this conjecture is as follows.

Theorem 2. Conjecture 1 holds for r = 1.

We prove this theorem in Section 2.

In the third section we state a conjecture involving a period integral,

which characterizes when the representation π is an endoscopic functorial

lift from SO3×SO2r+1×SO2(m−r)−1. Clearly, if we use Theorem 1 to this

case, we need three different but similar types of periods to characterize this

endoscopy structure (i.e., three endoscopy factors). Our conjecture (Con-

jecture 2 in Section 3) characterizes the endoscopy structure (with three
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endoscopy factors) in terms of one period integral. However, in contrast to

Conjecture 1, the period integral used in Conjecture 2 not only involves

the representation π but also involves a cuspidal representation of SO3(A).

The main result in Section 3 is to prove that Conjecture 2 follows from

Conjecture 1, in particular, that Conjecture 2 holds for r = 1.

The last section is an appendix where we collect some known results

which we use mainly in the third section. We also remark that the main idea

used in the proofs in this paper is to consider various Fourier expansions of

automorphic forms along certain unipotent subgroups. In general, one may

consider Fourier coefficients of automorphic forms attached to unipotent

orbits. We refer to [G2] and the references therein for general discussions on

this topic.

§2. On the main conjecture

We keep the notation of the introduction. Let π denote an irreducible

generic cuspidal automorphic representation of SO2m+1(A). The orthogonal

group is realized as the group of all matrices g ∈GL2m+1 such that gtJg = J .

Here J is the 2m+1 matrix which has ones on the other diagonal and zeros

elsewhere.

We now describe the groups used to define the period integral Qr(π) as

given in integral (1). Here 2r ≤m. Let U ′
r denote the unipotent radical of

the parabolic subgroup of SO2m+1 whose Levi part is GLm−2r
1 ×GL2r. Let

Ur be the subgroup of U ′
r which consists of all u = (ui,j) ∈ U ′

r such that

ui,m+1 = 0 for all m − 2r + 1 ≤ i ≤m. Let ψ denote a nontrivial additive

character of F\A. The character ψUr is defined as

ψUr(u) = ψ(u1,2 + u2,3 + · · ·+ um−2r−1,m−2r + um−2r,m+1

+ um−2r+1,m+2 + um−2r+2,m+3 + · · ·+ um−r,m+r+1).

Then Sp2r embedded inside GL2r stabilizes the character ψUr . We note that

for experienced readers it will not be hard to find that the introduction of

the unipotent subgroup Ur and the character ψUr is motivated by the auto-

morphic descent constructions and generalized Shalika periods (see [GRS],

[JQ]).

Proof of Theorem 2. Assume first that π is endoscopic with respect to

SO3×SO2m−1. Thus, π is the functorial lift of an irreducible generic cuspidal

automorphic representation τ of SO3(A) and an irreducible generic cuspidal
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automorphic representation σ of SO2m−1(A). We view τ as an irreducible

representation of GL2(A) with a trivial central character. Then, as stated

in Theorem 1, it follows from [G3] that the integral

(2)

∫
SO4(F )\SO4(A)

∫
V1(F )\V1(A)

ϕπ(vg)ψU1(v)Eτ (g)dv dg

is not 0 for some choice of data. Here V1 is the unipotent radical of the

parabolic subgroup of SO2m+1 whose Levi part is GLm−2
1 ×SO5. Notice that

V1 is a subgroup of U1, and we view ψU1 as a character of V1 by restriction.

Also, Eτ (g) denotes the residue of the Eisenstein series defined on SO4 which

is induced from τ . More precisely, let Eτ (g, s) denote the Eisenstein series

of SO4(A) associated with the induced representation Ind
SO4(A)
P2(A) τδsP2

. Here

P2 is a maximal parabolic subgroup of SO4 whose Levi part is GL2. Since

τ has a trivial central character, this Eisenstein series has a simple pole at

s= 1. We denote the residue representation by Eτ (g).

Restricting Eτ (g) as a function to SL2(A)×SL2(A), it follows from inte-

gral (2) that the integral∫
(SL2(F )×SL2(F ))\(SL2(A)×SL2(A))

∫
V1(F )\V1(A)

ϕπ

(
v(g1, g2)

)
×ψU1(v)ϕτ (g1)dv dg1 dg2

is not 0 for some choice of data. This implies that as a function of g1 ∈
SL2(A), the function

(3) f(g1) =

∫
SL2(F )\SL2(A)

∫
V1(F )\V1(A)

ϕπ

(
v(g1, g2)

)
ψU1(v)dv dg2

is not 0, and moreover, it is not the identity function. Therefore, it has a

nonzero Fourier coefficient. Thus, there is α ∈ F ∗ such that the integral∫
SL2(F )\SL2(A)

∫
F\A

∫
V1(F )\V1(A)

ϕπ

(
v

((
1 x

1

)
g1, g2

))

×ψ(αx)ψU1(v)dxdv dg2

is not 0 for some choice of data. However, conjugating by the torus element of

SO2m+1 given by diag(Im2 , α, I3, α
−1, Im−2), we deduce that when α= 1, the

above integral is not 0 for some choice of data. By definition, the unipotent

group we integrate over in the above integral is the group U1. Also, the
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character defined on this group is exactly ψU1 . Thus, we conclude that

integral (1) with r = 1 is not 0 for some choice of data.

To prove the converse, we start with integral (1), and arguing backward,

we deduce that integral (3) is not 0 for some choice of data. Changing

variables in the g2 variable in integral (3), we obtain that f
((

α
1

)
g1
)
=

f(g1) for all α ∈ F ∗ and that f
((

a
a

)
g1
)
= f(g1) for all a ∈A∗. Hence, the

function f(g1) defined in integral (3) defines a nonzero automorphic function

of GL2(A). Let τ ′ denote the representation of GL2(A) generated by the

space of functions f(g1) given by (3). It follows from the above that τ ′ has
a trivial central character. We claim that τ ′ is a cuspidal representation.

Assuming that, let τ denote an irreducible summand of τ ′. From the above,

we deduce that the integral∫
Z(A)GL2(F )\GL2(A)

∫
SL2(F ))\SL2(A)

∫
V1(F )\V1(A)

ϕπ

(
v(g1, g2)

)
× ψU1(v)ϕτ (g1)dv dg1 dg2

is not 0 for some choice of data, which implies that the integral (2) is not 0

for some choice of data. Thus, it follows from [G3] that π is endoscopic.

