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Abstract Let G be a connected complex reductive linear algebraic group, and let K ⊂
G be a maximal compact subgroup. The Lie algebra of K is denoted by k. A holomorphic
Hermitian principal G-bundle is a pair of the form (EG,EK), where EG is a holomorphic
principal G-bundle and EK ⊂ EG is a C∞-reduction of structure group to K. Two holo-
morphicHermitianprincipalG-bundles (EG,EK) and (E′

G,E′
K) are called holomorphi-

cally isometric if there is a holomorphic isomorphism of the principal G-bundle EG

with E′
G which takes EK to E′

K . We consider all holomorphic Hermitian principal
G-bundles (EG,EK) over the upper half-plane H such that the pullback of (EG,EK) by
each holomorphic automorphism of H is holomorphically isometric to (EG,EK) itself.
We prove that the isomorphism classes of such pairs are parameterized by the equiva-
lence classes of pairs of the form (χ,A), where χ : R −→ K is a homomorphism, and A ∈
k ⊗R C such that [A,dχ(1)] = 2

√
−1·A. (Here dχ : R −→ k is the homomorphism of Lie

algebras associated to χ.) Two such pairs (χ,A) and (χ′,A′) are called equivalent if there
is an element g0 ∈ K such that χ′ = Ad(g0) ◦ χ and A′ = Ad(g0)(A).

1. Introduction

Let G be a connected complex reductive linear algebraic group. Fix a maximal
compact subgroup K ⊂ G. Let g (resp., k) denote the Lie algebra of G (resp.,
K). The inclusion of k in g extends (uniquely) to a C-linear isomorphism of
Lie algebras k ⊗R C −→ g. Let EG be a holomorphic principal G-bundle over
the upper half-plane H ⊂ C. A Hermitian structure on EG is defined to be a
C∞-reduction of structure group

EK ⊂ EG

to the subgroup K. By a holomorphic Hermitian principal G-bundle over H we
mean a pair (EG,EK) of the above type. Two holomorphic Hermitian principal
G-bundles (EG,EK) and (E′

G,E′
K) over H are called holomorphically isometric

if there is a holomorphic isomorphism of principal G-bundles

γ : EG −→ E′
G

such that γ(EK) = E′
K .
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We consider all holomorphic Hermitian principal G-bundles (EG,EK) over H

such that for each holomorphic automorphism τ of H, the pulled-back holomor-
phic Hermitian principal G-bundle (τ ∗EG, τ ∗EK) is holomorphically isometric
to (EG,EK) itself. We call such a pair (EG,EK) an invariant holomorphic Her-
mitian principal G-bundle.

Consider all pairs of the form (χ,A), where

• χ : R −→ K is a homomorphism, and
• A is an element of the Lie algebra g of G such that [A,dχ(1)] = 2

√
−1 · A,

where dχ : R −→ k is the homomorphism of Lie algebras associated to the above
homomorphism χ.

Two such pairs (χ,A) and (χ′,A′) are called equivalent if there is an element
g0 ∈ K such that

• χ′(t) = g0χ(t)g−1
0 for all t ∈ R, and

• A′ = Ad(g0)(A), where Ad(g0) is the automorphism of g associated to the
inner automorphism of G defined by g �−→ g0gg−1

0 .

The following theorem classifies all the invariant holomorphic Hermitian prin-
cipal G-bundles over H up to a holomorphic isometry (see Theorem 6.4).

THEOREM 1.1

There is a canonical bijection between all the holomorphic isometry classes of
invariant holomorphic Hermitian principal G-bundles over H and all the equiv-
alence classes of pairs of the form (χ,A).

In [BM], all the isomorphism classes of ˜SL(2,R)-homogeneous holomorphic Her-
mitian principal GL(n,C)-bundles were classified for every n. If we set G =
GL(n,C) and K = U(n), then Theorem 1.1 coincides with the classification done
in [BM].

The bijection in Theorem 1.1 is constructed in Section 6.
Let ˜SL(2,R) denote the universal cover of the group PSL(2,R). The group

of all holomorphic automorphisms of H is identified with PSL(2,R), and hence
we have an action

φ : ˜SL(2,R) −→ Aut(H).

An ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle on H

is defined to be a triple (EG,EK ;ρ), where

• f : EG −→ H is a holomorphic principal G-bundle,
• EK ⊂ EG is a C∞-reduction of structure group to K, and
• ρ is a C∞-action of ˜SL(2,R) on the total space of EG,

ρ : ˜SL(2,R) × EG −→ EG,

such that the following four conditions hold:



Homogeneous principal bundles on H 327

(1) (f ◦ ρ)(g, z) = φ(g)(f(z)) for all (g, z) ∈ ˜SL(2,R) × EG,

(2) the actions of G and ˜SL(2,R) on EG commute,

(3) ρ( ˜SL(2,R) × EK) = EK , and

(4) for each g ∈ ˜SL(2,R), the diffeomorphism EG −→ EG defined by z �−→
ρ(g, z) is holomorphic.

Two ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundles (EG,

EK ;ρ) and (E′
G,E′

K ;ρ′) over H are called isomorphic if there is a holomorphic
isomorphism of principal G-bundles

h̃ : EG −→ E′
G,

such that h̃(EK) = E′
K and h̃ ◦ ρ = ρ′ ◦ (Id ˜SL(2,R)

×h̃).

An ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle is
clearly invariant.

Here we prove that the two categories, namely, the ˜SL(2,R)-homogeneous
holomorphic Hermitian principal G-bundles on H and the invariant holomorphic
Hermitian principal G-bundles on H, coincide (see Proposition 2.5). Hence Theo-

rem 1.1 also classifies the ˜SL(2,R)-homogeneous holomorphic Hermitian principal
G-bundles on H (see Theorem 6.3).

2. Invariant principal bundles

2.1. The upper half-plane
Let

H :=
{
z ∈ C

∣∣ Im(z) > 0
}

be the upper half of the complex plane. The group of all holomorphic automor-
phisms of H, which is denoted by Aut(H), is identified with PSL(2,R). We recall
that SL(2,R) has an action on H defined by(

a b

c d

)
(z) =

az + b

cz + d
.

This action descends to a homomorphism

(2.1) φ0 : PSL(2,R) −→ Aut(H)

which is in fact an isomorphism.
It is customary to denote the universal cover of the group PSL(2,R) by

˜SL(2,R). Let

(2.2) p : ˜SL(2,R) −→ PSL(2,R)

be the projection. The group ˜SL(2,R) acts on H using the composition homo-
morphism

(2.3) φ := φ0 ◦ p,

where φ0 is defined in (2.1).
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2.2. Invariant principal bundles
Let G be a connected reductive linear algebraic group defined over the field of
complex numbers. We fix a maximal compact subgroup

(2.4) K ⊂ G.

It is known that any two maximal compact subgroups of G are conjugate (see
[He, Theorem 2.1, p. 256]).

We recall that a holomorphic principal G-bundle over H is a complex mani-
fold EG and a surjective holomorphic submersion

(2.5) f : EG −→ H

such that

• the complex manifold EG is equipped with a right holomorphic action of
the complex Lie group G

(2.6) ϕ : EG × G −→ EG

(so ϕ is a holomorphic map),
• f ◦ ϕ = f ◦ p1, where p1 is the projection of EG × G to the first factor, and
• the action of G is free and transitive on each fiber of the projection f in

equation (2.5).

The last condition is equivalent to the assertion that the diagonal map to the
fiber product

ϕ × p1 : EG × G −→ EG ×H EG

is an isomorphism. We recall that EG ×H EG is the submanifold of EG × EG

consisting of all points (y1, y2) such that f(y1) = f(y2).
A Hermitian structure on a holomorphic principal G-bundle EG is a C∞-

reduction of structure group of EG,

EK ⊂ EG,

to the subgroup K in (2.4). This means that EK is a K-invariant C∞-submanifold
of EG, and for each point y ∈ H, the action of K on (EK)y := EK

⋂
f −1(y) is

transitive.
We note that any C∞-section

σ : H −→ EG/K,

of the natural projection EG/K −→ H constructed using f , yields a C∞-reduction
of structure group of EG to K. Indeed,

EK := q−1
(
σ(H)

)
⊂ EG,

where q : EG −→ EG/K is the quotient map, is a C∞-reduction of structure
group of EG to K.
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DEFINITION 2.1

A holomorphic Hermitian principal G-bundle on H is a holomorphic principal
G-bundle EG on H together with a Hermitian structure EK on EG.

Let (EG,EK) and (E′
G,E′

K) be two holomorphic Hermitian principal G-bundles
over H. Let

h : EK −→ E′
K

be a C∞-isomorphism of principal K-bundles. Then h extends uniquely to a
C∞-isomorphism

(2.7) h̃ : EG −→ E′
G

of principal G-bundles. To construct h̃, we first note that

EG := EK ×K G = (EK × G)/K,

where the action of any k ∈ K on EK × G sends any (z, g) ∈ EK × G to (zk, k−1g).
The diffeomorphism

h × IdG : EK × G −→ E′
K × G

descends to the map

h̃ : EK ×K G −→ E′
K ×K G

in (2.7) between the quotient spaces.

DEFINITION 2.2

The isomorphism h : EK −→ E′
K is called a holomorphic isometry if the map h̃

in (2.7) is holomorphic.
Two holomorphic Hermitian principal G-bundles are called holomorphically

isometric if there exists a holomorphic isometry between them.

If h is a holomorphic isometry, then h̃ is also called a holomorphic isometry.
Since h is the restriction of h̃ to EK , the map h is uniquely determined by h̃.
Therefore, there is no abuse of the terminology holomorphic isometry.

REMARK 2.3

We recall that a connection ∇ on a holomorphic principal G-bundle is called a
complex connection if the Lie algebra valued one-form on the total space of EG

defining ∇ is of Hodge type (1,0). Let (EG,EK) be a holomorphic Hermitian
principal G-bundle over H. There is a unique complex connection ∇ on the holo-
morphic principal G-bundle EG which preserves EK . Equivalently, the principal
K-bundle EK has a unique C∞-connection ∇0 such that the connection on EG

induced by ∇0 is complex. The connection ∇0 is simply the restriction of ∇ to
EK (see [AB, p. 220] for the details).
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For any holomorphic map

τ : H −→ H

and any holomorphic Hermitian principal G-bundle (EG,EK) over H, the pull-
back

τ ∗(EG,EK) := (τ ∗EG, τ ∗EK)

is clearly a holomorphic Hermitian principal G-bundle over H. This holomorphic
Hermitian principal G-bundle τ ∗(EG,EK) is called the pullback of (EG,EK)
by τ .

DEFINITION 2.4

A holomorphic Hermitian principal G-bundle (EG,EK) on H is called invariant if
for each τ ∈ Aut(H), the pulled-back holomorphic Hermitian principal G-bundle
(τ ∗EG, τ ∗EK) is holomorphically isometric to (E,h).

An ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle on H is
defined to be a triple (EG,EK ;ρ), where

• (EG,EK) is a holomorphic Hermitian principal G-bundle on H and

• ρ is a C∞-action of ˜SL(2,R) on the total space of EG,

(2.8) ρ : ˜SL(2,R) × EG −→ EG,

such that the following four conditions hold:

(1) (f ◦ ρ)(g, z) = φ(g)(f(z)) for all (g, z) ∈ ˜SL(2,R) × EG, where φ is con-
structed in (2.3) and f is the projection as in (2.5),

(2) the actions of G and ˜SL(2,R) on EG commute,

(3) ρ( ˜SL(2,R) × EK) = EK , and

(4) for each g ∈ ˜SL(2,R), the diffeomorphism EG −→ EG defined by z �−→
ρ(g, z) is holomorphic.

