# Numerically trivial involutions of Kummer type of an Enriques surface 

Shigeru Mukai


#### Abstract

There are two types of numerically trivial involutions of an Enriques surface according to their period lattice. One is of $U(2) \perp U(2)$-type and the other is of $(U(2) \perp$ $U(2))$-type. An Enriques surface with an involution of $(U(2) \perp U(2))$-type is doubly covered by a Kummer surface of product type, and such involutions are classified again into two types according to the parity of the corresponding Göpel subgroups. Involutions of odd $(U(2) \perp U(2))$-type are constructed from the standard Cremona involutions of the quadric surface and closely related with quartic del Pezzo surfaces.


## Introduction

It is known that a nontrivial automorphism of a K3 surface acts nontrivially on its cohomology group. But this is not true for an Enriques surface. An automorphism of an Enriques surface $S$ is said to be numerically trivial (resp., cohomologically trivial) if it acts on the cohomology group $H^{2}(S, \mathbb{Q})\left(\right.$ resp., $\left.H^{2}(S, \mathbb{Z})\right)$ trivially. In this article we classify the numerically trivial involutions, while correcting some earlier work [3].

Let $S$ be a (minimal) Enriques surface, that is, a compact complex surface with $H^{1}\left(\mathcal{O}_{S}\right)=H^{2}\left(\mathcal{O}_{S}\right)=0$ and $2 K_{S} \sim 0$, and let $\sigma$ be a numerically trivial (holomorphic) involution of $S$. We denote the covering K3 surface of $S$ by $\tilde{S}$ and the covering involution by $\varepsilon$. Then the period lattice $N_{R}$ of $(S, \sigma)$ is isomorphic to either $U(2) \perp U(2)$ or $U \perp U(2)$ as a lattice (see [3, Proposition 2.5]). An involution $\sigma$ is called $(U(2) \perp U(2))$-type, or Kummer type, in the former case.

In this article, except in Appendix A, we assume that $N_{R} \simeq U(2) \perp U(2)$ and classify the numerically trivial involutions of Kummer type using their periods, that is, the Hodge structures on $N_{R}$ (cf. Remark 21). There exist a pair of elliptic curves $E^{\prime}$ and $E^{\prime \prime}$ and an isomorphism $\varphi$ between $\tilde{S}$ and the Kummer surface of the product abelian surface $E^{\prime} \times E^{\prime \prime}$ such that the diagram

[^0]\[

$$
\begin{align*}
\tilde{S} & \xrightarrow{\varphi} \operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)  \tag{1}\\
\sigma_{R} & \stackrel{\downarrow}{\downarrow} \\
\tilde{S} & \stackrel{\varphi}{\longrightarrow} \operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)
\end{align*}
$$
\]

is commutative, where $\sigma_{R}$ is the antisymplectic lift of $\sigma$ (see Section 1) and $\mu$ is the involution induced by $\left(\mathrm{id}_{E^{\prime}},-\mathrm{id}_{E^{\prime \prime}}\right)$ (see Proposition 6).

## EXAMPLE 1

Let $\beta_{\mathrm{ev}}$ be the involution of $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ induced by the translation of $E^{\prime} \times E^{\prime \prime}$ by a 2-torsion point $a$ with $a \notin E^{\prime} \times 0 \cup 0 \times E^{\prime \prime}$. Then $\varepsilon_{\mathrm{ev}}=\mu \beta_{\mathrm{ev}}$ has no fixed points, and the involution $\sigma_{\text {ev }}$ of the Enriques surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \varepsilon_{\text {ev }}$ induced by $\mu$ is numerically trivial (cf. Proposition 4).

The quotient $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \mu$ is the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the 16 points $\left(p_{i}^{\prime}, p_{j}^{\prime \prime}\right)$, $1 \leq i, j \leq 4$, where $\left\{p_{1}^{\prime}, \ldots, p_{4}^{\prime}\right\}$ and $\left\{p_{1}^{\prime \prime}, \ldots, p_{4}^{\prime \prime}\right\}$ are the branches of the double coverings $E^{\prime} \rightarrow \mathbb{P}^{1} \simeq E^{\prime} /(-\mathrm{id})$ and $E^{\prime \prime} \rightarrow \mathbb{P}^{1} \simeq E^{\prime \prime} /(-\mathrm{id})$, respectively. In the course of his classification of Enriques surfaces with finite (full) automorphism groups, Kondo [2] found a numerically trivial involution of an Enriques surface which had been overlooked in [3] (cf. Remark 12).

## PROPOSITION 2

Assume that
$(*)$ the ordered 4 -tuples $\left(p_{1}^{\prime}, \ldots, p_{4}^{\prime}\right)$ and $\left(p_{1}^{\prime \prime}, \ldots, p_{4}^{\prime \prime}\right) \in\left(\mathbb{P}^{1}\right)^{4}$ are not projectively equivalent.
Then the standard Cremona involution of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with center the four points $\left(p_{i}^{\prime}, p_{i}^{\prime \prime}\right), 1 \leq i \leq 4$, lifts to a fixed point free involution $\varepsilon_{\text {odd }}$ of $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ (see Section 2). Moreover, the involution $\sigma_{\text {odd }}$ of the Enriques surface $\operatorname{Km}\left(E^{\prime} \times\right.$ $\left.E^{\prime \prime}\right) / \varepsilon_{\text {odd }}$ induced by $\mu$ is numerically trivial.

The following is the main result of this article.

THEOREM 3
Every numerically trivial involution of Kummer type of an Enriques surface is obtained in the way of Example 1 or Proposition 2.

First, we characterize the involutions of Kummer type by their periods in Section 1. In Section 2 we construct an Enriques surface by using a Cremona involution of the smooth quadric or, almost equivalently, from a smooth quartic del Pezzo surface. In Section 3 the main theorem is proved by the global Torelli theorem for Enriques surfaces and by computation of periods of Enriques surfaces of Example 1 and Proposition 2. This article has two appendices. In Appendix 1, we complete the classification of numerically trivial involutions, while correcting earlier work [3]. In Appendix 2, we exhibit 14 smooth rational
curves on the Enriques surfaces of Proposition 2 and compute the dual graph of their arrangement.
Notation. The symbol $U$ denotes the rank 2 lattice given by the symmetric matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The lattice obtained from a lattice $L$ by replacing the bilinear form (.) with $r(),$.$r being a rational number r$, is denoted by $L(r)$.

## 1. Involutions of Kummer type

Let $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ and $\mu$ be as in the introduction.

## PROPOSITION 4

Let $\varepsilon$ be a fixed point free involution of $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ which commutes with the involution $\mu$. Then the involution of the Enriques surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \varepsilon$ induced by $\mu$ is numerically trivial.