It remains to prove that the representation τ ′ is cuspidal. Thus, we need

to prove that the integral∫
F\A

f

((
1 x

1

)
g1

)
dx

is 0 for all choice of data. Let

w =

⎛
⎜⎜⎜⎜⎝

I2
Im−2

1

Im−2

I2

⎞
⎟⎟⎟⎟⎠ .

Conjugating the argument of ϕπ by w, we need to prove that the integral

∫
ϕπ

⎡
⎣
⎛
⎝I2 x y

I2m−3 x∗

I2

⎞
⎠

⎛
⎝I2

v

I2

⎞
⎠

(4)

×

⎛
⎝I2

z I2m−3

z∗ I2

⎞
⎠

⎛
⎝g

I2m−3

g∗

⎞
⎠
⎤
⎦ψV (v)d(· · · )
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is 0 for all choice of data. Here, x ∈Matf,m−1
2×(2m−3) is integrated over the group

of matrices Matf,m−1
2×(2m−3)(F )\Matf,m−1

2×(2m−3)(A), where f,m− 1 indicate that

the first m− 1 columns are 0. Also, y is a 2× 2 matrix such that the first

matrix in the argument of ϕπ in integral (4) is a matrix in SO2m+1. Let

V denote the maximal unipotent subgroup of SO2m−3. We embed it inside

SO2m+1 as in the second matrix in integral (4). Then, v is integrated over

V (F )\V (A). The character ψV is the Whittaker character of V . In other

words, if v = (vi,j) ∈ V , then ψV (v) = ψ(v1,2+v2,3+ · · ·+vm−2,m−1). Next, z

is integrated over Matl,m−1
2×(2m−3)(F )\Matl,m−1

2×(2m−3)(A), where l,m−1 indicate

that the last m−1 rows are 0. Finally, g is integrated over SL2(F )\SL2(A).

Next, we perform a sequence of Fourier expansions. We start by expand-

ing integral (4) along the unipotent group l(r1, r2) = I2m+1 + r1(e1,m+1 −
em+1,2m+1) + r21e1,2m+1 + r2(e2,m+1 − em+1,2m) + r22e2,2m. Here, for all i, j,

we denote by ei,j the (2m+ 1)× (2m+ 1) matrix which has 1 in the (i, j)

entry and 0 elsewhere. Thus, integral (4) is equal to∑
α1,α2∈F

∫
ϕπ

(
l(r1, r2)(x, y, v, z, g)

)
ψV (v)ψ(α1r1 + α2r2)d(· · · ).

Here, r1 and r2 are integrated over F\A and all other variables are inte-

grated as before. For fixed α1, α2 ∈ F , consider the matrix s(α1, α2) =

I2m+1 + α1(em,1 − e2m+1,m+2) + α2(em,2 − e2m,m+2). Use the left invariant

property of ϕπ under matrices in SO2m+1(F ), to write in the above inte-

gral ϕπ(h) = ϕπ(s(α1, α2)h). Conjugating s(α1, α2) to the right, changing

variables in v, we obtain that the above integral is equal to∫
ϕπ

(
(x, y, v, z, g)

)
ψV (v)d(· · · ),

where now x is integrated over Matf,m−2
2×(2m−3)(F )\Matf,m−2

2×(2m−3)(A) and z is

integrated over Matl,m−2
2×(2m−3)(F )\Matl,m−1

2×(2m−3)(A). All other variables are

integrated as before. We continue this process, and we deduce that the

following integral

∫
ϕπ

⎡
⎣
⎛
⎝I2 x y

I2m−3 x∗

I2

⎞
⎠

⎛
⎝I2

v

I2

⎞
⎠

⎛
⎝g

I2m−3

g∗

⎞
⎠
⎤
⎦ψV (v)d(· · · )

is an inner integration to the integral (4). Here, x is integrated over the

group of matrices Matf,12×(2m−3)(F )\Matf,12×(2m−3)(A) and all other variables
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are integrated as before. Thus, it is enough to show that this integral is 0

for all choices of data. To do that, we expand it along the group l(r1, r2) =

I2m+1+r1(e1,3−e2m−1,2m+1)+r2(e2,3−e2m−1,2m). Thus, the above integral

is equal to

∑
α1,α2∈F

∫
ϕπ

(
l(r1, r2)(x, y, v, g)

)
ψV (v)ψ(α1r1 + α2r2)d(· · · ).

Recall that g is integrated along SL2(F )\SL2(A). From the embedding

of this group inside SO2m+1, as described in integral (4), it follows that

this group acts on the above expansion with two orbits. The trivial orbit

contributes 0 to the above integral. Indeed, in this case, the integration

over x and y produces the integral of ϕπ along the unipotent radical of the

maximal parabolic subgroup of SO2m+1 whose Levi part is GL2×SO2m−3.

By the cuspidality of π, it follows that it is 0. When considering the second

orbit of the above expansion, the stabilizer inside SL2 is the group N which

consists of all upper unipotent matrices inside SL2. If we combine this group

with the x and y integration, we obtain as inner integration an integration

over a unipotent radical of a parabolic subgroup of SO2m+1. This time it is

the parabolic subgroup whose Levi part is GL1×SO2m−1. Thus, it is also 0.

Thus, integral (4) is 0 which implies that the representation τ ′ is cuspidal.
The proof of Theorem 2 is complete.

§3. On the lift from three orthogonal groups

Let 1 ≤ r, and assume that m ≥ 2r + 1. In this section, we state our

conjecture on when an irreducible generic cuspidal automorphic represen-

tation π of SO2m+1(A) is an endoscopic representation with respect to

SO3×SO2r+1×SO2(m−r)−1. Notice that since m≥ 2r+1, then 2(m− r)−
1≥ 2r+ 1.

To state the conjecture, we first fix some notation. Let E(g, s) denote the

Eisenstein series on SO4(r+1) associated with the induced representation

Ind
SO4(r+1)(A)

P (A) δsP . Here P is the maximal parabolic subgroup of SO4(r+1)

whose Levi part is GL2(r+1). For Re(s) > 1/2, the poles of this Eisenstein

series were studied in [KR]. Let Θ[22r14] denote the residual representation

of E(g, s) at the point s0 = (r + 1)/(2r + 1). Then one can show that the

unipotent orbit attached to this residual representation is [22r14].
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With the above data, we define the following family of period integrals.

First, if m= 2r+ 1, define

Pr(π, τ) =

∫
SO4r+3(F )\SO4r+3(A)

ϕπ(g)θτ,4(r+1)(g)θ[22r14](g)dg.

Here θ[22r14] is a vector in the representation Θ[22r14], and θτ,4(r+1) is a vector

in the residual representation Θτ,4(r+1), as defined in [G3].