Two ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundles (EG,

EK ;ρ) and (E′
G,E′

K ;ρ′) are called isomorphic if there is a holomorphic isometry

h̃ : EG −→ E′
G

such that h̃ ◦ ρ = ρ′ ◦ (Id ˜SL(2,R)
×h̃).

We note that for any ˜SL(2,R)-homogeneous holomorphic Hermitian principal

G-bundle (EG,EK ;ρ) over H, and any element g ∈ ˜SL(2,R), the map

EG −→ EG

defined by z �−→ ρ(g, z) is a holomorphic isometry of the pulled-back holomorphic
Hermitian principal G-bundle (φ(g−1)∗EG, φ(g−1)∗EK) with (EG,EK), where

φ is constructed in (2.3). Therefore, any ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G-bundle is invariant.
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Although, a priori, the condition for a holomorphic Hermitian principal G-
bundle to be a ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle
is stronger than the condition for it to be invariant, the following proposition
shows that the two definitions are in fact equivalent.

PROPOSITION 2.5

Let (EG,EK) be an invariant holomorphic Hermitian principal G-bundle over H.
Then the principal G-bundle EG admits a C∞-action

ρ : ˜SL(2,R) × EG −→ EG

such that the triple (EG,EK ;ρ) is an ˜SL(2,R)-homogeneous holomorphic Her-
mitian principal G-bundle.

Furthermore, there is exactly one action ρ of ˜SL(2,R) on EG which makes

(EG,EK ;ρ) an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle.

Proof
Let U denote the group of all holomorphic isometries of the holomorphic Her-
mitian principal G-bundle (EG,EK) with itself. Therefore, U is the group of all
holomorphic automorphisms

h̃ : EG −→ EG

such that

• f ◦ h̃ = h̃, where f as in (2.5) is the projection of EG to H,
• h̃(EK) = EK , and
• h̃ commutes with the action of G on EG.

We show that U is a compact Lie group.
To prove that U is a compact Lie group, fix a point x0 ∈ H. Let Aut((EK)x0)

denote the group of all diffeomorphisms of the fiber (EK)x0 which commute
with the action of K on (EK)x0 . Now, fix a point z0 ∈ (EK)x0 . We have an
isomorphism of groups

hz0 : K −→ Aut
(
(EK)x0

)
which sends any g ∈ K to the automorphism of (EK)x0 defined by z0g

′ �−→ z0gg′,
where g′ ∈ K. We note that this isomorphism hz0 depends on the choice of z0.
However, for any g0 ∈ K, we have

hz0g0(g) = hz0(g0gg−1
0 )

for all g ∈ K, where hz0g0 : K −→ Aut((EK)x0) is the isomorphism that sends
any g′ ′ ∈ K to the automorphism of (EK)x0 defined by z0g0g

′ �−→ z0g0g
′ ′g′, where

g′ ∈ K. Therefore, the Lie group Aut((EK)x0) is compact and connected.
The group Aut((EK)x0) has the following alternative description. Let

(2.9) Ad(EK) = EK ×K K −→ H
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be the adjoint bundle. So Ad(EK) is associated to the principal K-bundle EK

for the adjoint action of K on itself. We recall that the adjoint action on K of
any g0 ∈ K is defined by g �−→ g0gg−1

0 . Therefore, two points (z, g) and (z′, g′)
of EK × K are identified in the quotient space Ad(EK) if and only if there is
an element k ∈ K such that z′ = zk and g′ = k−1gk. The fibers of the natural
projection Ad(EK) −→ H are groups isomorphic to K. The fiber Ad(EK)x0 of
Ad(EK) over x0 is canonically identified with the group Aut((EK)x0) defined
earlier. To construct the action of any y ∈ Ad(EK)x0 on (EK)x0 , fix a point
(z0, g0) ∈ (EK)x0 × K which projects to y. The action of y on (EK)x0 is defined
by z0g �−→ z0g0g, where g ∈ K.

Let

(2.10) ρ1 : U −→ Aut
(
(EK)x0

)
be the homomorphism that sends any holomorphic isometry h̃ of (EG,EK) to
its restriction h̃(x0)|(EK)x0

to the fiber (EK)x0 . The homomorphism ρ1 in (2.10)
is in fact injective. Indeed, any automorphism h̃ ∈ U of EG leaves invariant the
unique complex connection on EG which preserves the reduction EK ⊂ EG (see
Remark 2.3). We note that any automorphism of a principal bundle over a
connected base which preserves a given connection is uniquely determined by the
restriction of the automorphism over one fixed point of the base. Indeed, over any
other point of the base, the automorphism is simply the parallel transport of the
automorphism over the fixed point of the base. Consequently, the homomorphism
ρ1 in (2.10) is injective.

The subgroup U of the compact Lie group Aut((EK)x0) is clearly closed.
Hence it follows that U is a compact Lie group.

Let Ũ denote the group of all pairs of the form (γ,T ), where γ ∈ Aut(H) and

T : (γ−1)∗EG −→ EG

is a holomorphic isometry between the two holomorphic Hermitian principal G-
bundles (EG,EK) and ((γ−1)∗EG, (γ−1)∗EK). The group operation on Ũ is
defined by

(γ1, T1)(γ,T ) = (γ1 ◦ γ,T ′),

where T ′ is the composition(
(γ1 ◦ γ)−1

)∗
EG = (γ−1

1 )∗(γ−1)∗EG
(γ−1

1 )∗T−→ (γ−1
1 )∗EG

T1−→ EG.

It can be shown that Ũ is a finite-dimensional Lie group. (This also follows from
the short exact sequence in (2.11).)

Since (EG,EK) is an invariant holomorphic Hermitian principal G-bundle,
for each γ ∈ Aut(H) there is at least one holomorphic isometry T such that
(γ,T ) ∈ Ũ . Consequently, we have a short exact sequence of Lie groups

(2.11) e −→ U
I−→ Ũ

H0−→ Aut(H) −→ e,
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where H0 is the homomorphism defined by (γ,T ) �−→ γ, and I is the homomor-
phism defined by h̃ �−→ (IdH, h̃).

The Lie algebra of U (resp., Ũ ) is denoted by u (resp., ũ). Let

(2.12) 0 −→ u
ι−→ ũ

h0−→ sl(2,R) −→ 0

be the short exact sequence of Lie algebras associated to the exact sequence
in (2.11); the Lie algebra of Aut(H) is identified with sl(2,R) using the isomor-
phism of Lie algebras associated to the homomorphism φ in (2.3).

The Lie algebra sl(2,R) is simple. Hence the homomorphism h0 in (2.12)
splits. In other words, there is a homomorphism of Lie algebras

(2.13) h1 : sl(2,R) −→ ũ

such that h0 ◦ h1 = Idsl(2,R) (see [Bou, Corollaire 3, p. 91]).
We fix a homomorphism of Lie algebras h1 as in (2.13) such that h0 ◦ h1 =

Idsl(2,R). We show that the image of h1 commutes with the image of the homo-
morphism ι in (2.12).

To prove that the images of h1 and ι commute, we first note that u in (2.12)
is an ideal of the Lie algebra ũ. Hence, using the Lie algebra operation of ũ, we
have a homomorphism from ũ to the Lie algebra of derivations of u. We denote
by Der(u) the Lie algebra of derivations of u. Let

(2.14) δ : sl(2,R) −→ Der(u)

be the homomorphism of Lie algebras which sends any w ∈ sl(2,R) to the deriva-
tion of u given by h1(w), where h1 is the homomorphism in (2.13).

Let

(2.15) Z(u) ⊂ u

be the center. We recall that u is the Lie algebra of a compact Lie group. So the
quotient map u −→ u/Z(u) identifies [u,u] with u/Z(u). Furthermore,

Der(u) = u/Z(u) = [u,u].

The homomorphism [u,u] −→ Der(u) is defined by the Lie algebra operation of u.
In particular, all the elements of Der(u) are semisimple. On the other hand, the
Lie algebra sl(2,R) has nilpotent elements, and also, it is simple. From the
properties of the Jordan decomposition (see [Bor, Section 4.4, Theorem, pp. 83–
84]), we know that any homomorphism of Lie algebras

sl(2,R) −→ [u,u]

takes nilpotent elements of sl(2,R) to nilpotent elements of [u,u]. Hence there is
no nonzero homomorphism of Lie algebras from sl(2,R) to [u,u]. In particular,
the homomorphism δ in (2.14) vanishes.

Since the homomorphism δ in (2.14) vanishes, it follows immediately that
the images of h1 and ι commute. We next show that the splitting homomorphism
h1 in (2.13) is actually unique.
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Take any homomorphism of Lie algebras

h′
1 : sl(2,R) −→ ũ

such that h0 ◦ h′
1 = Idsl(2,R). (The homomorphism h0 is defined in (2.12).) From

the above observation that the images of h1 and ι commute, it follows immedi-
ately that there is a homomorphism of Lie algebras

α0 : sl(2,R) −→ u

such that h′
1 = h1 + ι ◦ α0, where h1 is the fixed homomorphism in (2.13).

Now, u = [u,u]
⊕

Z(u) (see (2.15)). We already noted that there is no
nonzero homomorphism from sl(2,R) to [u,u] = Der(u). On the other hand,
there is no nonzero homomorphism from sl(2,R) to the abelian Lie algebra Z(u).
Consequently, there is no nonzero homomorphism from sl(2,R) to u. Hence we
conclude that there is exactly one homomorphism of Lie algebras

h1 : sl(2,R) −→ ũ

such that

h0 ◦ h1 = Idsl(2,R) .

Now we are in a position to complete the proof of the proposition. Since the
group ˜SL(2,R) is simply connected, the space of all homomorphisms

(2.16) f1 : ˜SL(2,R) −→ Ũ

such that H0 ◦ f1 = p, where H0 and p are constructed in (2.11) and (2.2),
respectively, are parameterized by the space of all homomorphism of Lie algebras

h1 : sl(2,R) −→ ũ

such that h0 ◦ h1 = Idsl(2,R), where h0 is constructed in (2.12). We proved that
there is exactly one such homomorphism h1 of Lie algebras. Consequently, there
is exactly one homomorphism of Lie groups f1 as in (2.16) such that H0 ◦ f1 = p.

Now we define the map

(2.17) ρ : ˜SL(2,R) × EG −→ EG

which sends any (g, z) ∈ ˜SL(2,R) × EG to f1(g)(z), where f1 is the unique homo-
morphism in (2.16). It is straightforward to check that ρ in (2.17) satisfies all the
conditions that are imposed on the map in (2.8). Consequently, (EG,EK ;ρ) is an

˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle. This proves
the first part of the proposition.