## Proof

The invariant part of the action of $\mu$ on $H^{2}\left(\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right), \mathbb{Z}\right)$ is of rank 18. On the other hand, since $\varepsilon \mu$ is symplectic, the antiinvariant part of its cohomological action is of rank 8. Therefore, $\mu \bmod \varepsilon$ acts on $H^{2}\left(\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \varepsilon, \mathbb{Q}\right)$, which is of rank 10 , trivially.

Let $\sigma$ be a numerically trivial involution of an Enriques surface $S$. There are two involutions of the K3 cover $\tilde{S}$ of $S$ which lift $\sigma$ since $\tilde{S}$ has no fixed point free automorphisms of order 4. One is symplectic and the other is antisymplectic. These involutions of $\tilde{S}$ are denoted by $\sigma_{K}$ and $\sigma_{R}$, respectively. We denote the antiinvariant parts of the actions of $\varepsilon:=\sigma_{K} \sigma_{R}, \sigma_{K}$, and $\sigma_{R}$ on $H^{2}(\tilde{S}, \mathbb{Z})$ by $N, N_{K}$, and $N_{R}$, respectively. $N$ is isomorphic to $U \perp U(2) \perp E_{8}(2)$ (see [1, Chapter VIII, Lemma 19.1]), and $N_{K}$ is isomorphic to $E_{8}(2)$ (see [3, Lemma 2.1]). $N_{R}$ carries a nontrivial polarized Hodge structure of weight 2, which we call the period of $(S, \sigma)$.

To compute the period for an involution in Proposition 4, we recall a basic fact on the cohomology of the Kummer surface $\operatorname{Km}(T)$ of a (2-dimensional) complex torus $T . \operatorname{Km}(T)$ contains $16(-2) \mathbb{P}^{1}$ 's $\left\{E_{a}\right\}_{a \in T_{2}}$ parameterized by the 2-torsion subgroup $T_{2} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{4}$ of $T$. These generate a sublattice of rank 16 in the cohomology group $H^{2}(\operatorname{Km}(T), \mathbb{Z})$, which we denote by $\Gamma_{\mathrm{Km}}$. Let $\Lambda$ be the orthogonal complement of $\Gamma_{\mathrm{Km}}$ in $H^{2}(\operatorname{Km}(T), \mathbb{Z}) . \Lambda$ is the image of $H^{2}(T, \mathbb{Z})$ by the quotient morphism from the blowup of $T$ at $T_{2}$ onto $\operatorname{Km}(T)$. The following is well known (see [1, Chapter VIII, Section 5]).

## LEMMA 5

The image $\Lambda \subset H^{2}(\operatorname{Km}(T))$ is isomorphic to $H^{2}(T, \mathbb{Z})$ as a Hodge structure and to $H^{2}(T, \mathbb{Z})(2) \simeq U(2) \perp U(2) \perp U(2)$ as a lattice.

Being of Kummer type is characterized in terms of the period as follows.

## PROPOSITION 6

The following are equivalent for a numerically trivial involution $\sigma$ :
(1) $\sigma$ is of Kummer type; that is, the lattice $N_{R}$ is isomorphic to $U(2) \perp U(2)$;
(2) $\sigma$ is obtained in the way of Proposition 4.

Proof
$\Gamma_{\mathrm{Km}}$ is fixed in the cohomological action of $\mu$. In the action of the involution $\left(\mathrm{id}_{E^{\prime}},-\mathrm{id}_{E^{\prime \prime}}\right)$ on $H^{2}\left(E^{\prime} \times E^{\prime \prime}, \mathbb{Z}\right) \simeq U \perp U \perp U$, one $U$, generated by two elliptic curves, is invariant and the other two are antiinvariant. Hence the antiinvariant part $N^{-}$of the action involution $\mu$ on $\Lambda$ is isomorphic to $U(2) \perp U(2)$ as a lattice. Therefore, $N_{R} \simeq U(2) \perp U(2)$ if $\sigma$ is obtained in the way of Proposition 4.

Conversely, assume that $N_{R}$ is isomorphic to $U(2) \perp U(2)$. The lattice $U \perp U$ is isomorphic to $M_{2}(\mathbb{Z})=V^{\prime} \otimes V^{\prime \prime}$, the group of $(2 \times 2)$-matrices of integral entries endowed with the bilinear form $(A \cdot A)=2 \operatorname{det} A$, where $V^{\prime}$ and $V^{\prime \prime}$ are free $\mathbb{Z}$ modules of rank two. The period $\omega$ of $\tilde{S}$ corresponds to a complex matrix of rank one via this isomorphism since $\left(\omega^{2}\right)=0$. Hence, we have $\omega=\alpha^{\prime} \otimes \alpha^{\prime \prime}$ for $\alpha^{\prime} \in V^{\prime} \otimes \mathbb{C}$ and $\alpha^{\prime \prime} \in V^{\prime \prime} \otimes \mathbb{C}$. These $\alpha^{\prime}$ and $\alpha^{\prime \prime}$ determine Hodge structures of weight one since $(\omega \cdot \bar{\omega})>0$. Hence, there exists a pair of elliptic curves $E^{\prime}$ and $E^{\prime \prime}$ such that $N_{R}(1 / 2)$ is isomorphic to $H^{1}\left(E^{\prime}, \mathbb{Z}\right) \otimes H^{1}\left(E^{\prime \prime}, \mathbb{Z}\right)$ as a polarized Hodge structure. By Theorem 7 and the uniqueness property of 2 -elementary lattices, there exists an isomorphism $\varphi$ between $\tilde{S}$ and the Kummer surface of the product $E^{\prime} \times E^{\prime \prime}$ such that the diagram (1) commutes.

THEOREM 7
Let $(X, \sigma)$ and $\left(X^{\prime}, \sigma^{\prime}\right)$ be pairs of a K3 surface and its involution. If there exists a Hodge isometry $\alpha: H^{2}\left(X^{\prime}, \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z})$ such that the diagram

$$
\begin{gathered}
H^{2}\left(X^{\prime}, \mathbb{Z}\right) \\
\sigma^{*} \stackrel{\alpha}{\downarrow} H^{2}(X, \mathbb{Z}) \\
H^{2}\left(X^{\prime}, \mathbb{Z}\right)
\end{gathered} \stackrel{\alpha}{\downarrow} H^{2}(X, \mathbb{Z}) \sigma^{*}
$$

commutes, then there exists an isomorphism $\varphi: X \rightarrow X^{\prime}$ such that $\varphi \sigma=\sigma^{\prime} \varphi$.