When m> 2r+ 1, we define Pr(π, τ) to be equal to∫
SO4(r+1)(F )\SO4(r+1)(A)

∫
V m
m−2r−2(F )\V m

m−2r−2(A)
ϕπ(vg)

×ψV m
m−2r−2

(v)θτ,4(r+1)(g)θ[22r14](g)dv dg.

Here, for 1≤ k ≤m, we denote by V m
k the unipotent subgroup of SO2m+1

defined as follows. Consider the standard parabolic subgroup of SO2m+1

whose Levi part is GLk
1 ×SO2m−2k+1. We denote its unipotent radical by

V m
k . To define ψV m

k
, let v = (vi,j) ∈ V m

k . Then we set ψVk
(v) = ψ(v1,2+v2,3+

· · ·+ vk−1,k + vk,m+1). We have the following.

Conjecture 2. With the above notation, the representation π is endo-

scopic with respect to SO3×SO2r+1×SO2(m−r)−1 if and only if the period

integral Pr(π, τ) is not 0 for some choice of data.

The relation between the two conjectures is as follows.

Theorem 3. Conjecture 1 implies Conjecture 2.

Corollary 1. Conjecture 2 holds for r = 1.

3.1. Proof of Theorem 3

Assume first that π is endoscopic with respect to SO3×SO2r+1×
SO2(m−r)−1. Thus, there exist irreducible generic cuspidal automorphic rep-

resentations τ , μ, and ε of SO3(A), SO2r+1(A), and SO2(m−r)−1(A), respec-

tively, such that π is endoscopic with respect to (τ,μ, ε).

Consider the automorphic function on SO2m−1(A) defined by integral

(26) in the appendix, and let σ denote the representation of SO2m−1(A)

generated by these functions. Since π is endoscopic with respect to (τ,μ, ε),

it follows from Theorem 1 that integral (2) is not 0 for some choice of data.

Applying Theorem 5 in the appendix, we deduce that σ is a nonzero generic
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cuspidal representation. Moreover, it is endoscopic with respect to (μ, ε) as

defined above. Since we assume Conjecture 1, we deduce that the integral

(5) Qr(σ) =

∫
Sp2r(F )\Sp2r(A)

∫
Um−1
r (F )\Um−1

r (A)
ϕσ(uh)ψUm−1

r
(u)dudh

is not 0 for some choice of data. Notice that in integral (1) the representation

π is defined on SO2m+1, and in integral (5) the representation σ is defined

on SO2m−1. Also, we wrote Um−1
r in integral (5) instead of Ur as written

in integral (1). This means that here we view the groups Sp2r and Um−1
r as

subgroups of SO2m−1. Plugging integral (26) in the appendix into integral

(5), we deduce that the integral∫
Sp2r(F )\Sp2r(A)

∫
Um−1
r (F )\Um−1

r (A)

∫
SO2m+1(F )\SO2m+1(A)

ϕπ(g)

(6)
× θτ,4m

(
(g,uh)

)
ψUm−1

r
(u)dg dudh

is not 0 for some choice of data. This integral converges, but not absolutely.

In fact, because σ is a cuspidal representation, it follows that the integral∫
Sp2r(F )\Sp2r(A)

∣∣∣∫
Um−1
r (F )\Um−1

r (A)

∫
SO2m+1(F )\SO2m+1(A)

ϕπ(g)

× θτ,4m
(
(g,uh)

)
ψUm−1

r
(u)dg du

∣∣∣dh
converges. Thus, as long as we do not change the order of integration involv-

ing the h variable, we can perform a series of Fourier expansions.

The embedding of the matrices (g,uh) inside SO4m is as follows. First we

embed

(g,h) �→ diag(Im−2r−1, h, g, h
∗, Im−2r−1).

Then, the embedding of the group Um−1
r is as follows:

u=

⎛
⎜⎜⎜⎜⎝
u1 u2 u3 u4 u5

I2r y u∗4
1 u∗3

I2r u∗2
u∗1

⎞
⎟⎟⎟⎟⎠ �→ (1, u)

(7)
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 u2 0 u3 0 u4 u5
I2r 0 0 0 y u∗4

I2m 0 0

I2 0 u∗3
I2m 0 0

I2r u∗2
u∗1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, the variables are defined as follows. First, we have u1 ∈ Zm−2r−1

defined to be the standard maximal unipotent subgroup of GLm−2r−1.

Thus, Zm−2r−1 consists of all upper unipotent matrices. Next, we have u2 ∈
Mat(m−2r−1)×2r and u3 ∈ Mat(m−2r−1)×1. The matrix

( u4 u5
y u∗

4

)
∈

Mat(m−1)×(m−1) is such that the above matrix u is in SO2m−1. Finally,

all u∗i are such that the above matrix is in SO4m.

To proceed, we will apply an inductive argument. In other words, we will

relate integral (6) for the values (m,r) when m> 2r + 1 with integral (6)

for the values (m− 1, r).

Let Y1 denote the unipotent subgroup of SO4m which consists of all matri-

ces of the form

(8) y1 = I4m +

2m+2∑
i=1

[ri(e1,m+i−1 − em+i−1,4m)] + r∗e1,4m.

Here r∗, which depends on r1, . . . , r2m+2, is such that the above matrix

is in SO4m. Expand the function θτ,4m in integral (6) along the group

Y1(F )\Y1(A). The group SO2m+2, embedded in SO4m as t �→ diag(Im−1,

t, Im−1), acts on this expansion with three type of orbits. Each term of the

expansion corresponds to a vector of size 2m+2. Consider the contribution

to the expansion from the orbits corresponding to vectors of nonzero length.

For 1≤ i≤ 2m− 1, let Li denote the unipotent radical of the standard par-

abolic subgroup of SO4m whose Levi part is GLi
1×SO2(2m−i). Thus, when

considering, in the above expansion, the terms corresponding to vectors with

nonzero length, we get, when combining the integration over Y1 and Um−1
r ,

the integral ∫
L1(F )\L1(A)

θτ,4m(l)ψL(l)dl

as inner integration. Here ψL is defined as follows. For l = (li,j), we have

ψL(l) = ψ(l1,2 + l1,2m + αl1,2m+1) for some α ∈ F ∗. It follows from the
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description of Fourier coefficients corresponding to unipotent orbits as

described in [G2] that this Fourier coefficient corresponds to the unipotent

orbit with partition (314m−3). From Proposition 1 in the appendix, it fol-

lows that the representation Θτ,4m does not support this Fourier coefficient.

Thus, the contribution to the expansion from vectors of nonzero length is 0.

