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adopt other approaches as heuristics or as richer rep-
resentations of the issues involved. It seems that
Spiegelhalter’s approach has been similar.

Secondly, one could validate an expert system by
its comparison with expert performance. One can ask
whether the diagnosis achieved by Spiegelhalter’s sys-
tem was better or worse than that achieved by com-
petent diagnosticians. There is of course a debate over
whether an expert system should be appraised in this
way. Is the goal to reproduce the abilities of an expert,
or to improve on the abilities of available human
judges? If it is the former, then indeed it is sensible to
compare performance with experts, but in this case
one wonders why one should not use the experts
themselves. This could be answered by observing that
very often experts are in short supply. If, on the other
hand, our goal is to improve on human inference
behavior, then the criterion of conformity with some
expert performance is not appropriate. A final meas-
ure of the appropriatness of an expert system is user
satisfaction. To what extent do the people who inter-
act with the expert system feel that the system is of
use to them? In Spiegelhalter’s case there are two
kinds of people involved, namely the patients and the
doctors. As Spiegelhalter observes, it is very important
that the doctors are supportive of the endeavor and
that they do not feel that their professional compe-
tence is in any way being threatened. It is perhaps
more important, however, that the patients feel that
they are being properly attended to. Spiegelhalter
seems to have achieved success on both fronts.

4. SUMMARY

Although the purpose of the conference was to dis-
cuss the use of the different theories for the represen-
tation of uncertainty in expert systems, the principal
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speakers, perhaps wisely, devoted their discussion
mainly to arguing the cases for the use of their differ-
ent theories in general. On the basis of the discussions
we had at this conference, it seems to me that one can
summarize as follows. Probability theory has a strong
intellectual support and in principle there is no reason
why one should not be satisfied with this theory. Its
use does, however, lead to enormous problems of com-
plexity, and as a matter of practice it is necessary to
seek for approximations. Fuzzy set theory can be
viewed as a heuristic for handling those situations
where imprecise inputs and imprecise inferences are
required without the need to resort to the greater
complexity of probability theory. Belief function
theory can be thought of as a way of representing
inferences from evidence within the probabilistic
framework.

There are yet other alternative approaches to han-
dling uncertain inferences which were not mentioned
at the conference, and notable among these is the
nonmonotonic logic of Doyle. Recently Cohen (Cohen,
Watson and Barrett, 1985) has suggested a combina-
tion of Doyle’s theory with both Shafer’s and
Zadeh’s which he has referred to as the nonmono-
tonic probabilist. This seems an exciting possibility
for approaching the problem at the heart of this
conference.
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belief function analysis (Kong, 1986; Dempster and
Kong, 1986) is complementary to that of Shafer and
Spiegelhalter. We all seek to provide tools for real
applications, based on carefully constructed analyses
expressed through mathematically well-articulated
principles of uncertain reasoning.

Lindley is on a different track. He rehearses familiar
normative arguments for the Bayesian paradigm, evi-
dently seeking to persuade less committed colleagues
to abandon their fallacious ways. Unfortunately,
he shows no interest in understanding how his
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competitors really think, and hence, does not address
the issues on which, in our opinion, credible contem-
porary debate should focus. As illustrated by Shafer’s
hypothetical “ploxoma” example, his “challenge” is
unconvincing, for he casts himself first in the role of
challenger, then of umpire, and finally reverts to chal-
lenger, proclaiming himself well satisfied with the
result.

Lindley oversimplifies by identifying Bayes with the
use of probability. In fact, numerical probabilities
which are both syntactically and semantically very
close to Lindley’s probabilities are essential to three
alternative approaches (“classical statistics,” “upper
and lower probabilities,” and “belief functions”) which
he criticizes. But surely it is first necessary to under-
stand the various styles of reasoning with probability
implied by each of these systems, before either choos-
ing among them or judging which circumstances are
appropriate for each. In our view, moreover, the belief
function system is very close to Bayes, and indeed
includes Bayesian models as special cases, so it is not
easily rejected in favor of Bayes except by.arguments
whose artificiality is painfully obvious from the belief
function standpoint.

We make no attempt here to defend classical statis-
tics, upper and lower probability systems, or fuzzy
logic, where the last seems fundamentally different
from the others, but we can accept that each may have
an appropriate place in valid and useful formal anal-
yses. Instead, we comment briefly on the flexibility
which belief function theory adds to Bayesian theory
in its ability to incorporate evidence. Then we discuss
at greater length the connection between belief func-
tions and decision theory.