Let

ρ′ : ˜SL(2,R) × EG −→ EG

be another action of ˜SL(2,R) on EG which makes (EG,EK ;ρ′) an ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundle. Let

f ′
1 : ˜SL(2,R) −→ Ũ
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be the homomorphism (the group Ũ is as in (2.11)) that sends any g to the
automorphism of EG defined by z �−→ ρ′(g, z). It is easy to see that H0 ◦ f ′

1 = p,
where H0 and p are constructed in (2.11) and (2.2), respectively. Now from
the uniqueness of the homomorphism f1 in (2.16) it follows immediately that f ′

1

coincides with f1. Consequently, ρ′ coincides with ρ constructed in (2.17). This
completes the proof of the proposition. �

In view of Proposition 2.5, given any invariant holomorphic Hermitian principal
G-bundle (EG,EK) over H, the unique action ρ of ˜SL(2,R) on EG, which makes

(EG,EK ;ρ) a ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle,
is automatically assumed.

3. Invariant holomorphic Hermitian C∗ -bundles

Invariant holomorphic Hermitian principal C∗-bundles on H were investigated in
[BM, Section 3]. We reexamine them in this section from the present point of
view, which is to reconstruct invariant holomorphic Hermitian principal bundles
from the principal R-bundle on H obtained from the action on it of ˜SL(2,R).

Set x0 :=
√

−1 ∈ H. Let

(3.1) Hx0 ⊂ ˜SL(2,R)

be the isotropy subgroup of x0 for the action φ of ˜SL(2,R) on H constructed in
(2.3). We have a surjective homomorphism

(3.2) α : R −→ p(Hx0) ⊂ PSL(2,R)

defined by

θ �−→
(

cosθ sinθ

− sinθ cosθ

)
,

where p is the homomorphism in (2.2). Let

(3.3) α̃ : R −→ Hx0

be the unique homomorphism such that p ◦ α̃ = α, where α is defined in (3.2). It
is easy to see that α̃ is an isomorphism. Using α̃, we have

H = ˜SL(2,R)/R.

The corresponding quotient map

(3.4) ˜SL(2,R) −→ ˜SL(2,R)/R = H

defines a C∞-principal R-bundle over H. The group R = Hx0 acts on ˜SL(2,R)
as right translations. Let

(3.5) q : FR := ˜SL(2,R) −→ H

be the principal R-bundle over H defined by the quotient map in (3.4).
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The tangent bundle T ˜SL(2,R) of ˜SL(2,R) is equipped with a nondegenerate
symmetric bilinear form defined by the Killing form on the Lie algebra sl(2,R)

of ˜SL(2,R). The restriction of this bilinear form to the line subbundle

kernel(dq) ⊂ T ˜SL(2,R)

is clearly nondegenerate, where dq : T ˜SL(2,R) −→ q∗TH is the differential of the
map q in (3.5). Note that the subbundle kernel(dq) coincides with the one defined

by the orbits of the right translation action, on ˜SL(2,R), of the subgroup Hx0 in

(3.1). Consider the orthogonal projection of T ˜SL(2,R) to kernel(dq). As the Lie
algebra of Hx0 = R (see (3.3)) is identified with the Lie algebra R, this orthogo-
nal projection defines a C∞ one-form

(3.6) ω0 ∈ C∞(
˜SL(2,R);Ω1

˜SL(2,R)

)
on ˜SL(2,R). Using the fact that the Killing form on sl(2,R) is invariant under

the adjoint action of ˜SL(2,R) on sl(2,R), it is easy to deduce that ω0 defines a
C∞-connection on the principal R-bundle FR in (3.5). This C∞-connection on
FR is denoted by ∇0

R.
The curvature of the above connection ∇0

R on FR is denoted by K(∇0
R).

Since the group R is abelian and its Lie algebra is R, the adjoint vector bundle
ad(FR) = FR ×R R is the trivial line bundle H × R over H. (The construction of the
adjoint bundle is recalled in (4.10).) In other words, we have a C∞-isomorphism

(3.7) μ : ad(FR) −→ H × R

of vector bundles. Using this isomorphism, we have

(3.8) K(∇0
R) ∈ C∞(H;Ω2

H),

or in other words, the curvature K(∇0
R) is a C∞ two-form on H.

The left translation action of ˜SL(2,R) on itself commutes with the right trans-

lation action of ˜SL(2,R) on itself. Also, the projection in (3.4) intertwines the left

translation action of ˜SL(2,R) on itself and the action of ˜SL(2,R) on H defined by

φ in (2.3). In other words, the left translation action of ˜SL(2,R) on itself makes

FR a smooth ˜SL(2,R)-homogeneous principal R-bundle. The connection ∇0
R on

FR constructed above is preserved by the action of ˜SL(2,R) on FR. Consequently,

the curvature form K(∇0
R) in (3.8) is preserved by the action of ˜SL(2,R) on H.

This immediately implies that

(3.9) K(∇0
R) =

λ0

√
−1

Im(z)
dz

∧
dz

for some λ0 ∈ R, where z is the tautological holomorphic function on C.
From the definition of the curvature of a connection, we have

q∗ K(∇0
R) = dω0,
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where ω0 is the one-form in (3.6), and q is the projection in (3.5). Using this, it
can be shown that the constant λ0 in (3.9) is −1.

Take any t ∈ R. Let

(3.10) ρt : R −→ U(1) ⊂ C∗

be the homomorphism defined by λ �−→ exp(
√

−1 · tλ). Let

(3.11) F t
C∗ := FR(ρt)

be the C∞-principal C∗-bundle over H obtained by extending the structure group
of the principal R-bundle FR in (3.5) using the homomorphism ρt in (3.10). Since
ρt factors through the subgroup U(1) ⊂ C∗, the principal C∗-bundle F t

C∗ in (3.11)
is equipped with a tautological reduction of structure group

(3.12) F t
U ⊂ F t

C∗

to U(1). Note that F t
U is identified with the principal U(1)-bundle over H

obtained by extending the structure group of the principal R-bundle FR using ρt.
The connection ∇0

R on FR induces a connection on the principal U(1)-bundle
F t

U in (3.12). This induced connection on F t
U is denoted by ∇t. The connection

on the principal C∗-bundle F t
C∗ induced by ∇0

R is denoted by ∇t
C. We note that

the connection ∇t on F t
U induces the connection ∇t

C on F t
C∗ using the reduction

of structure group in (3.12).
The Lie algebra Lie(U(1)) of U(1) is identified with R using the homomor-

phism of Lie algebras associated to the homomorphism ρ1 (see (3.10)). In terms
of this identification, the homomorphism of Lie algebras

R = Lie(R) −→ Lie
(
U(1)

)
= R

associated to the homomorphism ρt in (3.10) is multiplication by t. Hence from
(3.9) it follows that the curvature K(∇t) of the connection ∇t satisfies the identity

(3.13) K(∇t) =
tλ0

√
−1

Im(z)
dz

∧
z.

The curvature of the connection ∇t
C on F t

C∗ clearly coincides with K(∇t).
As the differential form K(∇t) is of type (1,1) (any nonzero two-form on a

Riemann surface is of Hodge type (1,1)), there is a unique holomorphic structure
on the principal C∗-bundle F t

C∗ which satisfies the following two conditions:

• the natural projection of F t
C∗ to H is holomorphic, and

• the connection form ∇t
C on F t

C∗ , which is a complex differential form on
F t

C∗ , is of Hodge type (1,0)

(see [Ko, Proposition 4.17, p. 12]).
Therefore, the pair (F t

C∗ , F t
U ) is a holomorphic Hermitian principal C∗-bundle

over H. The following proposition shows that they classify all the invariant
holomorphic Hermitian principal C∗-bundles.
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PROPOSITION 3.1

The holomorphic Hermitian principal C∗-bundle (F t
C∗ , F t

U ) constructed above is
invariant. Given any invariant holomorphic Hermitian principal C∗-bundle (EC∗ ,

EU(1)) on H, there is a unique t ∈ R such that (F t
C∗ , F t

U ) is holomorphically iso-
metric to (EC∗ ,EU(1)).

Proof
We noted earlier that using the identification FR := ˜SL(2,R) in (3.5), the left

translation action of ˜SL(2,R) on itself makes FR a smooth ˜SL(2,R)-homogeneous

principal R-bundle. Therefore, we have an induced action of ˜SL(2,R) on any fiber
bundle associated to the principal R-bundle FR. More precisely, if R acts on T ,
then the action of ˜SL(2,R) on FR × T defined by the trivial action of ˜SL(2,R) on

T and the above action on FR descends to an action of ˜SL(2,R) on the associated
fiber bundle FR ×R T . In particular, both F t

C∗ and F t
U are equipped with an action

of ˜SL(2,R). It is easy to check that these actions of ˜SL(2,R) on F t
C∗ and F t

U

make (F t
C∗ , F t

U ) an ˜SL(2,R)-homogeneous holomorphic Hermitian principal C∗-
bundle. In particular, the holomorphic Hermitian principal C∗-bundle (F t

C∗ , F t
U )

is invariant.
Let (EC∗ ,EU(1)) be an invariant holomorphic Hermitian principal C∗-bundle

over H. Let ∇C∗

1 be the corresponding complex connection on the principal
C∗-bundle EC∗ (see Remark 2.3). The curvature

K(∇C∗

1 ) ∈ C∞(H;Ω2
H)

of the above connection ∇C∗

1 satisfies the condition

(3.14) K(∇C∗

1 ) =
t0

√
−1

Im(z)
dz

∧
z

for some t0 ∈ R. Indeed, this follows immediately from the fact that any Aut(H)-
invariant real two-form on H must be a constant real multiple of (

√
−1/

Im(z))dz
∧

z.
Therefore, from (3.13) it follows that the curvature K(∇t0/λ0) of the connec-

tion ∇t0/λ0 on the principal C∗-bundle F
t0/λ0
C∗ coincides with K(∇C∗

1 ), where λ0

is the nonzero constant in (3.9). Now using [BM, Lemma 3.1, p. 6], we conclude
that the two holomorphic Hermitian principal C∗-bundles (F t0/λ0

C∗ , F
t0/λ0
U ) and

(EC∗ ,EU(1)) are holomorphically isometric.
Since λ0 in (3.9) is nonzero, from (3.13) we conclude that K(∇t) 
= K(∇s) if

t 
= s. In particular, (F t
C∗ , F t

U ) and (F s
C∗ , F s

U ) are not holomorphically isometric if
t 
= s. Therefore, any invariant holomorphic Hermitian principal C∗-bundle over
H is holomorphically isometric to (F t

C∗ , F t
U ) for exactly one t ∈ R. This completes

the proof of the proposition. �

COROLLARY 3.2

The holomorphic isometry classes of invariant holomorphic Hermitian principal
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C∗-bundles over H are parameterized by R. For each t ∈ R, the corresponding in-
variant holomorphic Hermitian principal C∗-bundle is (F t

C∗ , F t
U ).

Similarly, the isomorphism classes of all ˜SL(2,R)-homogeneous holomorphic
Hermitian principal C∗-bundles over H are parameterized by R, and for each
t ∈ R, the corresponding ˜SL(2,R)-homogeneous holomorphic Hermitian principal
C∗-bundle is (F t

C∗ , F t
U ).