Similarly, the contribution to the expansion from the constant term along

Y1 also contributes 0. To see that we further expand the integral, this time

along the unipotent group Y2 given by

y2 = I4m +

2m+2∑
i=1

[ri(e2,m+i−1 − em+i−1,4m−1)] + r∗e2,4m−1.

Acting on this expansion by the same copy of SO2m+2 we obtain two types

of Fourier coefficients. The first type corresponds to the unipotent orbit with

partition (514m−5) which contributes 0 by Proposition 1 in the appendix.

In the second type of Fourier coefficient, we obtain the integral∫
L2(F )\L2(A)

θτ,4m(l)ψL2(l)dl

as inner integration. Here ψL2 is defined as follows. For l = (li,j), we have

ψL2(l) = ψ(l1,2 + l2,3). Further expansions show that Θτ,4m cannot support

this Fourier coefficient.

Thus, in the expansion along Y1, we are left with the term corresponding

to nonzero vectors of 0 length. Under the action of SO2m+2(F ), this is one

orbit, and hence integral (6) is equal to∫ ∑
γ∈P 0(SO2m)(F )\SO2m+2(F )

∫
Y1(F )\Y1(A)

ϕπ(g)

× θτ,4m
(
y1γ(g,uh)

)
ψY1(y1)ψUm−1

r
(u)dy1 dg dudh.

Here P 0(SO2m) = SO2m S1 is the subgroup of the standard maximal para-

bolic subgroup of SO2m+2 whose Levi part is GL1×SO2m. The character

ψY1 is given by ψY1(y1) = ψ(r1), where we use the coordinates given in (8).

Consider the space of double cosets P 0(SO2m)(F )\SO2m+2(F )/

SO2m+1(F ). To choose a set of representatives, we first denote the following

Weyl elements of SO4m by

wj = diag

(
Ij−1,

(
1

1

)
, I4m−2j−2,

(
1

1

)
, Ij−1

)
.
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Here 1 ≤ j ≤ 2m − 1. With this notation, representatives of the double

cosets can be chosen as e and wmwm+1 · · ·w2m−2w2m−1t, where t is a cer-

tain torus element. We claim that if m+ 1> 2r + 1, then the contribution

to the integral from the second representative is 0. Indeed, consider the

unipotent subgroup of SO2m−1 given by all matrices of the form x(r) =

I2m−1+ r(e1,m− em,2m−1)+ r∗e1,2m−1. Here r∗ is such that x(r) is a matrix

in SO2m−1. This is a subgroup of Um−1
r , and assuming that m+1> 2r+1,

the character ψUm−1
r

is trivial on this subgroup. By the parameterization

given in (7), we have(
1, x(r)

)
= I4m + r(e1,2m − e1,2m+1 + e2m,4m − e2m+1,4m) + r∗e1,4m.

Notice that the group (1, x(r)) is a subgroup of Y1. Furthermore, after con-

jugation by wmwm+1 · · ·w2m−2w2m−1t, this group is conjugated to the sub-

group of Y1 given by all matrices of the form I4m+r(e1,m−e1,3m+1+em,4m−
e3m+1,4m)+ r∗e1,4m. It follows from the definition of ψY1 that this character

is not trivial on this group, and after a change of variables in Y1, we obtain∫
F\Aψ(αr)dr as inner integration. Here α ∈ F ∗ is a factor which is obtained

from the torus element t. Thus, this integral is 0.

We are left with the representative e. Thus, the above integral is equal to∫ ∫
P 0(SO2m−1)(F )\SO2m+1(A)

∫
Y1(F )\Y1(A)

ϕπ(g)

× θτ,4m
(
y1(g,uh)

)
ψY1(y1)ψUm−1

r
(u)dy1 dg dudh.

Here P 0(SO2m−1) = SO2m−1 V
m−1
1 is the subgroup of the maximal parabolic

subgroup of SO2m+1 whose Levi part is GL1×SO2m−1. The group V m−1
1

was defined right after the definition of Pr(π, τ). The other variables are

integrated as before.

As subgroups of SO4m, we have V m−1
1 Y1 = L1, where L1 was defined

right after (8). Also, V m−1
1 is a subgroup of Um−1

r . Hence, if we factor the

integration over that group, the above integral is equal to∫ ∫
Um−1
r (F )V m−1

1 (A)\Um−1
r (A)

∫ ∫
L1(F )\L1(A)

ϕπ(g)

× θτ,4m
(
l(g,uh)

)
ψ′
L1
(l)ψUm−1

r
(u)dl dg dudh.

Here, the character ψ′
L1

is defined as follows. For l = (li,j) ∈ L1, we have

ψ′
L1
(l) = ψ(l1,2 + l1,m). Notice that V m−1

1 \Um−1
r can be identified with

Um−2
r . Denote z1 = w2w3 · · ·wm−1xγ1(1), where xγ1(1) = I4m + e2,m −

e3m+1,4m−1. Then z1 ∈ SO4m(F ). Hence, θτ,4m(l(g,uh)) = θτ,4m(z1l(g,uh)).
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Conjugating z1 to the right and then changing variables, we obtain∫ ∫
P 0(SO2m−1)(F )\SO2m+1(A)

∫
Um−2
r (F )\Um−2

r (A)
ϕπ(g)

(9)
× θL1,ψ

τ,4m

(
z1(g,uh)

)
ψUm−2

r
(u)dudg dh,

where h is integrated over Sp2r(F )\Sp2r(A). Also, we denote

(10) θL1,ψ
τ,4m

(
z1(g,uh)

)
=

∫
L1(F )\L1(A)

θτ,4m
(
lz1(g,uh)

)
ψL1(l)dl,

where ψL1 is defined as follows. For l= (li,j) ∈ L1, we define ψL1(l) = ψ(l1,2).

In fact, we have

θL1,ψ
τ,4m

(
z1(g,uh)

)
= θL2,ψ

τ,4m

(
z1(g,uh)

)
,

where the character ψL1 is extended trivially from L1 to L2. Indeed, to

derive this identity, we expand integral (10) along the group L1\L2 (more

precisely, the A-rational points of L1\L2 modulo the F -rational points of

L1\L2). The group SO4m−4(F ) acts on this expansion with three types of

orbits. In a similar way as in the expansion along Y1 and then Y2, as was

done right after (8), we show that only the constant term gives a nonzero

contribution. Thus, the above identity holds.

In integral (9), we conjugate the matrices (1, u), where u ∈ Um−2
r , across

z1, and we obtain the matrices (1, u)1 given by

u �→ (1, u)1 =

⎛
⎝I2

(1, u)

I2

⎞
⎠ .