## Proof

If neither $\sigma$ nor $\sigma^{\prime}$ has a fixed point, this is the global Torelli theorem for Enriques surfaces. The proof in [1, Chapter VIII, Section 21], especially its key Proposition 21.1, works in our general case too.

Assume that $(S, \sigma)$ is of Kummer type. Since $\left(\operatorname{disc} N_{K}\right)\left(\operatorname{disc} N_{R}\right)=4 \cdot \operatorname{disc} N$, the orthogonal sum $N_{K} \perp N_{R}$ is of index two in $N$. Therefore, there exists a pair of nonzero 2-torsion elements $\alpha_{K} \in A_{N_{K}}=\left((1 / 2) N_{K}\right) / N_{K}$ and $\alpha_{R} \in A_{N_{R}}=$ $\left((1 / 2) N_{R}\right) / N_{R}$ such that $N=N_{K}+N_{R}+\mathbb{Z}\left(x_{K}, x_{R}\right)$, where $x_{K} \in(1 / 2) N_{K}$ and $x_{R} \in(1 / 2) N_{R}$ are representatives of $\alpha_{K}$ and $\alpha_{R}$, respectively. This pair ( $\alpha_{K}, \alpha_{R}$ ) is uniquely determined from the involution $\sigma$. We call it the patching pair of $\sigma$. Since $N_{K}$ and $N_{R}$ are orthogonal in $N$, we have $q_{N_{K}}\left(\alpha_{K}\right)+q_{N_{R}}\left(\alpha_{R}\right)=0$ in $\mathbb{Z} / 2 \mathbb{Z}$.

## DEFINITION 8

A numerically trivial involution $\sigma$ of Kummer type, or a patching pair $\left(\alpha_{K}, \alpha_{R}\right)$, is of even type or of odd type according to whether the common quadratic value $q_{N_{K}}\left(\alpha_{K}\right)=q_{N_{R}}\left(\alpha_{R}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ of patching elements is 0 or 1 .

Since $N_{R} \simeq U(2) \perp U(2), q_{N_{R}}$ is a nondegenerate even quadratic space of dimension 4 over $\mathbb{F}_{2}$. Hence, the numbers of patching pairs of even and odd type are six and nine, respectively.

## 2. Cremona involutions and involutions of odd type

The Enriques surface in Proposition 2 is closely related with a del Pezzo surface of degree 4 and its small ${ }^{\dagger}$ involution. For our purpose it is most convenient to describe it as the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We identify $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with a smooth quadric surface $Q$ in $\mathbb{P}^{3}=\mathbb{P}_{\left(x_{1}: x_{2}: x_{3}: x_{4}\right)}$.

Let $p_{1}=\left(p_{1}^{\prime}, p_{1}^{\prime \prime}\right), \ldots, p_{4}=\left(p_{4}^{\prime}, p_{4}^{\prime \prime}\right)$ be four points of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which satisfy
$(* *) p_{1}^{\prime}, \ldots, p_{4}^{\prime}$ are distinct and $p_{1}^{\prime \prime}, \ldots, p_{4}^{\prime \prime}$ are distinct.
In terms of a smooth quadric, this is equivalent to
$\left(* *^{\prime}\right)$ any line $\overline{p_{i} p_{j}}, 1 \leq i<j \leq 4$, is not contained in $Q$.
We also assume that the condition (*) in Proposition 2 or, equivalently,
$\left(*^{\prime}\right) p_{1}, \ldots, p_{4} \in Q \subset \mathbb{P}^{3}$ is not contained in a plane.
We take a system of homogeneous coordinates of $\mathbb{P}^{3}$ such that $p_{1}, \ldots, p_{4}$ are the coordinate points $(1: 0: 0: 0), \ldots,(0: 0: 0: 1)$. Then the defining equation of $Q$ is of the form $\sum_{1 \leq i<j \leq 4} a_{i j} x_{i} x_{j}=0$. By the assumption ( $* *^{\prime}$ ), all coefficients $a_{i j}$ 's are nonzero. Hence, replacing $x_{1}, \ldots, x_{4}$ by their suitable constant multiplications, we may and do assume that $Q \subset \mathbb{P}^{3}$ is defined by

$$
\begin{equation*}
a_{1} x_{2} x_{3}+a_{2} x_{1} x_{3}+a_{3} x_{1} x_{2}+\left(x_{1}+x_{2}+x_{3}\right) x_{4}=0 \tag{2}
\end{equation*}
$$

for some nonzero constants $a_{1}, a_{2}$, and $a_{3} \in \mathbb{C}$. Since $Q$ is smooth, we have

$$
\begin{equation*}
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-2 a_{1} a_{2}-2 a_{1} a_{3}-2 a_{2} a_{3} \neq 0 . \tag{3}
\end{equation*}
$$

Now we define a birational involution $\tau^{\prime}$ of $Q$ by

$$
\left(x_{1}: x_{2}: x_{3}: x_{4}\right) \mapsto\left(\frac{a_{1}}{x_{1}}: \frac{a_{2}}{x_{2}}: \frac{a_{3}}{x_{3}}: \frac{a_{1} a_{2} a_{3}}{x_{4}}\right)
$$

and call it the standard Cremona involution of $Q$ (or $\mathbb{P}^{1} \times \mathbb{P}^{1}$ ) with center $p_{1}, \ldots, p_{4}$.

Let $B$ be the blowup of a smooth quadric $Q$ at $p_{1}, \ldots, p_{4}$. By the projection from $p_{4}, B$ is the blowup of the projective plane also. By (3), the line $l: x_{1}+x_{2}+x_{3}=0$ and the conic $C: a_{1} x_{2} x_{3}+a_{2} x_{1} x_{3}+a_{3} x_{1} x_{2}=0$ intersect transversally in the projective plane $\mathbb{P}^{2}=\mathbb{P}_{\left(x_{1}: x_{2}: x_{3}\right)}$. Let $q_{4}$ and $q_{5}$ be the two

[^1]intersection points. Then $B$ is isomorphic to the blowup of $\mathbb{P}^{2}$ at the three coordinate points $(1: 0: 0),(0: 1: 0),(0: 0: 1)$ and the two points $q_{4}$ and $q_{5}$. The standard Cremona involution $\tau^{\prime}$ is induced by the quadratic Cremona transformation
\[

$$
\begin{equation*}
\left(x_{1}: x_{2}: x_{3}\right) \mapsto\left(\frac{a_{1}}{x_{1}}: \frac{a_{2}}{x_{2}}: \frac{a_{3}}{x_{3}}\right), \tag{4}
\end{equation*}
$$

\]

which interchanges $l$ and $C$. In particular, it induces an automorphism of $B$, which we denote by $\tau$. The following is easily verified.