Lindley repeats verbatim his discussion of the
Shafer (1982) “ploxoma” example, as he says, to pro-
voke further discussion. As matters stand, Shafer has
not modified his original representation, which con-
tains three belief function components: (a) a range .05
to .15 to describe the prior probability of “virulent
ploxoma,” (b) a vacuous belief function to describe the
inability of the “ordinary ploxoma” experiment to
distinguish between x, and x;, and_(c) a 25% discount-

"ing applied to the experimental data about ordinary
ploxoma. Evidently, these features were introduced to
illustrate the flexible forms of uncertainty represen-
tation encompassed by the belief function paradigm.
Lindley’s response is to suggest converting Shafer’s
analysis to Bayesian form by altering (a) to a single
prior probability .1, (b) to the indifference prior
assigning .5 to each of x, and x; given that one or
the other has occurred, and (¢) to £(v, | 8,) = B, where
(v1, 72, vs) refers to valid chances of (xi, x2, x3)
given ordinary ploxoma for the new patient George,
although (8,, B., B:) refers to the questionable
experimental results. '

So far, neither side has explicitly addressed their
differences over (a) or (b). But Lindley does now
respond to the Shafer (1982) rebuttal of his altered
(c), by allowing that we might have “no confidence at
all” in the ordinary ploxoma study, in which case
“E(y|B) would not depend on B.” That is, 100%
discounting means that the Bayesian constructs E(vy;)
from wherever Bayesians construct such priors, thus
implicitly introducing other sources of information
processed together in the Bayesian’s head to produce
the prior. Presumably, if the Bayesian were, more
realistically, to adopt less drastic discounting, the
same prior about (vy;, vz, v3) would still be assessed
and combined with information from the data via
another assessed prior f(y | 3). Thus, Bayesian analy-
sis is not at all simple in execution, if one takes it
seriously.

Belief function methodology does introduce more
complexity into the class of available representations
of uncertainty, although not typically into the task of
assessing specific representations. Lindley criticizes
the mathematical generalization as lacking “neces-
sity” in the sense of William of Ockham. The impor-
tant question is whether the added flexibility is
necessary in practice to permit satisfactory represen-
tation of an analyst’s state of uncertainty about the
real world. We believe that it is literally impossible to
answer the question outside the context of real ex-
amples based on attempts to construct formal repre-
sentations of uncertainty reflecting actual uncertain
knowledge of the real world. Because their example is
purely hypothetical, neither Shafer nor Lindley is able
to discuss in any specific way the construction of their
specific models.

Important points about Lindley’s “challenge” are,
first, that a meaningful test must deal with real ex-
amples, and, second, that the umpire must rely on
some assessment of help given to third party clients.
Bayesian decision analysis has been out in the field
for about 30 years, and in our (subjective) assessment
has achieved only limited penetration into what might
seem to be its natural markets. If this failure to
penetrate were simply due to ignorance of the tech-
niques on the part of practitioners, then Lindley’s
proselytizing might have a point. A more plausible
explanation is that practical construction of realistic
Bayesian models is typically very difficult. Because
belief function analysis does not pretend to the vague
and difficult goal of integrating all evidence available
to the analyst, but instead attempts only to represent
explicit and limited packets of independent evidence,
the process of constructing belief function models is
inherently simpler, and on this score belief function
methods have excellent prospects for success in prac-
tice. Of course, computational difficulties are another
matter, and here the tradeoffs are less clear, because
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computationally neither approach has advanced be-
yond its infancy. All in all, there would seem to be
sound practical reasons for seeking to relax Bayesian
constraints to obtain more flexible, explicit, and real-
istic representations of uncertainty.

Since the 1950s, both Bayesian and frequentist de-
cision theorists have agreed that Bayesian expected
loss is the appropriate numerical criterion for com-
paring possible acts. Such a Bayesian analysis intro-
duces a precise ordering among acts, in the sense that
the set of all acts is partitioned into subsets where the
analyst is indifferent within a subset but has a com-
plete preference order between subsets. Since general
belief functions replace expected loss by upper and
lower expected losses, moving to a belief function
framework implies a tradeoff. On one hand the analyst
simplifies inputs to specific sources of evidence, while
paying on the other hand by having only partial
orderings among acts. The partial orderings arise
because the single numerical Bayesian expectation is
replaced by numerical upper and lower expectations.

Lindley evidently does not wish to allow partial
ordering, but do the standard normative arguments
which he presents really prohibit it? For example, the
scoring rule argument posits an artificial decision
problem, where the acts are possible choices of a
numerical measure of uncertainty about some un-
known binary state, and the losses are heuristic qual-
ity assessments of the numerical measure of uncer-
tainty. The conclusion for this decision problem, as
for decision problems generally, is that Bayesian de-
cision rules are the only admissible decision rules.
More precisely, the conclusion is that, if there is a rule
that selects a single act from the available set of acts,
the rule must minimize expected loss under some
probability distribution. Note, however, that the con-
dition “if there is a rule” tacitly prejudges the question
at issue. For if we choose to report only a partial
ordering, we are, in effect, opting to specify no rule,
so the admissibility result becomes irrelevant.