Here we view (1, u) as an element in SO4m−4 embedded in SO4m as above

that is parameterized as in (7). In this way, we see that we reduced the

computations to the case with m− 1 instead of m.

We repeat this process m− 2r− 2 times. We deduce that integral (6) is

not 0 for some choice of data if and only if the integral∫ ∫
P 0(SO4r+5)(F )\SO2m+1(A)

∫
U2r+1
r (F )\U2r+1

r (A)
ϕπ(g)

(11)
× θ

L2(m−2r−2),ψ

τ,4m

(
z̃(g,uh)

)
ψU2r+1

r
(u)dudg dh
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is not 0 for some choice of data. Here h is integrated as in integral (9),

and z̃ is defined as follows. For 1 ≤ i ≤ m − 2r − 2, let xγi(1) = I4m +

e2i,m+i−1 − e3m−i+2,4m−2i+1. Define zi = w2iw2i+1 · · ·wm+i−2xγi(1). Then

z̃ = zm−2r−2 · · · z2z1. Finally, we let θ
L2(m−2r−2),ψ

τ,4m be defined as in (10) where

we integrate over L2(m−2r−2)(F )\L2(m−2r−2)(A), and ψL2(m−2r−2)
(l) is

defined as follows. For l= (li,j) ∈ L2(m−2r−2), we define

ψL2(m−2r−2)
(l) = ψ(l1,2 + l3,4 + l5,6 + · · ·+ l2(m−2r−2)−1,2(m−2r−2)).

Next we expand integral (11) along the unipotent group Y2(m−2r−2)+1

defined as the group of all matrices of the form

y = I4m +

4r+6∑
i=1

[ri(e2m−4r−3,2m−2r+i−3 − e2m+2r−i+4,2m+4r+4)]

(12)
+ r∗e2m−4r−3,2m+4r+4.

Here r∗ is defined in a similar way as in (8). The group SO4r+6(F ), embed-

ded as g �→ diag(I2m−2r−3, g, I2m−2r−3), acts on this expansion with three

types of orbits. One type of orbit is the constant term, the second type

corresponds to nonzero vectors with 0 length, and the third corresponds to

all vectors which have nonzero length. As in the case of the expansion of

Y1, we show that the contributions to the integral from the constant term

and from the nonzero length vectors are 0. We are left with the orbit of all

nonzero vectors which have 0 length. Thus, integral (11) is equal to∫ ∑
γ∈P 0(SO4r+4)(F )\SO4r+6(F )

∫
Y2(m−2r−2)+1(F )\Y2(m−2r−2)+1(A)

ϕπ(g)

× θ
L2(m−2r−2),ψ

τ,4m

(
yz̃γ(g,uh)

)
ψY2(m−2r−2)+1

(y)ψU2r+1
r

(u)dy dudg dh.

Here ψY2(m−2r−2)+1
is defined as follows. In the coordinates of this group,

as given in (12), we have ψY2(m−2r−2)+1
(y) = ψ(r1). All other variables are

integrated as in (11).

Next we consider the space of double cosets P 0(SO4r+4)(F )\SO4r+6(F )/

SO4r+5(F ). The space contains two types of elements, and as representatives

we may choose e and the elements w2(m−r−1)w2m−2r−1 · · ·w2m−2w2m−1h(ζ).

Here h(ζ) = diag(I2m−1, ζ, ζ
−1, I2m−1), where ζ ∈ F ∗. The contribution to

the above integral from the identity element is 0. This follows from the
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definition of the character ψU2r+1
r

. As for the other representatives, it also

follows from the definition of ψU2r+1
r

that if ζ �= 1, then the contribution to

the above integral is 0. Indeed, conjugating the element u ∈ U2r+1
r across

w2(m−r−1)w2m−2r−1 · · ·w2m−2w2m−1h(ζ) and then changing variables in

Y2(m−2r−2)+1, we obtain the integral
∫
ψ((1− ζ)r)dr as inner integration.

Here we integrate over F\A, and hence this integral is 0 unless ζ = 1. Thus,

we are left with the Weyl element w0 =w2(m−r−1)w2m−2r−1 · · ·w2m−2w2m−1.

The stabilizer of w0 inside SO4r+5 is SO4r+4, and hence we may collapse

summation with integration in the above integral. It follows that g is now

integrated over V m
m−2r−2(F )SO4(r+1)(F )\SO2m+1(A).

We have the group identity

L2(m−2r−2)+1 = L2(m−2r−2)Y2(m−2r−2)+1w0U
2r+1
r w−1

0 .

After a suitable conjugation, the above integral is equal to

(13)

∫ ∫
U2r
r (F )\U2r

r (A)
ϕπ(g)θ

L2(m−2r−2)+1,ψ

τ,4m

(
z0(g,uh)

)
ψU2r

r
(u)dudg dh.

Here h is integrated over Sp2r(F )\Sp2r(A), and g is integrated over the

quotient given by V m
m−2r−2(F )SO4(r+1)(F )\SO2m+1(A). The element z0 ∈

SO4m(F ) is equal to z′z̃w0, where z′ = w2m−4r−3w2m−4r−2 · · ·w2m−2r−3.

Finally, θ
L2(m−2r−2)+1,ψ

τ,4m is defined in a similar way as in (10), where the

character of the group L2(m−2r−2)+1 is defined as follows. If l = (li,j), then

the character is defined by ψ(l1,2+ l3,4+ l5,6+ · · ·+ l2(m−2r−2)−1,2(m−2r−2)+

l2(m−2r−2)+1,2(m−2r−2)+2). Also, in a similar way as is shown right after (10),

we have θ
L2(m−2r−2)+1,ψ

τ,4m = θ
L2(m−2r−2)+2,ψ

τ,4m , where the character is extended

trivially.

Next we factor the integration V m
m−2r−2(F )SO4(r+1)(F )\SO2m+1(A) into∫

V m
m−2r−2(A)SO4(r+1)(A)\SO2m+1(A)

∫
SO4(r+1)(F )\SO4(r+1)(A)

×
∫
V m
m−2r−2(F )\V m

m−2r−2(A)
.

A matrix multiplication and a change of variables imply that, for all v ∈
V m
m−2r−2(A), we have

θ
L2(m−2r−2)+2,ψ

τ,4m

(
z0(vg,uh)

)
= ψV m

m−2r−2
(v)θ

L2(m−2r−2)+2,ψ

τ,4m

(
z0(g,uh)

)
.
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We denote

ϕV,ψ
π (g) =

∫
V m
m−2r−2(F )\V m

m−2r−2(A)
ϕπ(vg)ψV m

m−2r−2
(v)dv.