Proof
The first part of the corollary is a reformulation of Proposition 3.1. Also, in
view of Proposition 2.5, the second part of the corollary is deduced using its first
part. �

4. The center of G and the action of an isotropy subgroup

Let EG be a holomorphic principal G-bundle over H. Its adjoint bundle

(4.1) Ad(EG) := EG ×G G

is the holomorphic fiber bundle over H associated to EG for the adjoint action
of G on itself. So Ad(EG) is a quotient of EG × G, and two points (z1, g1) and
(z2, g2) of EG × G are identified in Ad(EG) if and only if there is an element
g0 ∈ G such that

(z2, g2) =
(
z1g

−1
0 ,Ad(g0)g1

)
,

where

(4.2) Ad(g0) : G −→ G

is the inner automorphism defined by g �−→ g0gg−1
0 . Since Ad(g0) is an automor-

phism of the group G for all g0, the fibers of Ad(EG) are groups isomorphic to G.
For each point x ∈ H, the fiber Ad(EG)x is the group of all diffeomorphisms of
(EG)x which commute with the action of G on (EG)x. Fix a point z ∈ Ad(EG)x.
Using it, we get an isomorphism

(4.3) ψz : G −→ Ad(EG)x

which sends any g ∈ G to the image of (z, g) in Ad(EG)x.
Let

(4.4) Z(G) ⊂ G

be the center of the group G. For any element g ∈ Z(G), let tg be the auto-
morphism of EG defined by z �−→ zg. Since the actions of Z(G) and G on EG

commute, this map tg defines a holomorphic section of Ad(EG) over H. There-
fore, for each point x ∈ H, we have an injective homomorphism of groups

(4.5) β̃x : Z(G) −→ Ad(EG)x

which sends any g ∈ Z(G) to the automorphism of (EG)x defined by z �−→ zg.
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Let

(4.6) Z(K) = Z(G) ∩ K

be the center of the maximal compact subgroup K in (2.4). Let

(4.7) βx : Z(K) −→ Ad(EG)x

be the restriction of the homomorphism β̃x in (4.5).
Let (EG,EK) be an invariant holomorphic Hermitian principal G-bundle over

H. The corresponding action of ˜SL(2,R) on EG (see Proposition 2.5) induces an

action of ˜SL(2,R) on the total space of Ad(EG) which lifts the action of ˜SL(2,R)
on H defined by φ in (2.3). We noted earlier that for any point x ∈ H, the fiber
Ad(EG)x is the group of all diffeomorphisms of (EG)x which commute with the
action of G on (EG)x. Hence the action of the isotropy subgroup Hx0 (see (3.1))
on (EG)x0 yields a homomorphism

(4.8) γx0 : Hx0 = R −→ Ad(EG)x0 .

(As before, Hx0 is identified with R using α̃ in (3.3).)

REMARK 4.1

The image of the injective homomorphism β̃x in (4.5) is the center of the group
Ad(EG)x. Also, the image of the homomorphism γx0 in (4.8) lies in the subgroup

Ad(EK)x0 ⊂ Ad(EG)x0

which preserves (EK)x0 ⊂ (EG)x0 (see (2.9)). Therefore, the following two state-
ments are equivalent.

(1) The image of the homomorphism γx0 in (4.8) lies inside the center of
Ad(EG)x0 .

(2) The homomorphism γx0 satisfies the condition that there be a homomor-
phism ξ : Hx0 −→ Z(K), where Z(K) is defined in (4.6), such that γx0 = βx0 ◦ ξ,
where βx0 is constructed in (4.7).

PROPOSITION 4.2

Let (EG,EK ;ρ) be a ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-
bundle over H. Let

(4.9) ξ : Hx0 −→ Z(K)

be a homomorphism, where Z(K) is defined in (4.6). Assume that

γx0 = βx0 ◦ ξ,

where βx0 and γx0 are constructed in (4.7) and (4.8), respectively. Then the
following two hold.

(1) The underlying C∞-principal G-bundle EG does not admit any different

holomorphic structure ÊG for which (ÊG,EK ;ρ) is also a ˜SL(2,R)-homogeneous
holomorphic Hermitian principal G-bundle.
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(2) Let (E′
G,E′

K ;ρ′) be another ˜SL(2,R)-homogeneous holomorphic Hermit-
ian principal G-bundle over H such that

γ′
x0

= β′
x0

◦ ξ,

where ξ is the homomorphism in (4.9), and the two homomorphisms β′
x0

and
γ′

x0
are constructed exactly as βx0 and γx0 are constructed in (4.7) and (4.8),

respectively, after replacing (EG,EK ;ρ) with (E′
G,E′

K ;ρ). Then the two ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundles (EG,EK ;ρ) and (E′

G,

E′
K ;ρ′) are isomorphic.

Proof
Let g denote the Lie algebra of the group G. Let

(4.10) ad(EG) = EG ×G g

be the holomorphic vector bundle over H associated to the principal G-bundle
EG for the adjoint action of G on g. We note that the total space of ad(EG) is a
quotient of EG × g, and two points (z1, v1) and (z2, v2) of EG × g are identified
in ad(EG) if there is an element g0 ∈ G such that (z2, v2) = (z1g

−1
0 ,Ad(g0)(v1)),

where Ad(g0) is the automorphism of Lie algebras associated to the inner auto-
morphism of G in (4.2).

The action ρ of ˜SL(2,R) on EG induces an action of ˜SL(2,R) on ad(EG).

Indeed, the diagonal action of ˜SL(2,R) on EG × g constructed using the trivial

action on g descends to an action of ˜SL(2,R) on the quotient space ad(EG).
Assume that the C∞-principal G-bundle EG admits a different holomorphic

structure ÊG for which (ÊG,EK ;ρ) is an ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G-bundle. We note that any two holomorphic structures on
the C∞-principal G-bundle EG differ by a smooth (0,1)-form on H with values
in ad(EG).

Let

(4.11) θ ∈ C∞(
H;Ω0,1

H (ad(EG))
)

be the section by which the holomorphic structure of ÊG differs from that of
EG. Since the holomorphic structures of both EG and ÊG are preserved by the
action ρ of ˜SL(2,R), it follows immediately that the action of ˜SL(2,R) leaves the
section θ in (4.11) invariant. In particular, the action of the isotropy subgroup
Hx0 (see (3.1)) on the fiber (T 0,1

x0
)∗ ⊗ ad(EG)x0 fixes the vector

(4.12) θ(x0) ∈ (T 0,1
x0

)∗ ⊗ ad(EG)x0 .

Consider the adjoint action of G on g. Its restriction to Z(G) is the trivial
action (see (4.4)). Hence from the given condition

γx0 = βx0 ◦ ξ,

we conclude that Hx0 acts trivially on the fiber ad(EG)x0 . On the other hand,
Hx0 acts nontrivially on the complex line T 0,1

x0
. Consequently, there is no nonzero
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vector in (T 0,1
x0

)∗ ⊗ ad(EG)x0 which is fixed by the action of Hx0 . Therefore, the
invariant vector θ(x0) in (4.12) must vanish. Since the section θ in (4.11) is left

invariant by the action of ˜SL(2,R) and the action of ˜SL(2,R) on H is transitive,
we now conclude that

θ = 0.

In other words, the holomorphic structure of ÊG coincides with that of EG. This
completes the proof of the first part of the proposition.

To prove the second part, define

(4.13) � : MG(E,E′) −→ H

to be the holomorphic fiber bundle whose fiber MG(E,E′)x := �−1(x) over any
point x ∈ H is the space of all G-equivariant isomorphisms (EG)x −→ (E′

G)x,
where E′

G is as in the statement of the proposition. We note that the group
Ad(EG)x acts freely transitively on the right of MG(E,E′)x, and the group
Ad(E′

G)x acts freely transitively on the left of MG(E,E′)x. The two actions ρ

and ρ′, of ˜SL(2,R) on EG and E′
G, respectively, together define an action of

˜SL(2,R) on MG(E,E′). More precisely, the action of any A ∈ ˜SL(2,R) sends any
ξ ∈ MG(E,E′)x to the map (EG)x −→ (E′

G)x defined by ρ(A,z) �−→ ρ′(A,ξ(z)),
where z ∈ (EG)x.

Let

(4.14)

MK(E,E′) ⊂ MG(E,E′)⏐⏐�
H

be the subbundle whose fiber MK(E,E′)x over any point x ∈ H is the space of

all K-equivariant isomorphisms (EK)x −→ (E′
K)x. The action of ˜SL(2,R) on

MG(E,E′) preserves MK(E,E′). Indeed, this follows from the fact that the
actions ρ and ρ′ preserve EK and E′

K , respectively.
Recall that γ′

x0
= β′

x0
◦ ξ and γx0 = β′

x0
◦ ξ (see the statement of the propo-

sition). From these it follows immediately that the isotropy subgroup Hx0 acts
trivially on the fiber MG(E,E′)x0 . Using this, we show that the fiber bundle
MK(E,E′) (see (4.14)) admits a C∞-section that is left invariant by the action

of ˜SL(2,R).
To prove this, fix any element

τ0 ∈ MK(E,E′)x0 .

Now, consider the orbit O(τ0) of τ0 under the action of ˜SL(2,R) on MK(E,E′).

Since Hx0 acts trivially on MG(E,E′)x0 and ˜SL(2,R) acts transitively on H, we
conclude that the projection

�|O(τ0) : O(τ0) −→ H

is a C∞-section of the fiber bundle MK(E,E′) in (4.14), where � is the projection
in (4.13).
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Any ˜SL(2,R)-invariant C∞-section of the fiber bundle MK(E,E′) defines a
C∞-isomorphism EG −→ E′

G of principal G-bundles which takes EK to E′
K and

also intertwines the actions of ˜SL(2,R). Now the second part of the proposition
follows from the first part. This completes the proof of the proposition. �

Fix any homomorphism

(4.15) χ : Hx0 = R −→ K ⊂ G

to the maximal compact subgroup. (Recall that Hx0 is identified with R using
α̃ in (3.3).) Let

(4.16) Eχ
G −→ H (resp., Eχ

K −→ H)

be the C∞-principal G-bundle (resp., principal K-bundle) obtained by extending
the structure group of the principal R-bundle FR (see (3.5)) using the homomor-
phism χ in (4.15). Let

(4.17) ∇G ∈ C∞(
Eχ

G;g ⊗C (T ∗Eχ
G)

)
be the connection on the principal G-bundle Eχ

G induced by the connection ∇0
R

on FR defined by the form ω0 in (3.6). The curvature of ∇G on Eχ
G is of Hodge

type (1,1). (Any nonzero two-form on H is of Hodge type (1,1).) Therefore,
there is a unique holomorphic structure on Eχ

G such that the natural projection
Eχ

G −→ H is holomorphic, and the g-valued one-form ∇G in (4.17) is of Hodge
type (1,0) (see [Ko, Proposition 4.17, p. 12]).

Since Eχ
G = ˜SL(2,R) ×R G, using the left translation action of ˜SL(2,R) on

itself we get an action ρ′ of ˜SL(2,R) on the principal G-bundle Eχ
G. This action

ρ′ of ˜SL(2,R) on Eχ
G clearly preserves the submanifold

Eχ
K = ˜SL(2,R) ×R K ⊂ Eχ

G.

Therefore, (Eχ
G,Eχ

K ;ρ′) is a ˜SL(2,R)-homogeneous holomorphic Hermitian prin-
cipal G-bundle over H.