## LEMMA 9

(1) The indeterminacy locus of $\tau^{\prime}: Q \cdots \rightarrow Q$ is $\left\{p_{1}, \ldots, p_{4}\right\}$.
(2) For each $1 \leq i \leq 4$, the conic $C_{i}^{\prime}: Q \cap\left\{x_{i}=0\right\}$ is contracted to the point $p_{i}$ by $\tau^{\prime}$.
(3) For each $1 \leq i \leq 4$, the two lines in $Q$ passing through $p_{i}$ are interchanged by $\tau^{\prime}$.
(4) The fixed points of $\tau^{\prime}$ are $\left(\varepsilon_{1} \sqrt{a_{1}}: \varepsilon_{2} \sqrt{a_{2}}: \varepsilon_{3} \sqrt{a_{3}}: \sqrt{a_{1} a_{2} a_{3}}\right)$, where all $\varepsilon_{i}$ 's are $\pm 1$ and satisfy $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}=-1$.

For later use we compute the cohomological action of $\tau$. The second cohomology group $H^{2}(B, \mathbb{Z})$ or, equivalently, the Picard group of $B$ is the free abelian group with the standard $\mathbb{Z}$-basis $\left\{h_{1}, h_{2}, e_{1}, \ldots, e_{4}\right\}$, where $h_{1}$ and $h_{2}$ are the pullbacks of the two rulings of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $e_{1}, \ldots, e_{4}$ are the classes of the exceptional curves over $p_{1}, \ldots, p_{4}$.

LEMMA 10
The action of the standard Cremona involution $\tau$ on $H^{2}(B, \mathbb{Z})$ is equal to the composite of the two reflections with respect to the mutually orthogonal (-2)classes $h_{1}-h_{2}$ and $h_{1}+h_{2}-e_{1}-\cdots-e_{4}$.

Proof
We take the description of $B$ as the blowup of $\mathbb{P}^{2}$. The cohomology group $H^{2}(B, \mathbb{Z})$ has $\left\{h, e_{1}, e_{2}, e_{3}, f_{1}, f_{2}\right\}$ as a $\mathbb{Z}$-basis. Here $h$ is the pullback of a line, and $f_{1}$ and $f_{2}$ are the classes of the exceptional curves over $q_{4}$ and $q_{5}$. The cohomological action of the transformation (4) on the blowup of $\mathbb{P}^{2}$ at the three coordinate points is the reflection $r$ with respect to $h-e_{1}-e_{2}-e_{3}$. Since the transformation (4) interchanges $q_{4}$ and $q_{5}$, the cohomological action of $\tau$ is the composite of $r$ and the reflection with respect to $f_{1}-f_{2}$. This proves the lemma since $f_{1}=h_{1}-e_{4}, f_{2}=h_{2}-e_{4}$ and $h=h_{1}+h_{2}-e_{4}$.

There are 16 smooth rational curves of degree 1 with respect to the anticanonical divisor $-K_{B}=2 h_{1}+2 h_{2}-e_{1}-\cdots-e_{4}$ :
(0) the exceptional divisors $e_{1}, \ldots, e_{4}$ over $p_{1}, \ldots, p_{4}$,
(1) the strict transforms of lines in $Q$ passing through one of $p_{1}, \ldots, p_{4}$, and
(2) the strict transforms $C_{i}$ of the conics $C_{i}^{\prime}$ in Lemma 9.

We denote the 8 lines of (1) by $\Gamma_{\overline{1}}$ and the 8 lines of (0) and (2) by $\Gamma_{\overline{0}}$. The Kummer surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the minimal resolution of the double cover

$$
w^{2}=\left(a_{3} x_{2}+a_{2} x_{3}+x_{4}\right)\left(a_{3} x_{1}+a_{1} x_{3}+x_{4}\right)\left(a_{2} x_{1}+a_{1} x_{2}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

of $Q$ with branch the union of 8 lines in $Q$ passing through one of $p_{1}, \ldots, p_{4}$. Hence, it is the the minimal resolution of the double cover of $B$ with branch the union of the 8 lines in $\Gamma_{\overline{1}}$.

LEMMA 11
$\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the minimal resolution of the double cover of $B$ with branch the union of the 8 lines $\Gamma_{\overline{0}}$ also.

## Proof

Put $g_{1}=-K_{B}-h_{1}=h_{1}+2 h_{2}-e_{1}-\cdots-e_{4}$. The complete linear system $\left|g_{1}\right|$ is a base-point-free pencil, and the morphism $\left(\Phi_{\left|h_{1}\right|}, \Phi_{\left|g_{1}\right|}\right): B \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is of degree 2. The covering involution acts on $H^{2}(B, \mathbb{Z})$ by $\alpha \mapsto\left(g_{1} \cdot \alpha\right) h_{1}+\left(h_{1} \cdot \alpha\right) g_{1}-\alpha$ and hence interchanges $\Gamma_{\overline{0}}$ and $\Gamma_{\overline{1}}$. Hence, we have our assertion.

## Proof of Proposition 2

By Lemma 11, the Kummer surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the minimal resolution of the double cover $w^{2}=x_{1} x_{2} x_{3} x_{4}$ of $Q$. Let $\beta_{\text {odd }}$ be the involution of $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ induced from the birational involution

$$
\left(w, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(a_{1} a_{2} a_{3} / w, a_{1} / x_{1}, a_{2} / x_{2}, a_{3} / x_{3}, a_{1} a_{2} a_{3} / x_{4}\right)
$$

of the double cover. Then $\beta_{\text {odd }}$ lifts $\tau$ and $\tau^{\prime}$. The involution $\varepsilon_{\text {odd }}:=\mu \beta_{\text {odd }}$ has no fixed points by (4) of Lemma 9 . The involution $\sigma_{\text {odd }}$ is numerically trivial by Proposition 4.