Using the same notation and conjugating by z0, integral (13) is equal to∫ ∫
U

2r,z0
r (F )\U2r,z0

r (A)
ϕV,ψ
π (g0g)

(14)
× θ

L2(m−2r−1),ψ

τ,4m

(
ỹ(g0, h)1z0(g,1)

)
ψ̃(y)dy dg0 dg dh.

Here

ỹ(g0, h)1 =

⎛
⎜⎜⎜⎜⎝
Ia

I2r y

I4(r+1)

I2r
Ia

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
Ia

h

g0
h∗

Ia

⎞
⎟⎟⎟⎟⎠ ,

where a = 2(m − 2r − 1) and g0 ∈ SO4(r+1). In the above integral, g0 is

integrated over SO4(r+1)(F )\SO4(r+1)(A), the variable g is integrated over

V m
m−2r−2(A)SO4(r+1)(A)\SO2m+1(A), and all other variables are integrated

as before. We also denote U2r,z0
r = z0U

2r
r z−1

0 , and we define the character ψ̃

by ψ̃(y) = ψ(y1,1 + y2,2 + · · ·+ yr,r).

Consider the group SO8r+4, embedded inside SO4m, as t �→ diag(Ia, t, Ia),

where t ∈ SO8r+4. It follows from the above that the matrices ỹ(g0, h)1 are

embedded inside the maximal parabolic subgroup of SO8r+4 whose Levi

part is GL2r×SO4r+4. Then, the unipotent radical of this parabolic group,

which we will denote by Wr, has a structure of a generalized Heisenberg

group. Its center is the group U2r,z0
r . To proceed with the computations, we

now apply the theory of Fourier-Jacobi coefficients, as developed in [Ik]. In

our context, this theory asserts that as a function of g0 and h, the space of

functions

θ
Sp8r(r+1)

φ,ψ

(
(g0, h)

)∫
Wr(F )\Wr(A)

θ
L2(m−2r−1),ψ

τ,4m

(
w(g0, h)1z0(g,1)

)
(15)

× θ
Sp8r(r+1)

φ1,ψ

(
l(w)(g0, h)

)
dw

is a dense subspace inside the space of functions

(g0, h) �→
∫
U

2r,z0
r (F )\U2r,z0

r (A)
θ
L2(m−2r−1),ψ

τ,4m

(
ỹ(g0, h)1z0(g,1)

)
ψ̃(y)dy.
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In (15), the function θ
Sp8r(r+1)

φ,ψ is the θ-function defined on the double cover

of Sp8r(r+1)(A). Also, φ and φ1 are suitable Schwartz functions in

S(A2r×2(r+1)). We denote by l the projection from Wr onto the Heisen-

berg group with 8r(r+ 1) + 1 variables.

Denote the integral in (15) by F (g0, h;g). Here, g is a fixed element in

SO2m+1(A). We have the following.

Lemma 1. For all h ∈ Sp2r(A), we have F (g0, h;g) = F (g0,1;g).

The proof of this lemma will be given after the proof of the theorem.

Assuming the lemma, we deduce that integral (14) is not 0 for some choice

of data if and only if the integral

(16)

∫
ϕV,ψ
π (g0g)θ

Sp8r(r+1)

φ,ψ

(
(g0, h)

)
F (g0,1;g)dg0 dg dh

is not 0 for some choice of data. Here all variables are integrated as before.

Next we calculate the inner integration of (16) along the variable h, which

is

(17)

∫
Sp2r(F )\Sp2r(A)

θ
Sp8r(r+1)

φ,ψ

(
(g0, h)

)
dh.

This integral may not converge for a general function φ ∈ S(A2r×2(r+1)).

Thus, we use regularization by a Hecke algebra element at one unrami-

fied local place to extend the integral to general Schwartz functions φ ∈
S(A2r×2(r+1)). This idea of regularization was used by Ichino [Ich], which

extends that of Kudla and Rallis [KR] on a regularized Siegel-Weil formula.

The current case was done in [JS, Theorem 2.4]. The theorem states that

there exists a Hecke algebra element αν0 in the Hecke algebra of SO4(r+1)

at a finite local place ν0 such that the integral

(18) c−1
αν0

·
∫
Sp2r(F )\Sp2r(A)

θ
Sp8r(r+1)

ωψν0
(1,αν0 )φ,ψ

(
(g0, h)

)
dh

converges absolutely and is the unique extension of integral (17) to general

Schwartz functions φ in S(A2r×2(r+1)). The second part of [JS, Theorem 2.4]

states that the integral (17) or, equivalently, (18) is identified as the residue

at s= (r+1)/(2r+1) of the Eisenstein series E(g, s) on SO4(r+1)(A), which

is denoted by Θ[22r14].
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Hence, integral (16) is not 0 for some choice of data if and only if the

integral∫
V m
m−2r−2(A)SO4(r+1)(A)\SO2m+1(A)

∫
SO4(r+1)(F )\SO4(r+1)(A)

ϕV,ψ
π (g0g)

× F (g0,1;g)θ[22r14](g0)dg0 dg

is not 0 for some choice of data. By applying a standard argument, for

example, as in [GS, Section 7], we deduce that the above integral is nonzero

for some choice of data if and only if the integral∫
SO4(r+1)(F )\SO4(r+1)(A)

ϕV,ψ
π (g0)F (g0,1; 1)θ[22r14](g0)dg0

is not 0 for some choice of data. Applying Proposition 2 from the appendix,

it follows from the definitions of the group L2(m−2r−1) and the character

defined on this group that the above integral is not 0 for some choice of

data if and only if the integral∫
ϕV,ψ
π (g0)

∫
Wr(F )\Wr(A)

θτ,8r+4(wg0)

(19)
× θ

Sp8r(r+1)

φ1,ψ

(
l(w)(g0,1)

)
dwθ[22r14](g0)dg0

is not 0 for some choice of data. Here g0 is integrated as before. Unfolding the

θ-function (for the action of the Weil representation; see [Ik]) and collapsing

summation with integration, the inner integral is equal to∫
W ′

r(A)

∫
X(F )\X(A)

∫
Y (F )\Y (A)

θτ,8r+4

(
(x, y)g0w

′)
× ωψ

(
l(x, y)g0l(w

′)
)
φ1(0)dxdy dw

′

(20)

=

∫
W ′

r(A)

∫
X(F )\X(A)

∫
Y (F )\Y (A)

θτ,8r+4

(
(x, y)g0w

′)
×ψr(y)φ1(w

′)dxdy dw′.