Consider the fiber (Eχ
G)x0 of Eχ

G over the point x0 ∈ H (see (3.1)). We have
a natural biholomorphism

(4.18) G −→ (Eχ
G)x0

which sends any g ∈ G to the image of

(e, g) ∈ ˜SL(2,R) × G

in the quotient space Eχ
G = ˜SL(2,R) ×R G, where e is the identity element of

˜SL(2,R). The biholomorphism in (4.18) takes the action of G on the fiber (Eχ
G)x0

to the right translation action of G on itself. Similarly, the fiber Ad(Eχ
G)x0 of

the adjoint bundle Ad(Eχ
G) is identified with the group G. More precisely, we

have an isomorphism of algebraic groups

(4.19) G −→ Ad(Eχ
G)x0
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which sends any g ∈ G to the image of

(e, g) ∈ ˜SL(2,R) × G

in the quotient space Ad(Eχ
G) of ˜SL(2,R) × G (see (4.1)). The isomorphism

in (4.19) clearly takes the subgroup K ⊂ G isomorphically to the subgroup
Ad(Eχ

K)x0 ⊂ Ad(Eχ
G)x0 .

Consider the homomorphism

γ′
x0

: Hx0 −→ Ad(Eχ
G)x0 = G

constructed as in (4.8) for the ˜SL(2,R)-homogeneous holomorphic Hermitian
principal G-bundle (Eχ

G,Eχ
K ;ρ′). It is now straightforward to check that it sat-

isfies the identity

(4.20) γ′
x0

= χ,

where χ is the homomorphism in (4.15).
If we fix a point of (Eχ

G)x0 , then we get an isomorphism of G with Ad(Eχ
G)x0

(see (4.3)). Let

(4.21) z0 ∈ (Eχ
G)x0

be the image of (e, e) ∈ ˜SL(2,R) × G, where e denotes the identity element. The
isomorphism G −→ Ad(Eχ

G)x0 corresponding to z0 clearly coincides with the one
in (4.19).

We summarize the above construction in the following lemma.

LEMMA 4.3

Take any homomorphism χ : Hx0 = R −→ K as in (4.15). Then there is a natural
˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle (Eχ

G,Eχ
K ;ρ′)

and a point z0 ∈ (Eχ
K)x0 (see (4.21)) such that the corresponding identification

of Ad(Eχ
G)x0 with G has the following property.

The homomorphism

γ′
x0

: Hx0 −→ Ad(Eχ
G)x0 = G

constructed as in (4.8) coincides with χ.

Note that if z ∈ (Eχ
K)x0 , then the isomorphism ψz in (4.3) takes K to Ad(Eχ

K)x0 .

DEFINITION 4.4

Any given ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle
(EG,EK ;ρ) over H is called split if there is a homomorphism

χ : Hx0 −→ K

such that the corresponding ˜SL(2,R)-homogeneous holomorphic Hermitian prin-
cipal G-bundle in Lemma 4.3 is isomorphic to (EG,EK ;ρ).
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An invariant holomorphic Hermitian principal G-bundle over H is called split
if it corresponds, by Proposition 2.5, to a split ˜SL(2,R)-homogeneous holomor-
phic Hermitian principal G-bundle.

REMARK 4.5

From Corollary 3.2 it follows that all invariant holomorphic Hermitian principal
C∗-bundles over H are split.

PROPOSITION 4.6

Let h1 : Hx0 −→ K and h2 : Hx0 −→ K be two homomorphisms. Let (E1
G,E1

K ;ρ1)

and (E2
G,E2

K ;ρ2) be the split ˜SL(2,R)-homogeneous holomorphic Hermitian prin-
cipal G-bundles over H corresponding to h1 and h2, respectively (see Lemma 4.3).
Then (E1

G,E1
K ;ρ1) is isomorphic to (E2

G,E2
K ;ρ2) if and only if there is an ele-

ment g0 ∈ K such that

h2(t) = g0h1(t)g−1
0

for all t ∈ Hx0 .

Proof
We recall that Ei

G (resp., Ei
K) is the extension of structure group of the principal

R-bundle FR using hi (see (4.16)), where i = 1,2.
First, assume that there is an element g0 ∈ K such that

h2(t) = g0h1(t)g−1
0

for all t ∈ Hx0 . Consider the diffeomorphism

g̃0 : ˜SL(2,R) × G −→ ˜SL(2,R) × G

defined by (z, g) �−→ (z, g0g). This diffeomorphism g̃0 evidently descends to a
holomorphic map between the quotient spaces

(4.22) g̃′
0 : E1

G −→ E2
G.

This descended map g̃′
0 clearly takes E1

K to E2
K . Furthermore, g̃′

0 intertwines

the actions of ˜SL(2,R). (Note that this also follows immediately from Proposi-
tion 2.5.) Therefore, (E1

G,E1
K ;ρ1) is isomorphic to (E2

G,E2
K ;ρ2).

To prove the converse, let

(4.23) ζ : E1
G −→ E2

G

be a holomorphic map such that

• ζ(E1
K) = E2

K , and

• ζ intertwines the actions of ˜SL(2,R).

For i = 1,2, let

γi
x0

: Hx0 −→ Ad(Ei
G)x0
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be the homomorphism constructed as in (4.8) (see also Lemma 4.3). The iso-
morphism

ζ̃ : Ad(E1
G)x0 −→ Ad(E2

G)x0

induced by ζ in (4.23) clearly satisfies the identity

(4.24) γ2
x0

= ζ̃ ◦ γ1
x0

.

For i = 1,2, let

(4.25) zi ∈ (Ei
K)x0

be a point that satisfies the condition in Lemma 4.3 which says that the corre-
sponding isomorphism

(4.26) G −→ Ad(Ei
G)x0

(see (4.3)) takes the homomorphism hi to the homomorphism γi
x0

. Let g0 ∈ K

be the unique element such that

(4.27) ζ(z1) = z2g0,

where z1 and z2 are the points in (4.25).
Since the isomorphism in (4.26) takes γi

x0
to hi, using (4.24) it follows that

h2(t) = g0h1(t)g−1
0

for all t ∈ Hx0 , where g0 is the element in (4.27). This completes the proof of the
proposition. �

REMARK 4.7

We use the notation of Proposition 4.6. For i = 1,2, let ad(Ei
K) be the adjoint

vector bundle of Ei
K . So ad(Ei

K) is a quotient of ˜SL(2,R) × k, where k is the Lie

algebra of K. Note that two elements (z, k) and (z′, k′) of ˜SL(2,R) × k are
identified in ad(Ei

K) if and only if there is an element g0 ∈ Hx0 such that (z′, k′) =
(zg−1

0 ,Ad(hi(g0))(k)) (see (4.10)). Consider the isomorphism of Lie algebras

(4.28) k −→ ad(Ei
K)x0

which sends any k ∈ k to the element in ad(Ei
K)x0 defined by (e, k) ∈ ˜SL(2,R) × k,

where e is the identity element of ˜SL(2,R). Let

ĝ′
0 : ad(E1

K)x0 −→ ad(E2
K)x0

be the isomorphism constructed using g̃′
0 defined in (4.22). (Recall that g̃′

0(E
1
K) =

E2
K .) In terms of the identifications in (4.28), the above isomorphism ĝ′

0 coincides
with the automorphism Ad(g0) of k.

The set of all isomorphism classes of split ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G-bundles over H are contained in the set of all isomorphism
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classes of ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundles. In
the next section we construct a retraction map to this subset (see Remark 5.13).

5. Splitting of an invariant bundle

Let

(EG,EK ;ρ)

be an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle over H.

Consider the homomorphism γx0 constructed in (4.8). Since the action of ˜SL(2,R)
on EG preserves EK , the image of γx0 lies inside the subgroup Ad(EK)x0 ⊂
Ad(EG)x0 . Let

(5.1) dγx0 : R −→ ad(EK)x0

be the homomorphism of Lie algebras associated to γx0 ; here the Lie algebra
of Hx0 is identified with R using α̃ in (3.3). Also, note that the Lie algebra of
Ad(EK)x0 is ad(EK)x0 .

Let k denote the Lie algebra of the compact Lie group K.
We recall that ad(EK)x0 (resp., ad(EG)x0) is a quotient of (EK)x0 × k (resp.,

(EG)x0 × g). Two points of (z1, v1) and (z2, v2) of (EK)x0 × k (resp., (EG)x0 × g)
are identified in ad(EK)x0 (resp., ad(EG)x0) if and only if there is g ∈ K (resp.,
g ∈ G) such that (z2, v2) = (z1g

−1,Ad(g)(v1)) (see (4.10)). Let

(5.2) qK : (EK)x0 × k −→ ad(EK)x0

be the quotient map. Similarly, let

(5.3) qG : (EG)x0 × g −→ ad(EG)x0

be the quotient map.
Fix any point

(5.4) z0 ∈ (EK)x0 .

Let

(5.5) δz0 : k −→ ad(EK)x0

be the isomorphism of Lie algebras defined by v �−→ qK(z0, v), where qK is the
map in (5.2). Now, define

(5.6) � :=
(
(δz0)

−1 ◦ dγx0

)
(1) ∈ k,

where dγx0 and δz0 are defined in (5.1) and (5.5), respectively.

LEMMA 5.1

The conjugacy class of the element � in (5.6) is independent of the choice of the
element z0 in (5.4).

Take any element �′ ∈ k in the conjugacy class of �. Then there is some
z′ ∈ (EK)x0 such that if we replace z0 by z′ in the construction of �, then the
resulting element in (5.6) is �′.
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Proof
Take any g0 ∈ G. Let

δz : g −→ ad(EG)x0

be the isomorphism of Lie algebras defined by v �−→ qG(z0g0, v), where qG is the
map in (5.3) and z0 is the element in (5.4). Then

(5.7) δz = δz0 ◦ Ad(g0)

(Ad(g0) is the inner automorphism of g defined before; see (4.10)).
Now set

�z := (δz)−1
(
dγx0(1)

)
∈ g,

where dγx0 is defined in (5.1) and δz is defined above. From (5.7) we have

(5.8) �z = Ad(g−1
0 )(�).

This proves the first part of the lemma.
To prove the second part, take g0 ∈ K such that �′ = Ad(g−1

0 )(ϕ). Then
from (5.8) it follows that z′ = z0g0 satisfies the condition in the lemma. �

Fix an element

(5.9) k0 ∈ k

which lies in the conjugacy class, in the Lie algebra k, of the element � in (5.6).
From Lemma 5.1 we know that this conjugacy class depends only on (EG,EK ;ρ).
Let

(5.10) K0 ⊂ K

be the centralizer of the element k0 in (5.9) for the adjoint action of K on k. Let

(5.11) G0 ⊂ G

be the centralizer of k0 ∈ k ⊂ g for the adjoint action of G on g. This subgroup
G0 coincides with the complex Lie subgroup of G generated by the compact
subgroup K0 in (5.10).

Define

(5.12) SK :=
{
z ∈ (EK)x0

∣∣ qK(z, k0) = dγx0(1)
}

⊂ (EK)x0 ,

where dγx0 and qK are the maps in (5.1) and (5.2), respectively, and k0 is the
element in (5.9). Similarly, define

(5.13) SG :=
{
z ∈ (EG)x0

∣∣ qG(z, k0) = dγx0(1)
}

⊂ (EG)x0 ,

where qG is the map in (5.3).

PROPOSITION 5.2

Consider the action ρ of ˜SL(2,R) on EG. The ˜SL(2,R)-invariant subset

EK0 := ˜SL(2,R)(SK) ⊂ EK
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generated by SK in (5.12), equipped with the natural map EK0 −→ H, is a C∞-
principal K0-bundle over H, where K0 is the subgroup constructed in (5.10).
Furthermore, EK0 ∩ f −1(x0) = SK , where f is the projection of EG to H.