## Horikawa expression

Let $\mathbb{P}_{(1)}^{1}$ and $\mathbb{P}_{(2)}^{1}$ be the projective lines whose inhomogeneous coordinates are $y_{1}=x_{1} / x_{3}$ and $y_{2}=x_{2} / x_{3}$. Then the surface $B$ is a blowup of $\mathbb{P}_{(1)}^{1} \times \mathbb{P}_{(2)}^{1}$ with center $(0,0),(\infty, \infty)$ and the intersection points of $y_{1}+y_{2}+1=0$ and $a_{2} y_{1}+a_{1} y_{2}+a_{3} y_{1} y_{2}=0$. The involution $\beta_{\text {odd }}$ is induced by the automorphism $\left(y_{1}, y_{2}\right) \mapsto\left(\frac{a_{1}}{a_{3} y_{1}}, \frac{a_{2}}{a_{3} y_{2}}\right)$ of $\mathbb{P}_{(1)}^{1} \times \mathbb{P}_{(2)}^{1}$. By Lemma $11, \operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the minimal resolution of the double cover

$$
w^{2}=y_{1} y_{2}\left(a_{2} y_{1}+a_{1} y_{2}+a_{3} y_{1} y_{2}\right)\left(y_{1}+y_{2}+1\right)
$$

whose branch locus is


REMARK 12
In the special case $a_{1}=a_{2}=a_{3}=1$, the two elliptic curves $E^{\prime}$ and $E^{\prime \prime}$ are both isomorphic to $E_{\omega}:=\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} e^{2 \pi \sqrt{-1} / 3}\right)$. The Enriques surface $S=\operatorname{Km}\left(E_{\omega} \times\right.$ $\left.E_{\omega}\right) / \varepsilon_{\text {odd }}$ is studied in [2, Section 3.5] as an Enriques surface whose automorphism group is finite. In fact, Aut $S$ is the extension of $\mathbb{Z} / 2 \mathbb{Z}$, the group of numerically trivial automorphisms, by the symmetric group of degree 4 .

## 3. Computation of the periods

Let $\operatorname{Km}(T)$ and $\Lambda=\left(\Gamma_{\mathrm{Km}}\right)^{\perp}$ be as in Lemma 5. The discriminant group $A_{\Lambda}$ is $(1 / 2 \Lambda) / \Lambda \simeq H^{2}(T, \mathbb{Z} / 2 \mathbb{Z})$, and the discriminant form $q_{\Lambda}$ is essentially the cup product, that is, $q_{\Lambda}(\bar{y})=(y \cup y) / 2 \bmod 2$ for $y \in H^{2}(T, \mathbb{Z})$.

Let $P=\{0, a, b, c\} \subset T_{2}$ be a subgroup of order 4 or, equivalently, a 2 dimensional subspace of $T_{2}$. We put $E_{P}=E_{0}+E_{a}+E_{b}+E_{c} \in \Gamma_{\mathrm{Km}}$. We denote the Plücker coordinate of $P^{\perp} \subset T_{2}^{\vee}$ by $\pi_{P} \in \bigwedge^{2} T_{2}^{\vee} \simeq H^{2}(T, \mathbb{Z} / 2 \mathbb{Z})$ and regard it as an element of $\Lambda / 2 \Lambda$. The following is easily verified (see [1, Chapter VIII, Section 5]).

LEMMA 13
We have $\left(E_{P} \bmod 2\right)+\pi_{P}=0$ holds in $H^{2}(\operatorname{Km}(T), \mathbb{Z} / 2 \mathbb{Z})$.
Now we specialize $\operatorname{Km}(T)$ to $\mathrm{Km}:=\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ of product type. Two rulings of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ give two elliptic fibrations $\mathrm{Km} \longrightarrow \mathbb{P}^{1}$. We denote the classes of these fibers by $\tilde{h}_{1}$ and $\tilde{h}_{2} \in H^{2}(\mathrm{Km}, \mathbb{Z})$. These $\tilde{h}_{1}$ and $\tilde{h}_{2}$ generate a rank 2 sublattice of $\Lambda$ which is isomorphic to $U(2) . \Lambda$ is the orthogonal (direct) sum of $\left\langle\tilde{h}_{1}, \tilde{h}_{2}\right\rangle$ and $N^{-}$is the antiinvariant part of the action of $\mu$. As we saw in the proof of Proposition 6, $N^{-}$is isomorphic to $U(2) \perp U(2)$ as a lattice.

OBSERVATION 14
A subgroup $P$ of order 4 of $\left(E^{\prime} \times E^{\prime \prime}\right)_{2}$ is naturally associated with a numerically trivial involution of Kummer type.
(1) Let $a=\left(a^{\prime}, a^{\prime \prime}\right) \in\left(E^{\prime} \times E^{\prime \prime}\right)_{2}$ be a 2-torsion point as in Example 1, and we set $P:=\left\{0, a,\left(a^{\prime}, 0\right),\left(0, a^{\prime \prime}\right)\right\}$. Then $P$ is of order 4 , and the Plücker coordinate $\pi_{P}$ belongs to $N^{-} / 2 N^{-}$.
(2) Let $P \subset T_{2}$ be a subgroup of order 4 such that

$$
P \cap\left(\left(E^{\prime}\right)_{2} \times 0\right)=P \cap\left(0 \times\left(E^{\prime \prime}\right)_{2}\right)=0,
$$

and let $\pi_{P}$ be the Plücker coordinate. Then $\pi_{P}-\tilde{h}_{1}-\tilde{h}_{2}$ belongs to $N^{-} / 2 N^{-}$. Let $\beta_{P}$ be the involution of Km induced by the standard Cremona involution $\tau^{\prime}$ of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with center the image of $P$. All $\beta_{\text {odd }}$ 's of Proposition 2 are obtained from $\beta_{P}$ 's.
In both cases, $P \subset\left(E^{\prime} \times E^{\prime \prime}\right)_{2}$ is a Göpel subgroup; that is, $P$ is totally isotropic with respect to the Weil pairing.

A subgroup $P \subset T_{2}$ of order 4 is Göpel if and only if the Plücker coordinate $\pi_{P}$ is perpendicular to $\tilde{h}_{1}+\tilde{h}_{2}$. Hence, either $\pi_{P}$ or $\pi_{P}-\tilde{h}_{1}-\tilde{h}_{2}$ belongs to $N^{-} / 2 N^{-}$. There are exactly 15 Göpel subgroups. Nine of them satisfy Observation 14(1) and six satisfy (2). All nine odd elements and six even nonzero elements of $N^{-} / 2 N^{-}$are obtained in the way of (1) and (2), respectively.

## REMARK 15

The number of non-Göpel subgroups of order 4 is 20 . By adding $\tilde{h}_{1}$ or $\tilde{h}_{2}$, one obtains a two-to-one map from the set of non-Göpel subgroups to $\left\{x \in N^{-} / 2 N^{-} \mid\right.$ $\left.\left(x^{2}\right)=0\right\}$.

Now we are ready to compute the patching pair for Example 1 and Proposition 2.

## LEMMA 16

Let $\Pi \in \Lambda$ be a representative of $\pi_{P} \in \Lambda / 2 \Lambda$.
(1) An Enriques involution $\varepsilon_{\mathrm{ev}}$ of Example 1 is of even type, and the patching pair is $(\Sigma / 2, \Pi / 2)$ with $\Sigma:=E_{0}-E_{a}+E_{\left(a^{\prime}, 0\right)}-E_{\left(0, a^{\prime \prime}\right)}$.
(2) An Enriques involution $\varepsilon_{\text {odd }}$ of Proposition 2 is of odd type, and the patching pair is $\left(\left(\tilde{h}_{1}+\tilde{h}_{2}-E_{P}\right) / 2,\left(\Pi-\tilde{h}_{1}-\tilde{h}_{2}\right) / 2\right)$.