Here, the embedding of X and Y in SO8r+4 is given by

(x, y)g0 �→

⎛
⎜⎜⎜⎜⎝
Ir x y1 y2

Ir y3 y∗1
I4r+4 x∗

Ir
Ir

⎞
⎟⎟⎟⎟⎠

⎛
⎝I2r

g0
I2r

⎞
⎠ , y =

(
y1 y2
y3 y∗1

)
.
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The character ψr is defined by ψr(y) = ψ(try1). Since φ1 is an arbitrary

Schwartz function, it follows that integral (19) is nonzero for some choice of

data if and only if the integral∫
SO4(r+1)(F )\SO4(r+1)(A)

ϕV,ψ
π (g0)

∫
X(F )\X(A)

∫
Y (F )\Y (A)

θτ,8r+4

(
(x, y)g0

)
(21)

×ψr(y)θ[22r14](g0)dxdy dg0

is not 0 for some choice of data. Next we perform the following series of

Fourier expansions. Recall that for the above matrix y to be in the orthog-

onal group, we have

y =

(
y1 y2
y3 y∗1

)
∈Mat02r = {A ∈Mat2r : J2rA+AtJ2r = 0},

where J2r is the matrix of size 2r which has ones on the other diagonal

and zeros elsewhere. Let Y 0 denote the subgroup of Y which consists of all

matrices y as above such that yi,j = 0 for all i≤ j. Let Ze
2r denote the group

of all matrices of the form

Z2r =

{
z =

(
z1 z2

Ir

)
: z1 ∈ Z ′

2r, z2 ∈ Z
′′
2r

}
.

Here Z ′
2r consists of all upper unipotent matrices in GLr, and Z

′′
2r consists

of all matrices of size r such that Jrz2 is lower triangular. Also, the matrix

Jr is defined in a similar way as we defined J2r. We will denote by Z2r the

subgroup of Ze
2r which consists of all matrices above such that the diagonal

entries of Jrz2 are also 0.

We embed these groups in SO8r+4 as all matrices of the form z �→
diag(z, I4r+4, z

∗), and we continue to denote it by Ze
2r or Z2r.

In integral (21) we expand the function θτ,8r+4((x, y)g0) along the group

Z2r. Collapsing summation and integration over Y 0, integral (21) is equal

to ∫ ∫
Y 0(A)

ϕV,ψ
π (g0)

∫ ∫
Z2r(F )\Z2r(A)

θτ,8r+4

(
z(x, yy0)g0

)
(22)

×ψr(y)θ[22r14](g0)dz dxdy dy0 dg0.

Here g0 and x are integrated as before, y is integrated over Y (F )Y 0(A)\
Y (A), and y0 is integrated over Y 0(A).
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In fact, we can extend trivially the integration from Z2r to Z
e
2r. Indeed, we

identify the quotient Z2r\Ze
2r with the group of unipotent matrices I8r+4 +∑r

i=1 ri(ei,2r−i+1− e6r+i+4,8r−i+5). Thus, expanding integral (22) along this

quotient, we get two terms. The first term corresponds to the constant term,

and the second term corresponds to all other elements in the expansion. The

second term contributes 0 to the expansion. Indeed, a similar argument as

follows after (8) shows that this term will contain as inner integration a

Fourier coefficient of θτ,8r+4 which corresponds to the unipotent orbit with

partition (318r+1). It follows from Proposition 1 in the appendix, applied to

8r+4 instead of to 4m, that this Fourier coefficient is 0. Thus, we can replace

in integral (22) the integration over Z2r(F )\Z2r(A) by the integration over

Ze
2r(F )\Ze

2r(A).

Next we define the following Weyl element w̃ of SO8r+4. For all 1≤ i≤ r,

set

w̃2i−1,i = w̃2i,6r+i+4 = w̃8r−i+5,8r−2i+6 = w̃2r−i+1,8r−2i+5 = 1.

Also, for 2r+1≤ i≤ 6r+4, set w̃i,i = 1. All other entries of w̃ are 0. Matrix

multiplication implies that L′
2r = w̃(Ze

2r · X · Y 0\Y )w̃−1 is a subgroup of

L2r. The groups Li were defined as subgroups of SO4m right after (8). In

a similar way, we define them as subgroups of any even orthogonal group,

in particular, for SO8r+4. Similarly, we define the character ψL2r(l). More

precisely, for l= (li,j) ∈ L2r we define ψL2r(l) = ψ(l1,2 + l3,4 + · · ·+ l2r−1,2r).

It follows from the matrix multiplication that, after the conjugation by w̃,

the character ψr is conjugated to ψL2r restricted to L′
2r. Thus, integral (22)

is not 0 for some choice of data if and only if the integral∫
SO4(r+1)(F )\SO4(r+1)(A)

∫
Y 0(A)

ϕV,ψ
π (g0)

(23)
× θ

L′
2r,ψ

τ,8r+4(w̃y0g0)θ[22r14](g0)dy0 dg0

is not 0 for some choice of data. Here θ
L′
2r,ψ

τ,8r+4 is defined in a similar way as in

(10). We claim that θ
L′
2r,ψ

τ,8r+4 = θL2r,ψ
τ,8r+4. In other words, we claim that integral

(23) is not 0 for some choice of data if and only if the integral∫
SO4(r+1)(F )\SO4(r+1)(A)

∫
Y 0(A)

ϕV,ψ
π (g0)

(24)
× θL2r,ψ

τ,8r+4(w̃y0g0)θ[22r14](g0)dy0 dg0
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is not 0 for some choice of data. This argument follows in a similar way as the

argument given right after (10) when we extended the integration from L1 to

L2 as defined there. In our case, we expand integral (23) along the quotient

L′
2r\L2r. Each element in this expansion which is not the constant term

contributes 0. This follows again by using Proposition 1 from the appendix.

Indeed, all Fourier coefficients which are not the constant term correspond

to unipotent orbits which are larger or not related to the partition (22(r+1)).

Arguing as above, in a similar way as in [GS], we deduce that integral

(24) is not 0 for some choice of data if and only if the integral

∫
SO4(r+1)(F )\SO4(r+1)(A)

ϕV,ψ
π (g0)θ

L2r,ψ
τ,8r+4(w̃g0)θ[22r14](g0)dg0

is not 0 for some choice of data. From the definition of w̃, we have w̃g0 =

g0w̃. Applying Proposition 2 from the appendix, we deduce that the above

integral is not 0 for some choice of data if and only if the integral∫
SO4(r+1)(F )\SO4(r+1)(A)

ϕV,ψ
π (g0)θτ,4r+4(g0)θ[22r14](g0)dg0

is not 0 for some choice of data. But this is integral Pr(π, τ).