The ˜SL(2,R)-invariant subset

EG0 := ˜SL(2,R)(SG)

generated by SG in (5.13), equipped with the natural map EG0 −→ H, is a C∞-
principal G0-bundle over H, where G0 is the subgroup constructed in (5.11).
Furthermore, EG0 ∩ f −1(x0) = SG.

Proof
The actions of G and ˜SL(2,R) on EG commute, and the group ˜SL(2,R) acts
transitively on H. Therefore, to prove that EG0 (resp., EK0) is a C∞-principal
G0-bundle (resp., K0-bundle) over H, it suffices to show that the following four
statements are valid.

(1) The subset SG (resp., SK) is nonempty.
(2) The action of the isotropy subgroup Hx0 (see (3.1)) on (EG)x0 preserves

SG (resp., SK).
(3) The subset SG (resp., SK) is preserved by the action of G0 (resp., K0)

on (EG)x0 .
(4) The action of the group G0 (resp., K0) on SG (resp., SK) is transitive.
Since k0 lies in the conjugacy class, in k, of the element � in (5.6), the first

statement follows from the second part of Lemma 5.1. (Note that SK ⊂ SG.)
Take any z ∈ SK . Since qK(z, k0) = dγx0(1), from the construction of the

homomorphism γx0 (see (4.8)) it follows immediately that the orbit of z under the
action of the isotropy subgroup Hx0 is {z exp(tk0)}t∈R. The image of (z exp(tk0),
k0) ∈ (EK)x0 × k in ad(EK)x0 coincides with that of (z,Ad(exp(tk0))(k0)) (see
(4.10)). Since Ad(exp(tk0))(k0) = k0, we have

qK

(
z exp(tk0), k0

)
= qK(z, k0) = dγx0(1).

Hence z exp(tk0) ∈ SK for all t ∈ R. This proves the second statement.
From (5.7) it follows immediately that

• the subset SG (resp., SK) is preserved by the action of G0 (resp., K0) on
(EG)x0 , and

• the action of G0 (resp., K0) on SG (resp., SK) is transitive.

This completes the proof of the proposition. �

Consider G0 defined in (5.11) as the centralizer of k0. We note that an element
g ∈ G lies in G0 if and only if

g−1 exp(ck0)g = exp(ck0)

for each c ∈ C. Since k0 ∈ k, we know that k0 is semisimple. Therefore, from
the above characterization of the subgroup G0, we conclude that G0 is a Levi
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subgroup of some parabolic subgroup of G (see [DM, Proposition 1.22, p. 26]).
We recall the definition of a Levi subgroup. Let P be a parabolic subgroup of
G, and let Ru(P ) ⊂ P be the unipotent radical of P . So the quotient P/Ru(P )
is a connected reductive linear algebraic group defined over C. A Levi subgroup
of P is a closed connected subgroup L(P ) ⊂ P such that the composition

L(P ) ↪→ P −→ P/Ru(P )

is an isomorphism (see [Bor, Section 11.22, p. 158] and [Hu, Section 30.2, p. 184]).
Therefore, G0 is a connected reductive linear algebraic group defined over C.

Since K is a maximal compact subgroup of G, it follows that K0 = G0 ∩ K is
also a maximal compact subgroup of G0.

The action ρ of ˜SL(2,R) on EG preserves both EG0 and EK0 (see Proposi-
tion 5.2). The restriction of ρ to EG0 is denoted by ρ0.

Consider the triple

(5.14) (EG0 ,EK0 ;ρ0).

We show that EG0 admits a unique holomorphic structure such that this triple

becomes an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G0-bundle.

Consider the action ρ0 of ˜SL(2,R) on EK0 . Restricting it to the isotropy
subgroup Hx0 (see (3.1)), we get a homomorphism of groups

(5.15) h0 : Hx0 −→ Ad(EK0)x0 ,

where Ad(EK0) is the adjoint bundle of EK0 .
We note that the canonical inclusion of Ad(EK0)x0 in Ad(EG)x0 takes h0 to

the homomorphism γx0 constructed in (4.8).

LEMMA 5.3

The principal G0-bundle EG0 admits a unique holomorphic structure such that

the triple (EG0 ,EK0 ;ρ0) in (5.14) is an ˜SL(2,R)-homogeneous holomorphic Her-
mitian principal G0-bundle.

Proof
The existence of a holomorphic structure on EG0 such that the triple (EG0 ,EK0 ;

ρ0) is an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G0-bundle fol-
lows from the construction in Lemma 4.3. More precisely, in Lemma 4.3, set
G = G0 and K = K0. To construct the homomorphism χ in Lemma 4.3, fix a
point

z0 ∈ (EK0)x0 .

Let

γz0 : K0 −→ Ad(EK0)x0

be the isomorphism of groups which sends any g ∈ K0 to the image of (z0, g0)
in (EK0)x0 (see (4.1)). Now, if we set χ in Lemma 4.3 to be (γz0)

−1 ◦ h0, where
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h0 is the homomorphism in (5.15), then the ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G0-bundle given by Lemma 4.3 is isomorphic to the one in
(5.14).

To prove the uniqueness of the holomorphic structure on EG0 , first recall that
(EK0)x0 coincides with SK in (5.12) (see Proposition 5.2). From the construction
of SK , it follows immediately that Ad(EK0)x0 is the centralizer of dγx0(1) (see
(5.1)) for the adjoint action of the group Ad(EK)x0 on its Lie algebra ad(EK)x0 .
Consequently, the image of the homomorphism h0 in (5.15) lies inside the center
of Ad(EK0)x0 .

Therefore, the triple (EG0 ,EK0 ;ρ0) satisfy the condition in Proposition 4.2
(see also Remark 4.1). Hence from the first part of Proposition 4.2 we know
that EG0 admits at most one holomorphic structure such that (EG0 ,EK0 ;ρ0)

is an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G0-bundle. This
completes the proof of the lemma. �

Let (E′
G,E′

K ;ρ′) denote the ˜SL(2,R)-homogeneous holomorphic Hermitian prin-

cipal G-bundle obtained from the above ˜SL(2,R)-homogeneous holomorphic Her-
mitian principal G0-bundle (EG0 ,EK0 ;ρ0) using the inclusion of G0 in G. There-
fore,

(5.16) E′
G = EG0 ×G0 G

is the holomorphic principal G-bundle obtained by extending the structure group
of EG0 using the inclusion map G0 ↪→ G. Similarly, E′

K = EK0 ×K0 K is the C∞-
principal K-bundle obtained by extending the structure group of EK0 using the
inclusion map K0 ↪→ K. The action ρ′ is the one induced by ρ0.

LEMMA 5.4

The isomorphism class of the above ˜SL(2,R)-homogeneous holomorphic Hermit-
ian principal G-bundle (E′

G,E′
K ;ρ′) is independent of the choice of the element

k0 in (5.9).

Proof
Take any g0 ∈ K. Replace k0 in (5.9) by Ad(g−1

0 )(k0), where Ad(g−1
0 ) is the Lie

algebra automorphism k −→ k associated to the inner automorphism

Ad(g−1
0 ) : K −→ K

defined by g �−→ g−1
0 gg0. The centralizer K0 in (5.10) gets replaced by

(5.17) K ′
0 := Ad(g−1

0 )(K0) ⊂ K,

where Ad(g−1
0 ) is defined above. Similarly, the centralizer G0 in (5.11) gets

replaced by

(5.18) G′
0 := Ad(g−1

0 )(G0) ⊂ G.

(Here Ad(g−1
0 ) is the inner automorphism of G defined by g−1

0 .)
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Let S ′
K (resp., S ′

G) be the submanifold of (EK)x0 (resp., (EG)x0) constructed
as in (5.12) (resp., (5.13)) after replacing k0 by Ad(g−1

0 )(k0). From the quotient
construction of the adjoint vector bundle (see (4.10)), it follows that

(5.19) S ′
K = SKg0 and S ′

G = SGg0 ⊂ (EG)x0 .

Let EK′
0

(resp., EG′
0
) be the principal K ′

0-bundle (resp., principal G′
0-bundle)

obtained in place of EK0 (resp., EG0) after we replace k0 by Ad(g−1
0 )(k0) (see

Proposition 5.2). From (5.19) it follows immediately that

(5.20) EK′
0
= EK0g0 and EG′

0
= EG0g0 ⊂ EG.

Consider the subgroup G′
0 in (5.18). Let

(5.21) A : G0 −→ G′
0

be the isomorphism defined by g �−→ Ad(g−1
0 )(g) := g−1

0 gg0. The restriction of A

to K0 is denoted by A|K0 . Let

(5.22) B : SG −→ S ′
G

be the C∞-map defined by z �−→ zg0.
Note that

B(zg) = B(z)A(g)

for all z ∈ SG and all g ∈ G0, where A and B are constructed in (5.21) and
(5.22), respectively. Also, the map B intertwines the actions of Hx0 on SG and

S ′
G because the actions of ˜SL(2,R) and G on EG commute. Therefore, using

the actions of ˜SL(2,R) on EG0 and EG′
0
, the map B extends to an ˜SL(2,R)-

equivariant isomorphism

(5.23) B̃ : EG0 −→ EG′
0

of principal bundles with respect to the homomorphism A in (5.21). In other
words,

B̃(zg) = B̃(z)A(g)

for all z ∈ EG0 and all g ∈ G0. Now from the first part of Proposition 4.2 (which
asserts uniqueness of the holomorphic structure), it follows immediately that the
map B̃ in (5.23) is holomorphic.

Let

(5.24) ẼG = EG′
0

×G′
0 G

be the principal G-bundle obtained by extending the structure group of the
principal G′

0-bundle EG′
0

in (5.20) using the inclusion of G′
0 in G.

Consider the map

EG0 × G −→ EG′
0

× G
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defined by (z, g) �−→ (zg0, g
−1
0 g). It is straightforward to check that this map

descends to a map between the quotient spaces

(5.25) Ψ : E′
G −→ ẼG,

where ẼG is defined in (5.24) and E′
G is defined in (5.16). This map Ψ intertwines

the actions of G as well as those of ˜SL(2,R). Furthermore, from the holomor-
phicity of the map B̃ in (5.23), it follows immediately that the map Ψ is also
holomorphic.

The map B̃ in (5.23) clearly sends EK0 to EK′
0
. Hence the map Ψ in

(5.25) sends E′
K ⊂ E′

G to EK′
0

×K′
0 K; here EK′

0
×K′

0 K is the principal K-
bundle obtained by extending the structure group of the principal K ′

0-bundle
EK′

0
in (5.20) using the inclusion of K ′

0 in K. Thus the isomorphism class of the
˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle (E′

G,E′
K ;ρ′)

coincides with that of the holomorphic Hermitian principal G-bundle given by the
pair (ẼG,EK′

0
×K′

0 K) equipped with the action of ˜SL(2,R). This completes the
proof of the lemma. �

The element k0 in (5.9) was the only choice made in the construction of (E′
G,E′

K ;
ρ′) from (EG,EK ;ρ). Therefore, Lemma 5.4 has the following corollary.

COROLLARY 5.5

The isomorphism class of the ˜SL(2,R)-homogeneous holomorphic Hermitian prin-
cipal G-bundle (E′

G,E′
K ;ρ′) over H depends only on the isomorphism class of the

˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle (EG,EK ;ρ).

The following corollary shows that there a canonical C∞-isomorphism of E′
G

with EG.