Proof
Since $\sigma_{R}=\mu, N_{R}$ coincides with $N^{-}$. Hence, the discriminant form of $N_{K}$ is essentially the cup product on $H^{2}(T, \mathbb{Z} / 2 \mathbb{Z})$. Here we use the latter for computation.
(1) Since $\beta_{\mathrm{ev}}$ is induced by the translation of $E^{\prime} \times E^{\prime \prime}$ by $a, \Sigma$ belongs to $N_{K}$. By Lemma 13, $\Sigma+\Pi$ is divisible by 2 . Hence, the second half of (1) follows. Since $\pi_{P}$ is the Plücker coordinate, $(1 / 2)\left(\pi_{P} \cup \pi_{P}\right)=0 \in \mathbb{Z} / 2 \mathbb{Z}$, and $\sigma$ is of even type.
(2) The class $\tilde{h}_{1}+\tilde{h}_{2}-E_{P}$ belongs to $N_{K}$ by virtue of Lemma 10 . The second half of (2) follows from this and Lemma 13. The class $\varepsilon_{\text {odd }}$ is of odd type since $(1 / 2)\left(\pi_{P}-\tilde{h}_{1}-\tilde{h}_{2}\right) \cup\left(\pi_{P}-\tilde{h}_{1}-\tilde{h}_{2}\right)=(1 / 2)\left(\pi_{P} \cup \pi_{P}\right)+(1 / 2)\left(\tilde{h}_{1}+\tilde{h}_{2}\right) \cup$ $\left(\tilde{h}_{1}+\tilde{h}_{2}\right)=1 \in \mathbb{Z} / 2 \mathbb{Z}$.

## Proof of Theorem 3

Let $\varepsilon$ be an Enriques involution of the Kummer surface $\operatorname{Km}=\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ which commutes with $\mu$. Let $\sigma$ be the involution of the Enriques surface $S:=$ $\mathrm{Km} / \varepsilon$ induced by $\mu$. Let $\left(\alpha_{K}, \alpha_{R}\right) \in A_{N_{K}} \times A_{N_{R}}$ be the patching pair of $\sigma$. $N_{R}$ coincides with $N^{-}$since $\sigma_{R}=\mu$ in our situation. Recall that $N_{R}(1 / 2)$ is isomorphic to $U \perp U$ as a lattice and isomorphic to $H^{1}\left(E^{\prime}, \mathbb{Z}\right) \otimes H^{1}\left(E^{\prime \prime}, \mathbb{Z}\right)$ as a polarized Hodge structure. In particular, $\left((1 / 2) N_{R}\right) / N_{R}$ is isomorphic to the tensor product $\left(E^{\prime}\right)_{2} \otimes\left(E^{\prime \prime}\right)_{2}$. By this isomorphism, $0 \neq \alpha_{R} \in\left((1 / 2) N_{R}\right) / N_{R}$ corresponds to $a^{\prime} \otimes a^{\prime \prime} \in\left(E^{\prime}\right)_{2} \otimes\left(E^{\prime \prime}\right)_{2}$ or to an isomorphism $\varphi:\left(E^{\prime}\right)_{2} \xrightarrow{\sim}\left(E^{\prime \prime}\right)_{2}$ according as $\left(\alpha_{K}, \alpha_{R}\right)$ is of even type or of odd type. $\left(\left(E^{\prime}\right)_{2}\right.$ is identified with its dual since it is of dimension 2 over $\mathbb{F}_{2}$.) In the even case, $S$ is isomorphic to
the Enriques surface $\mathrm{Km} / \varepsilon_{\text {ev }}$ of Example 1 with $a=\left(a^{\prime}, a^{\prime \prime}\right)$ by Lemma 16 and the global Torelli theorem for Enriques surfaces since the group of numerically trivial automorphisms of $S$ is cyclic by [3, Proposition 1.1].

Assume that $\left(\alpha_{K}, \alpha_{R}\right)$ is of odd type.

CLAIM
There exists no isomorphism from $E^{\prime}$ to $E^{\prime \prime}$ whose restriction to the 2-torsion subgroups is $\varphi$.

Proof
Assume the contrary, and let $\Phi \subset E^{\prime} \times E^{\prime \prime}$ be the graph of such an isomorphism. Then $\Phi-E^{\prime} \times 0-0 \times E^{\prime \prime}$ is a divisor of self-intersection -2 , and its class belongs to $H^{1}\left(E^{\prime}, \mathbb{Z}\right) \otimes H^{1}\left(E^{\prime \prime}, \mathbb{Z}\right) \subset H^{2}\left(E^{\prime} \times E^{\prime \prime}, \mathbb{Z}\right)$. Hence, $N_{R} \subset H^{2}(\mathrm{Km}, \mathbb{Z})$ contains an algebraic cycle $c^{\prime}$ of self-intersection number -4 such that $c^{\prime} / 2$ represents $\alpha_{R}$. Since $N_{K} \simeq E_{8}(2), \alpha_{K}$ is represented by a (-4)-element $c \in N_{K}$. Then $x:=$ $\left(c+c^{\prime}\right) / 2$ belongs to $N$ by the definition of patching pairs and is algebraic since $c$ is orthogonal to $H^{0}\left(\Omega^{2}\right) \subset N_{R} \otimes \mathbb{C}$. Since $\left(x^{2}\right)=-2$, either $x$ or $-x$ is effective by the Riemann-Roch theorem. This is a contradiction since $\varepsilon(x)=-x$.

Let $P \subset T_{2}$ be the graph of $\varphi$, and put $P=\left\{\left(p_{i}^{\prime}, p_{i}^{\prime \prime}\right)\right\}_{1 \leq i \leq 4}$ as in Proposition 2. Then, by the claim, $\left(p_{1}^{\prime}, \ldots, p_{4}^{\prime}\right)$ and $\left(p_{1}^{\prime \prime}, \ldots, p_{4}^{\prime \prime}\right)$ are not projectively equivalent, and we obtain an Enriques surface $\mathrm{Km} / \varepsilon_{\text {odd }}$. Again, by Lemma 16 and the global Torelli theorem, the Enriques surface $S$ is isomorphic to that obtained from the image of $P$ as in Observation 14(2). By the same argument as the even case, we have $(S, \sigma) \simeq\left(\mathrm{Km} / \varepsilon_{\text {odd }}, \sigma_{\text {odd }}\right)$.