To complete the proof of this step, we still need to prove Lemma 1, which

is done in Section 3.2.

Next we need to prove the converse of Conjecture 2. In other words, we

need to prove that if Pr(π, τ) is not 0 for some choice of data, then π is

an endoscopic representation with respect to SO3×SO2r+1×SO2(m−r)−1.

This is done by reversing the arguments in the first part. Indeed, starting

with the fact that Pr(π, τ) is not 0 for some choice of data, we obtain by

applying the converse of the above computations that the integral (6) is not

0 for some choice of data. But this implies that if we denote by σ the space

of the representation of SO2m−1(A), generated by the functions given by

integral (26) in the appendix, then σ is not 0, and by (5), we obtain that

Qr(σ) is not 0. Also, from Theorem 4 in the appendix, we deduce that σ

is a cuspidal representation. Moreover, since σ is not 0, then integral (27)

in the appendix is not 0 for some choice of data, which implies that π is

endoscopic with respect to τ and σ. Applying Conjecture 1, we obtain that

σ is endoscopic with respect to SO2r+1×SO2(m−r)−1, and we are done.

This completes the proof.
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3.2. Proof of Lemma 1

Let p(k) = I2r + ke1,2r. Then the group generated by these matrices is

a unipotent subgroup of Sp2r which corresponds to the highest root of

Sp2r. Thus, to prove the lemma, it is enough to prove that F (g0, p(k)h;g) =

F (g0, h;g) for all k ∈A. To prove that, it is enough to prove that the integral

(25)

∫
F\A

F (g0, p(k)h;g)ψ(αk)dk

is 0 for all choice of data and all α ∈ F ∗. To prove that, we may assume

that g0, h, and g are the identity elements. Thus, from the definition of the

function F (g0, h;g), we need to prove that the integral∫
Wr(F )\Wr(A)

∫
F\A

θτ,8r+4

(
wp(k)

)
θ
Sp8r(r+1)

φ1,ψ

(
l(w)(1, p(k))

)
ψ(αk)dk dw

is 0 for all choice of data. We unfold the θ-function, and as in (20) and (21),

we deduce that it is enough to prove that the integral∫
X(F )\X(A)

∫
Y (F )\Y (A)

∫
F\A

θτ,8r+4

(
(x, y)p(k)

)
ψr(y)ψ(αk)dk dxdy

is 0 for all choice of data.

Defining the groups Z2r and Ze
2r as defined right before (22), it is enough

to prove that the integral∫
Y 0(A)

∫
X(F )\X(A)

∫
Y (F )\Y (A)

∫
F\A

∫
Ze
2r(F )\Ze

2r(A)
θτ,8r+4

(
z(x, yy0)p(k)

)
×ψr(y)ψ(αk)dz dk dxdy dy0

is 0 for all choice of data. The subgroup generated by all p(k) is contained

in Z2r\Ze
2r, and as explained right after (22), the character ψr is trivial on

this quotient. Hence, it is trivial on p(k), and conjugating this matrix to the

left and changing variables, we obtain the integral
∫
F\Aψ(αk)dk as inner

integration. Since α ∈ F ∗, this integral is 0. Hence, integral (25) is 0 for all

choice of data.

Hence, this completes the proof.

Appendix

In this appendix, we review the basic results regarding the construction

of the endoscopic lifting as it appears in [G3]. Some more details can also
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be found in [G1]. Since we need the details only for a special case, we will

concentrate only on the relevant details.

Let τ denote an irreducible cuspidal representation of GL2 with a trivial

central character. Let Θτ,4m denote the residue representation defined on

SO4m(A) as constructed in [G3, p. 461, Case 5]. (In the notation of that

reference, take m= 1 and n= r.) The basic property of this representation

is given by the following.

Proposition 1. We have OSO4m(Θτ,4m) = (22m).

The definition of this notation and the proof of a similar proposition, for

the symplectic group, can be found in [G3, Theorem 1] (see also [G3, p. 465,

Case (d)]).

Let π denote a generic irreducible cuspidal representation of SO2m+1(A).

Following [G3], we consider the space of functions defined on SO2m−1(A)

given by

(26) f(h) =

∫
SO2m+1(F )\SO2m+1(A)

ϕπ(g)θτ,4m
(
(g,h)

)
dg.

Here θτ,4m is a vector in the space of the representation Θτ,4m. The function

f(h) defines an automorphic function of SO2m−1(A), and we denote by σ

the representation of SO2m−1(A) generated by the above functions. We have

the following.

Theorem 4 ([G3, Theorem 2]). The representation σ is a cuspidal rep-

resentation of SO2m−1(A).

The details in [G3, Theorem 2] are given for the symplectic group but

are the same for the orthogonal group.

We note that the constructed representation σ could be 0. However, there

is a criterion for σ to be generic, which in particular implies that σ is

nonzero.

Theorem 5 ([G3, Theorem 6]). The representation σ is a generic repre-

sentation if and only if the representation π is an endoscopic representation

with respect to τ and σ.

The sketch of the proof is as follows. A computation of the Whittaker

coefficient of σ implies that it is not 0 for some choice of data if and only

if integral (2) is not 0 for some choice of data. But as argued in [G3],

the nonvanishing of this period integral is equivalent to the fact that π is
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endoscopic with respect to τ and a certain automorphic representation of

SO2m−1(A). If σ is not 0, then the period integral∫
SO2m+1(F )\SO2m+1(A)

∫
SO2m−1(F )\SO2m−1(A)

ϕπ(g)

(27)
×ϕσ(h)θτ,4m

(
(g,h)

)
dhdg

is not 0 for some choice of data. But then, a similar argument given in [G3,

Sections 4, 5] or in the last section of [G1] proves that π is endoscopic with

respect to τ and σ.

Finally, we need to study a certain Fourier coefficient of Θτ,4m. Let

L2 denote the unipotent radical of the standard parabolic subgroup of

SO4m whose Levi part is GL2
1×SO4m−4. We define a character ψL2 on this

unipotent group as follows. For l = (li,j) ∈ L2, define ψL2(l) = ψ(l1,2). For

g ∈ SO4m−4(A), the functions

g �→
∫
L2(F )\L2(A)

θτ,4m(lg)ψL2(l)dl

are automorphic functions of SO4m−4(A). We have the following.

Proposition 2. The representation of SO4m−4(A) generated by all the

above functions is Θτ,4m−4.

The proof of this proposition follows from the definition of Θτ,4m as a

multiresidue of a certain Eisenstein series. See [G3, Proposition 1] for some

details in a similar case done for the symplectic group.
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