COROLLARY 5.6

There is a canonical C∞-isomorphism of the principal G-bundle EG with the
principal G-bundle E′

G constructed in (5.16). This isomorphism takes EK ⊂ EG

to the reduction E′
K ⊂ E′

G. Also, it intertwines the actions of ˜SL(2,R) on EG

and E′
G.

Proof
Consider E′

G = EG0 ×G0 G constructed in (5.16). Note that EG0 ⊂ EG (see
Proposition 5.2). Therefore, we have a map

(5.26) EG0 × G −→ EG

defined by the action of G (see (2.6)).
Two points (z1, g1) and (z2, g2) of EG0 × G are identified in the quotient space

E′
G if and only if there is an element g ∈ G0 such that (z2, g2) = (z1g, g−1g1).
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Hence the map in (5.26) descends to a G-equivariant C∞-isomorphism

(5.27) τ ′ : E′
G −→ EG

from the quotient space E′
G of EG0 × G. This map τ ′ clearly takes the subman-

ifold

EK ⊂ EG

to E′
K ⊂ E′

G. It is straightforward to check that τ ′ intertwines the actions ρ and ρ′

of ˜SL(2,R) on EG and E′
G, respectively. �

REMARK 5.7

It should be emphasized that the isomorphism τ ′ in (5.27) need not be holomor-
phic. The isomorphism τ ′ has the following property.

Consider ẼG constructed in (5.24). Let

τ̃ : ẼG −→ EG

be the C∞-isomorphism of principal G-bundles constructed as in (5.27). So τ̃ is
obtained from the map EG′

0
× G −→ EG defined by the action of G (see (5.26)).

It is easy to see that

(5.28) τ̃ ◦ Ψ = τ ′,

where Ψ is the holomorphic isomorphism in (5.25).

Examining the construction of (E′
G,E′

K ;ρ′) from (EG,EK ;ρ) in Corollary 5.5,

it can be seen that (E′
G,E′

K ;ρ′) is a split ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G-bundle (see Definition 4.4). Indeed, as noted in the proof

of Lemma 5.3, if we set χ in Lemma 4.3 to be (γz0)
−1 ◦ h0, then the ˜SL(2,R)-

homogeneous holomorphic Hermitian principal G0-bundle given by Lemma 4.3
is isomorphic to the one in (5.14). Therefore, we have the following corollary.

COROLLARY 5.8

The ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle (E′
G,E′

K ;
ρ′) in Corollary 5.5 is split.

We see in Proposition 5.11 that the construction in Corollary 5.5 sends a split
˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle to itself.

Take any point x ∈ H. Let

(5.29) Hx ⊂ ˜SL(2,R)

be the isotropy subgroup of x for the action of ˜SL(2,R) on H defined by φ in
(2.3). In view of the fact that Hx0 is abelian, the isomorphism α̃ in (3.3) also

gives an isomorphism of Hx with R. To explain this, take any g ∈ ˜SL(2,R) such
that φ(g)(x0) = x. We now have an isomorphism

(5.30) Hx0 −→ Hx
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defined by x �−→ gxg−1. Since Hx0 is abelian, the isomorphism in (5.30) is inde-
pendent of the choice of g. Therefore, we have a natural isomorphism

(5.31) Hx
∼−→ R.

Let

(EG,EK ;ρ)

be an ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle over H.
Consider the action, given by ρ, of the isotropy subgroup Hx on the fiber (EG)x.

Since actions of G and ˜SL(2,R) on EG commute, we obtain a homomorphism

(5.32) γx : Hx = R −→ Ad(EG)x

(see (4.8)). Let

(5.33) dγx : R −→ ad(EG)x

be the corresponding homomorphism of Lie algebras (as in (5.1)), where Lie(Hx)
is identified with R using the isomorphism in (5.31).

Let

(5.34) Θρ : H −→ ad(EG)

be the C∞-section of the adjoint vector bundle defined by

x �−→ dγx(1),

where dγx is the homomorphism in (5.33).
Let f : EG −→ H be the natural projection (as in (2.5)). Recall that ad(EG)f(z)

is a quotient space of (EG)f(z) × g (see (4.10)).

PROPOSITION 5.9

The submanifold EG0 ⊂ EG constructed in Proposition 5.2 coincides with the
subset of EG consisting of all points z such that the point in ad(EG)f(z) defined
by (z, k0) coincides with Θρ(f(z)), where Θρ and k0 are defined in (5.34) and
(5.9), respectively.

Proof
The action ρ of ˜SL(2,R) on EG induces an action of ˜SL(2,R) on the vector bundle

ad(EG) lifting the action of ˜SL(2,R) on H. From the construction of the section
Θρ in (5.34), it follows immediately that Θρ is left invariant by the action of

˜SL(2,R) on ad(EG).
Let

(5.35) S ⊂ EG

be the subset consisting of all points z such that the point in ad(EG)f(z) defined
by (z, k0) coincides with Θρ(f(z)). Since the section Θρ is left invariant by the

action of ˜SL(2,R) on ad(EG), it follows immediately that the subset S is also left



356 Indranil Biswas

invariant by the action of ˜SL(2,R) on EG. Therefore, to prove that S coincides
with EG0 it suffices to show that

(5.36) (EG0)x0 = S ∩ f −1(x0),

where x0 is the base point in (3.1).
In Proposition 5.2 we saw that (EG0)x0 = SG. Comparing the constructions

of SG and Θρ, it follows immediately that (5.36) holds. This completes the proof
of the proposition. �

The following lemma is deduced from Proposition 5.9.

LEMMA 5.10

If the section Θρ in (5.34) is holomorphic, then the map τ ′ in (5.27) is holomor-
phic.

Proof
If Θρ is holomorphic, then using Proposition 5.9 it follows that the reduction

EG0 ⊂ EG

constructed in Proposition 5.2 is a complex submanifold. Consequently, the map
τ ′ is holomorphic if the section Θρ is holomorphic. �

PROPOSITION 5.11

Let (EG,EK ;ρ) be a split ˜SL(2,R)-homogeneous holomorphic Hermitian princi-

pal G-bundle over H. Then the ˜SL(2,R)-homogeneous holomorphic Hermitian
principal G-bundle (E′

G,E′
K ;ρ′) associated to (EG,EK ;ρ) (see Corollary 5.5) is

isomorphic to it.

Proof
Fix a homomorphism

(5.37) χ : Hx0 = R −→ K

such that the corresponding ˜SL(2,R)-homogeneous holomorphic Hermitian prin-
cipal G-bundle (Eχ

G,Eχ
K ;ρ′) (see Lemma 4.3) is isomorphic to (EG,EK ;ρ). We

interchange (Eχ
G,Eχ

K ;ρ′) and (EG,EK ;ρ) without any further explanation.
Let

(5.38) dχ : R −→ k

be the homomorphism of Lie algebras corresponding to χ.
The principal G-bundle Eχ

G is the extension of structure group of the prin-
cipal R-bundle FR (defined in (3.5)) using the homomorphism χ in (5.37) (see
(4.16)). Hence we have a homomorphism of Lie algebra bundles

(5.39) Φ : ad(FR) −→ ad(Eχ
G).
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More precisely, the map FR × R −→ FR × g defined by (z, v) �−→ (z, dχ(v)), where
dχ is defined in (5.38), descends to a map Φ between the quotient spaces.

Recall that the adjoint vector bundle ad(FR) is the trivial line bundle H × R

(see (3.7)). Let

(5.40) θ0 : H −→ ad(FR)

be the section given by the constant function 1. Let

(5.41) Θ′ := Φ ◦ θ0 ∈ C∞(
H; ad(Eχ

G)
)

be the smooth section, where Φ is the homomorphism of vector bundles in (5.39).
We show that the section Θ′ in (5.41) coincides with Θρ constructed in (5.34).
To prove that Θ′ = Θρ, first note that both the sections are left invariant by

the action of ˜SL(2,R) on ad(Eχ
G). Hence it suffices to show that they coincide

at x0. It is straightforward to check that they do coincide at x0. Therefore, we
have Θ′ = Θρ.

A connection on a principal bundle induces a connection on its adjoint bun-
dle. Since R is abelian, the connection on ad(FR) induced by a connection on FR

coincides with the trivial connection associated to the trivialization of ad(FR) in
(3.7). In particular, the section θ0 in (5.40) is flat with respect to the connection
on ad(FR) induced by the connection ∇0

R on FR defined by the one-form ω0 in
(3.6).

Since θ0 is flat, we know that the section Θ′ in (5.41) is flat with respect to the
connection on ad(Eχ

G) induced by the connection ∇G in (4.17). We recall that the
holomorphic structure of Eχ

G is defined using the connection ∇G. Consequently,
the section Θ′ is holomorphic.

We now conclude that the section Θρ is holomorphic because Θ′ = Θρ and
Θ′ is holomorphic. This in turn implies that the subset S ⊂ EG constructed in
(5.35) is a complex submanifold. (It is a C∞-submanifold by Proposition 5.9.)
Now, using Proposition 5.9, we conclude that the reduction

EG0 ⊂ EG

constructed in Proposition 5.2 is a complex submanifold. Consequently, the C∞-
isomorphism τ ′ constructed in (5.27) is actually holomorphic.

From Lemma 5.3 we know that there is a unique holomorphic structure
on the C∞-principal G-bundle EG0 which makes the triple (EG0 ,EK0 ;ρ0) an

˜SL(2,R)-homogeneous holomorphic Hermitian principal G0-bundle. On the other
hand, the holomorphic structure on the C∞-principal G0-bundle EG0 induced
by the holomorphic structure on EG (we have shown above that EG0 is a complex

submanifold of EG) makes the triple (EG0 ,EK0 ;ρ0) an ˜SL(2,R)-homogeneous
holomorphic Hermitian principal G0-bundle. Therefore, the map τ ′ constructed
in (5.27) is an isomorphism of the ˜SL(2,R)-homogeneous holomorphic Hermit-

ian principal G-bundle (EG,EK ;ρ) with the ˜SL(2,R)-homogeneous holomorphic
Hermitian principal G-bundle (E′

G,E′
K ;ρ′) associated to (EG,EK ;ρ) by Corol-

lary 5.5. This completes the proof of the proposition. �
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The proof of Proposition 5.11 yields the following corollary.

COROLLARY 5.12

Let (EG,EK ;ρ) be any ˜SL(2,R)-homogeneous holomorphic Hermitian principal

G-bundle over H. Let (E′
G,E′

K ;ρ′) be the split ˜SL(2,R)-homogeneous holomor-
phic Hermitian principal G-bundle associated to it. Let

τ̃ ′ : ad(EG) −→ ad(E′
G)

be the C∞-isomorphism of adjoint vector bundles obtained from the C∞-isomor-
phism (τ ′)−1 in (5.27). Then the section

τ̃ ′(Θρ) ∈ C∞(
H; ad(E′

G)
)

is holomorphic, where Θρ is the section constructed in (5.34).

Proof
Note that the section Θρ in (5.34) depends only on the action of ˜SL(2,R)
on the C∞-principal G-bundle EG. Therefore, if we replace (EG,EK ;ρ) with
(E′

G,E′
K ;ρ′) in the construction of Θρ in (5.34), then the resulting section of

ad(E′
G) coincides with the section τ̃ ′(Θρ).