## Appendices

## A. Kummer type is not cohomologically trivial

Contrary to the erroneous [3, Proposition 4.8], the involution of Example 1 is not cohomologically trivial.

THEOREM 17
A numerically trivial involution of Kummer type is not cohomologically trivial.
Proof
We prove our assertion by constructing an elliptic fibration.
Let $\left\{p_{1}^{\prime}, \ldots, p_{4}^{\prime}\right\}$ and $\left\{p_{1}^{\prime \prime}, \ldots, p_{4}^{\prime \prime}\right\}$ be the branch of the double coverings $E^{\prime} \rightarrow$ $\mathbb{P}^{1} \simeq E^{\prime} /(-\mathrm{id})$ and $E^{\prime \prime} \rightarrow \mathbb{P}^{1} \simeq E^{\prime \prime} /(-\mathrm{id})$, respectively. The Kummer surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the minimal resolution of the double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with branch

$$
\left(p_{1}^{\prime} \times \mathbb{P}^{1} \cup \cdots \cup p_{4}^{\prime} \times \mathbb{P}^{1}\right) \cup\left(\mathbb{P}^{1} \times p_{1}^{\prime \prime} \cup \cdots \cup \mathbb{P}^{1} \times p_{4}^{\prime \prime}\right)
$$

More precisely, it is the double cover of the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the 16 points $\left(p_{i}^{\prime}, p_{j}^{\prime \prime}\right), i, j=1, \ldots, 4$, with branch the strict transform of these eight rational curves:


The fixed locus of $\mu$ is the inverse images of these strict transforms. We denote them by

$$
\left(A_{1} \sqcup \cdots \sqcup A_{4}\right) \sqcup\left(B_{1} \sqcup \cdots \sqcup B_{4}\right) .
$$

The involution $\varepsilon:=\mu \beta$ of Example 1 acts on this disjoint union. Renumbering $A_{1}, \ldots, A_{4}$ and $B_{1}, \ldots, B_{4}$, we may assume that

$$
\varepsilon\left(A_{i}\right)=A_{i+1} \quad \text { and } \quad \varepsilon\left(B_{i}\right)=B_{i+1}
$$

for $i=1,3$. Then $\varepsilon$ interchanges two divisors $A_{1}+A_{3}+B_{2}+B_{4}$ and $A_{2}+A_{4}+$ $B_{1}+B_{3}$. Let $\Lambda$ be the linear pencil spanned by their images

$$
H_{1}:=p_{1}^{\prime} \times \mathbb{P}^{1}+p_{3}^{\prime} \times \mathbb{P}^{1}+\mathbb{P}^{1} \times p_{2}^{\prime \prime}+\mathbb{P}^{1} \times p_{4}^{\prime \prime}
$$

and

$$
H_{2}:=p_{2}^{\prime} \times \mathbb{P}^{1}+p_{4}^{\prime} \times \mathbb{P}^{1}+\mathbb{P}^{1} \times p_{1}^{\prime \prime}+\mathbb{P}^{1} \times p_{3}^{\prime \prime}
$$

on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $\Lambda$ induces elliptic fibrations

$$
\Phi_{\Lambda}: \operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \mu \rightarrow \Lambda\left(\simeq \mathbb{P}^{1}\right)
$$

of the rational surface and

$$
\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) \rightarrow \tilde{\Lambda}\left(\simeq \mathbb{P}^{1}\right)
$$

of the Kummer surface. The latter is the base change of the former by the double covering $\tilde{\Lambda} \rightarrow \Lambda$ with branches $\left[H_{1}\right]$ and $\left[H_{2}\right]$ and descends to an elliptic fibration $f$ of the Enriques surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \varepsilon$.

The action of $\langle\varepsilon, \mu\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ on $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ induces the action of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ on $\tilde{\Lambda} \simeq \mathbb{P}^{1}$. In our cases this action is effective (and hence of Heisenberg type). Let $\bar{\varepsilon}$ and $\bar{\mu}$ be the automorphisms of $\Lambda$ induced by $\varepsilon$ and $\mu$, respectively. Then $\bar{\varepsilon}$ interchanges the points $\left[H_{1}\right]$ and $\left[H_{2}\right]$ underneath the singular fibers. The involution $\bar{\mu}$ fixes exactly these two points, but the corresponding fiber of the elliptic fibration $f$ on the Enriques surface is not multiple. Since $\bar{\mu}$ is not the identity on $\tilde{\Lambda} / \bar{\varepsilon}$, the involution $\mu \bmod \varepsilon$ interchanges two multiple fibers of $f$. Let $G_{1}$ and $G_{2}$ be the reduced part of the two multiple fibers of $f$. Since the linear equivalence classes of $G_{1}$ and $G_{2}$ differ by the canonical class, $\mu \bmod \varepsilon$ is not cohomologically trivial.

For $\varepsilon=\varepsilon_{\text {odd }}$ in Proposition 2, we have $\varepsilon\left(A_{i}\right)=B_{i}$ for every $i=1, \ldots, 4$ since a Cremona involution interchanges $p_{i}^{\prime} \times \mathbb{P}^{1}$ and $\mathbb{P}^{1} \times p_{i}^{\prime \prime}$ for every $i=1, \ldots, 4$. The above argument works literally in this case too. Now our assertion follows from Theorem 3.

Now we are ready to complete the classification of numerically trivial involutions, correcting [3].

At the 6th line in [3, page 388], it is erroneously stated that the common value $q_{T}(\alpha)=q_{T^{\prime}}\left(\alpha^{\prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ is nonzero in the case where $T^{\prime}$, or $N_{R}$, is isomorphic to $U(2) \perp U(2)$. But the value can be both zero and $1 \bmod 2$. We call a primitive embedding of $T\left(\simeq E_{8}(2)\right)$ into $N\left(\simeq E_{8}(2) \perp U(2) \perp U\right)$ even or odd accordingly. Then [3, Proposition 2.6] should be replaced by the following.

## PROPOSITION 18

Let $T_{1}$ and $T_{2}$ be primitive sublattices of $N$ isomorphic to $E_{8}(2)$. If their orthogonal complements $T_{1}^{\prime}$ and $T_{2}^{\prime}$ are isomorphic to each other and if in addition they have the same parity in the case $T_{1}^{\prime} \simeq T_{2}^{\prime} \simeq U(2) \perp U(2)$, then there exists an isometry of $N$ which maps $T_{1}$ and $T_{1}^{\prime}$ onto $T_{2}$ and $T_{2}^{\prime}$, respectively.