Now, set (Eχ
G,Eχ

K) in the proof of Proposition 5.11 to be the ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundle (E′

G,E′
K ;ρ′). In the

proof of Proposition 5.11 we saw that the section Θρ for (Eχ
G,Eχ

K) is holomor-
phic. This completes the proof of the corollary. �

REMARK 5.13

Combining Corollary 5.8 and Proposition 5.11, we obtain a retraction map from
the set of all isomorphism classes of ˜SL(2,R)-homogeneous holomorphic Her-
mitian principal G-bundle over H to the set of all isomorphism classes of split

˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundles over H.

We also have the following characterization of an ˜SL(2,R)-homogeneous holo-
morphic Hermitian principal G-bundle.

LEMMA 5.14

Let (EG,EK ;ρ) be any ˜SL(2,R)-homogeneous holomorphic Hermitian principal
G-bundle over H. Then (EG,EK ;ρ) is split if and only if the section Θρ con-
structed in (5.34) is holomorphic.

Proof
Assume that (EG,EK ;ρ) is split. In the proof of Proposition 5.11 we showed
that Θρ is holomorphic.
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Now, assume that Θρ is holomorphic. Then in Proposition 5.11 it was shown

that the map τ ′ in (5.27) is an isomorphism of the ˜SL(2,R)-homogeneous holo-
morphic Hermitian principal G-bundle (EG,EK ;ρ) with the one associated to

it by Corollary 5.5. From Corollary 5.8 we know that the associated ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundle is split. This completes
the proof of the lemma. �

6. Classification of invariant holomorphic Hermitian principal bundles

Take any ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle

(EG,EK ;ρ)

over H. Consider the ˜SL(2,R)-homogeneous holomorphic Hermitian principal
G-bundle (E′

G,E′
K ;ρ′) on H constructed from (EG,EK ;ρ) (see Corollary 5.5).

There is a canonical C∞-isomorphism of the principal G-bundle EG with E′
G

(see Corollary 5.6). Let ∂EG
(resp., ∂E′

G
) denote the Dolbeault operator defining

the holomorphic structure of EG (resp., E′
G). Holomorphic structures on the C∞-

principal G-bundle EG form an affine space for the vector space of all smooth
(0,1)-forms on H with values in the adjoint bundle ad(EG). Therefore,

(6.1) η := ∂EG
− ∂E′

G
∈ C∞(

H;Ω0,1
H ; (ad(EG))

)
.

The Dolbeault operator ∂E′
G

is considered as a Dolbeault operator on EG using
the C∞-isomorphism τ ′ in (5.27).

Let ∂
0

EG
denote the Dolbeault operator on the adjoint vector bundle ad(EG).

So ∂
0

EG
is induced by the Dolbeault operator ∂EG

in (6.1). Consider the smooth
section Θρ of ad(EG) constructed in (5.34). We have

(6.2) ∂
0

EG
(Θρ) ∈ C∞(

H;Ω0,1
H (ad(EG))

)
.

LEMMA 6.1

The identity

∂
0

EG
(Θρ) = 2

√
−1 · η

holds, where η and ∂
0

EG
(Θρ) are constructed in (6.1) and (6.2), respectively.

Proof
Let ∂

0

E′
G

denote the Dolbeault operator on the adjoint vector bundle ad(E′
G) =

E′
G ×G g of the holomorphic principal G-bundle E′

G. So ∂
0

E′
G

is induced by the
Dolbeault operator ∂E′

G
in (6.1). We know that Θρ is holomorphic with respect

to ∂
0

E′
G

(see Corollary 5.12). Therefore,

(6.3) ∂
0

EG
(Θρ) = ∂

0

E′
G
(Θρ) + [η,Θρ] = [η,Θρ],



360 Indranil Biswas

where η is constructed in (6.1). There is a unique smooth section

A : H −→ ad(EG)

such that

(6.4) η = A ⊗ dz.

We note that [η,Θρ] = [A,Θρ] ⊗ dz. Therefore, from (6.3) we have

(6.5) ∂
0

EG
(Θρ) = [A,Θρ] ⊗ dz.

Since the holomorphic structures of both EG and E′
G are preserved by the

actions ρ and ρ′ of ˜SL(2,R), and since the isomorphism between EG and E′
G

intertwines the actions of ˜SL(2,R) (see Corollary 5.6), we know that the section

η is left invariant by the action of ˜SL(2,R) on the vector bundle Ω0,1
H (ad(EG)).

Consider the action of the isotropy subgroup Hx0 = R on the cotangent line
(T 0,1

x0
)∗. (As before, Hx0 is identified with R using α̃ in (3.3).) Any t ∈ R acts on

(T 0,1
x0

)∗ as multiplication by exp(2
√

−1t). It can now be shown that the action
of t ∈ R = Hx0 on ad(EG)x0 sends the vector

A(x0) ∈ ad(EG)x0

(see (6.4)) to exp(−2
√

−1t)A(x0). Indeed, this follows immediately using the
fact that the action of Hx0 on the fiber Ω0,1

H (ad(EG))x0 fixes η(x0).
Since the action of t ∈ R = Hx0 on ad(EG)x0 sends A(x0) to exp(−2

√
−1t) ×

A(x0), from the construction of Θρ in (5.34) we conclude that

[Θρ(x0),A(x0)] = −2
√

−1 · A(x0).

Hence from (6.5) we have

(6.6)
(
∂

0

EG
(Θρ)

)
(x0) = 2

√
−1 · A(x0) ⊗ dz = 2

√
−1 · η(x0).

We already noted that the section η is left invariant by the action of ˜SL(2,R)

on Ω0,1
H (ad(EG)). On the other hand, the action of ˜SL(2,R) on the vector bundle

ad(EG) preserves the section Θρ. Hence the section ∂
0

EG
(Θρ) is also preserved

by the action of ˜SL(2,R) on Ω0,1
H (ad(EG)). Therefore, from (6.6) we conclude

that

∂
0

EG
(Θρ) = 2

√
−1 · η.

This completes the proof of the lemma. �

Consider all pairs of the form (χ,A), where

• χ : Hx0 = R −→ K is a homomorphism and
• A is an element of the Lie algebra g of G such that [A,dχ(1)] = 2

√
−1 · A,

where

dχ : R −→ k

is the homomorphism of Lie algebras associated to the homomorphism χ.
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DEFINITION 6.2

Two pairs (χ,A) and (χ′,A′) of the above type are called equivalent if there is
an element g0 ∈ K such that

• χ′(t) = g0χ(t)g−1
0 for all t ∈ R and

• A′ = Ad(g0)(A), where Ad(g0) is the automorphism of g associated to the
inner automorphism of G defined by g �−→ g0gg−1

0 .

The following theorem classifies the isomorphism classes of ˜SL(2,R)-homogeneous
holomorphic Hermitian principal G-bundles.

THEOREM 6.3

There is a canonical bijection between the isomorphism classes of all ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundles over H and the equiv-
alence classes of all pairs of the form (χ,A) (see Definition 6.2).

Proof
Let (EG,EK ;ρ) be an ˜SL(2,R)-homogeneous holomorphic Hermitian principal
G-bundle over H. The Dolbeault operator defining the holomorphic structure of
EG is denoted by ∂EG

.
Consider the C∞-section Θρ of the adjoint vector bundle ad(EG) constructed

in (5.34). Let ∂
′
be the new Dolbeault operator on the C∞-principal G-bundle

EG defined as

∂
′
:= ∂EG

− ∂EG
(Θρ)

2
√

−1
.

Let E′
G denote the holomorphic principal G-bundle defined by this Dolbeault

operator ∂
′
on the C∞-principal G-bundle EG. From Lemma 6.1 we know that

the triple (E′
G,EK ;ρ) defines a split ˜SL(2,R)-homogeneous holomorphic Hermit-

ian principal G-bundle, which is associated to (EG,EK ;ρ) by Corollary 5.5.
Fix a homomorphism

χ : Hx0 = R −→ K

which gives the above-defined split ˜SL(2,R)-homogeneous holomorphic Hermit-
ian principal G-bundle (E′

G,EK ;ρ). Fix an identification of (E′
G,EK ;ρ) with the

split ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle (Eχ
G,Eχ

K ;
ρ′) given by χ (see Lemma 4.3). Recall that

Eχ
G = ˜SL(2,R) ×R G

(see (4.16)). Therefore,

(6.7) ad(Eχ
K) = ˜SL(2,R) ×R k.

Note that the C∞-vector bundle ad(EG) is identified with ad(E′
G) because

the C∞-principal G-bundles underlying EG and E′
G coincide. Therefore, using
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the above identification of E′
G with Eχ

G, the section ∂EG
(Θρ) of Ω0,1

H (ad(EG))
gives a C∞-section of Ω0,1

H (ad(Eχ
G)). This section of Ω0,1

H (ad(Eχ
G)) is denoted

by Θ̃χ
ρ . Let

A′ ∈ ad(Eχ
G)x0

be the unique element that satisfies the identity

Θ̃χ
ρ (x0) = A′ ⊗ dz.

Now, let

A ∈ g

be the unique element such that (e,A) ∈ ˜SL(2,R) × g projects to A′ by the
quotient map (see (6.7)). Using Lemma 6.1 together with (6.5), we know that
[A,dχ(1)] = 2

√
−1 · A. In other words, the above pair (χ,A) is of the type con-

sidered in Definition 6.2.
In view of Remark 4.7, from Proposition 4.6 it follows immediately that the

equivalence class of the pair (χ,A) is uniquely determined by the isomorphism

class of the ˜SL(2,R)-homogeneous holomorphic Hermitian principal G-bundle
(EG,EK ;ρ).

For the reverse direction, take any pair (χ,A) as in Definition 6.2. Let

(Eχ
G,Eχ

K ;ρ′) be the split ˜SL(2,R)-homogeneous holomorphic Hermitian principal
G-bundle over H associated to χ (see Lemma 4.3). The action of the isotropy

subgroup Hx0 ⊂ ˜SL(2,R) on the fiber Ω0,1
H (ad(Eχ

G))x0 clearly fixes the element
defined by A ⊗ dz. Hence the orbit of this element A ⊗ dz ∈ Ω0,1

H (ad(Eχ
G)) by the

action of ˜SL(2,R) is a C∞-section, over H, of the vector bundle Ω0,1
H (ad(Eχ

G)).
Let

(6.8) Ã ∈ C∞(
H;Ω0,1

H (ad(Eχ
G))

)
be the section defined by this orbit.

Let ∂Eχ
G

be the Dolbeault operator of the holomorphic principal G-bundle
Eχ

G. Let EG be the holomorphic principal G-bundle over H defined by the
Dolbeault operator ∂Eχ

G
+ Ã on the C∞-principal G-bundle Eχ

G, where Ã is

constructed in (6.8). The reverse construction associates to (χ,A) the ˜SL(2,R)-
homogeneous holomorphic Hermitian principal G-bundle (EG,Eχ

K ;ρ′). This com-
pletes the proof of the theorem. �

In view of Proposition 2.5, from Theorem 6.3 we have the following classifica-
tion of the holomorphic isometry classes of the invariant holomorphic Hermitian
principal G-bundles over H.

THEOREM 6.4

There is a canonical bijection between the holomorphic isometry classes of all the
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invariant holomorphic Hermitian principal G-bundles over H and all the equiva-
lence classes of pairs of the form (χ,A), where χ : R −→ K is a homomorphism,
and A is an element of the Lie algebra g of G such that [A,dχ(1)] = 2

√
−1 · A

(see Definition 6.2).
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