Let $P$ be the set of periods of $E_{8}(2)$-polarized Enriques surfaces as defined in [3, page 388]. Then $P$ is the disjoint union of $P_{1}$ and $P_{2}$ for which the orthogonal complements of $E_{8}(2) \subset N$ are isomorphic to $U \perp U(2)$ and $U(2) \perp U(2)$, respectively. The latter decomposes into two parts, $P_{2}^{\text {ev }}$ and $P_{2}^{\text {odd }}$, according to the parity. Corollary 2.7 in [3] should be replaced by the following.

COROLLARY 19
$P_{1} / \Gamma, P_{2}^{\text {ev }} / \Gamma$, and $P_{2}^{\text {odd }} / \Gamma$ are irreducible.
Here $\Gamma$ is the arithmetic group acting on the 10-dimensional Hermitian symmetric domain $\Omega^{-}$of type IV such that the quotient $\Omega^{-} / \Gamma$ is the moduli space of Enriques surfaces. In fact, $P_{2}^{\text {ev }} / \Gamma$ parameterizes Example 1, and an open subset of $P_{2}^{\text {odd }} / \Gamma$ parameterizes Enriques surfaces in Proposition 2.

## THEOREM 20

Every pair of an Enriques surface and a cohomologically trivial involution is obtained in the way of [3, Example 2]. Moreover, they are parameterized by $P_{1} / \Gamma$.

## Proof

Let $\sigma$ be a cohomologically trivial involution of an Enriques surface $S . N_{R}$ is isomorphic to $U \perp U(2)$ by Theorem 17, and the periods of such involutions form an irreducible variety by Corollary 19. Hence, $(S, \sigma)$ is a deformation of $[3$, Example 2]. As is shown in [3, Section 5], the fixed locus of the antisymplectic involution is the disjoint union of an elliptic curve $E$ and eight smooth rational
curves $E_{1}, \ldots, E_{8}$ for Example 2. Therefore, the same holds for the antisymplectic involution $\sigma_{R}$. Let $f: \tilde{S} \rightarrow \mathbb{P}^{1}$ be the elliptic fibration defined by the linear system $|E|$. Then $f$ descends to an elliptic fibration of the quotient rational surface $\tilde{S} / \sigma_{R}$. We denote its minimal fibration by $f_{R}: R \rightarrow \mathbb{P}^{1}$. The rational surface $R$ is obtained from $\tilde{S} / \sigma_{R}$ by blowing down an exceptional curve of the first kind eight times. For Example 2, it is easily checked that the image of $\sum_{i=1}^{8} E_{i}$ is a singular fiber of type $I_{8}$ of $f_{R}$ and that $f_{R}$ has four sections. The same holds for $(S, \sigma)$ as a deformation of Example 2. Hence, as is claimed in [3, Section 5], the configuration of the elliptic curves $E$ and 20 rational curves is the same as Example 2, and $(S, \sigma)$ is obtained in the way of Example 2. The second assertion follows from the Torelli-type theorem and [3, Proposition 1.1], the uniqueness of cohomologically trivial involution.

## REMARK 21

The fixed locus of the antisymplectic involution $\sigma_{R}$ is the disjoint union of eight smooth rational curves $E_{1}, \ldots, E_{8}$ for numerically trivial involutions of Kummer type. Our main theorem, Theorem 3, can be also proved using certain elliptic fibrations containing $E_{1}, \ldots, E_{8}$ in their fibers, although the existence of such fibrations is not straightforward as above and they are not unique. Furthermore, Theorem 20 can be proved using periods also. These alternative proofs will be discussed elsewhere.

## B. Rational curves on an Enriques surface of Proposition 2

Let $B, \tau, \Gamma_{\overline{0}}$, and $\Gamma_{\overline{1}}$ be as in Section 2. The dual graph of the eight smooth rational curves in $\Gamma_{\overline{0}}$ is a cube:


The automorphism $\tau$ sends each vertex of the cube $\Gamma_{\overline{0}}$ to its antipodal. The same holds for $\Gamma_{\overline{1}}$. The following is easily verified:
$(\dagger)$ for every curve $m$ in $\Gamma_{\overline{0}}$ (resp., $\Gamma_{\overline{1}}$ ), there exists an antipodal pair of vertices $n$ and $n^{\prime}$ in $\Gamma_{\overline{1}}$ (resp., $\Gamma_{\overline{0}}$ ) such that $(m \cdot n)=\left(m \cdot n^{\prime}\right)=1$ and that $m$ is disjoint from other curves in $\Gamma_{\overline{1}}$ (resp., $\Gamma_{\overline{0}}$ ).
Therefore, the quotient graph $\left(\Gamma_{\overline{1}} \cup \Gamma_{\overline{0}}\right) / \tau$ is as follows.
The Kummer surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ is the double cover of $B$ with branch the union of the eight curves in $\Gamma_{\overline{1}}$. The union has 12 nodes corresponding to the 12 edges of $\Gamma_{\overline{1}}$. The pullbacks of the curves in $\Gamma_{\overline{0}}$ are smooth rational curves on

$\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ by $(\dagger)$. Hence, $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right)$ has 28 smooth rational curves, 12 of which come from the nodes of the double cover and the rest from $\Gamma_{\overline{0}} \cup \Gamma_{\overline{1}}$. Since the involution $\tau$ lifts to $\varepsilon_{\text {odd }}$ of Proposition 2, we have the following.

## PROPOSITION 22

On the Enriques surface $\operatorname{Km}\left(E^{\prime} \times E^{\prime \prime}\right) / \varepsilon_{\text {odd }}$ of Proposition 2, there are 14 smooth rational curves whose dual graph is as follows:


The proposition, together with [3, Figure 4.7], shows the "only if" part of [2, Theorem 1.7(i)] in the case of Kummer type.

Acknowledgments. The author thanks the anonymous referees for their careful reading, by which the readability of this article is improved in several places.

## References

[1] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer, Berlin, 1984.
[2] S. Kondo, Enriques surfaces with finite automorphism groups, Japan. J. Math. (N.S.) 12 (1986), 191-282.
[3] S. Mukai and Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math. 77 (1984), 383-397.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan; mukai@kurims.kyoto-u.ac.jp


[^0]:    Kyoto Journal of Mathematics, Vol. 50, No. 4 (2010), 889-902
    DOI $10.1215 / 0023608 \mathrm{X}-2010-017$, © 2010 by Kyoto University
    Received March 31, 2010. Revised May 12, 2010. Accepted May 21, 2010.
    2010 Mathematics Subject Classification: Primary 14J28; Secondary 14C34, 14K10.
    Author's work supported in part by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (B) 17340006, (S) 19104001, and Exploratory Research 20654004.

[^1]:    ${ }^{\dagger}$ An automorphism of a surface is small if all fixed points are isolated.