Lindley abuses the theory of belief functions by
substituting belief into a scoring measure as though it
were a simple probability. It may therefore be helpful
to sketch what we see as the right way to think about
beljef functions in a decision-theoretic framework. To
illustrate, consider a decision problem with decision
space D = {d;, d,, ds}, outcome space W = {w;, w,}
and loss function given in Table 1. Let D* =
{d(p1, P2, P3) | P1, D2, D3 = 0, T pi = 1}, where

TABLE 1
Loss function
dl . dz d3
wy 0 10 20
Ws 45 20 10

d(p:1, p2, ps) denotes the randomized decision that
selects decision d;, i = 1, 2, 3, with probability p;.
Following DeGroot (1970), '

(1.1) L(w,, d(p1, p2, ps)) = 10p; + 20ps
and
L(w,, d(p1, p2, p3)) = 45p; + 20p, + 10ps

where L(w, d) denotes loss. From Figure 1 it is clear
that a decision d(p;, p2, ps) is admissible in the ordi-
nary decision theory sense if either p, = 0 or p; = 0,
thus including the pure decisions d;, dz, and d;. The
minimax decision is easily computed to be d(0, Y%, %)
where

L(wy, d(0, Y2, Y2)) = L(w,, d(0, Y, Y2)) = 15.

Suppose our knowledge about the outcome is rep-
resented by the belief function Bel over W. Let {u}pa
be the collection of probability measures u over W
that satisfy

Bel(4) = p(4) < Pl(A)

forall A C W. For d, d’ € D*, we say d is uniformly
dominated by d’ with respect to Bel if

E{L(w, d) |} = E{L(w, d’) | p}
for all u € {u}p. and there exists u* € {u}p. such that
E{L(w, d) | p*} > E{L(w, d") | p*},

where E{. | u} denotes expectation computed based

on u. We call a decision permissible against Bel if it is

not uniformly dominated by another decision in D*

with respect to Bel. Hence, a decision is admissible if

it is permissible against the vacuous belief function.
Suppose Bel is

m({w.}) = .6,
(1.2) m(fws}) = .2,

m({wl, w2}) = 2.

" It follows that {ulga = {u|.6 < t < .8}, where u,

denotes the probability measure that assigns prob-
ability ¢ to w; and probability 1 — ¢ to w,. For the
pure decisions,

E{L(w, dy) | uj = 45(1 — 1),
E{L(w, dy) | u = 10t + 20(1 — ¢) = 20 — 10¢,
E{L(w, d3) | p} = 20t + 10(1 — t) = 10 — 20¢.

Figure 2 plots E{L(w, di)|ud, E{L(w, dy)|u, and
E{L(w, d3) |} for .6 < t < .8. It shows that d; is
uniformly dominated by d» with respect to Bel. Since
E{L(w, d(p1, ps, p3)) | u} = Xi=1 piE{L(w, d) | u}, it is
straightforward to prove that d(p;, ps2, p3), ps > 0, is
uniformly dominated by d(p;, p. + p3, 0) with respect
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to Bel. The permissible decisions against Bel are
d(p,1—p,0),0=p=1
For a decision d € D* define lower and upper
expected loss with respect to Bel to be (cf. Dempster,
1967) :
E {L(w, d)} = inf [E{L(w,d)|u]

KE{piBel
and
E*{L(w, d)} = sup [E{L(w, d)|ui].

KE{uiBel

Figure 3 plots the upper and lower expected loss of

the permissible decisions d(p, 1 — p, 0) as functions
of p. Since d(0, 1, 0) = d; has the minimum upper
expected loss, we call d; the miniupper decision against
Bel.

Notice that the miniupper decision against a vac-
uous belief function is the minimax decision and
the miniupper decision against a Bayesian belief func-
tion is the corresponding Bayes decision. Hence, the
miniupper method is a generalization of minimax and
Bayes. Under more general settings where there can
be more than two outcomes, it can be shown that the

task of finding the miniupper decision can be refor-
mulated as a linear programming problem. Details will
be given in a coming technical report.

We are not necessarily endorsing the miniupper
decision here. Indeed, in the above example, we have
no reason to fault someone who chooses d; over d,.
The point is that some guidance toward rational de-
cisions can be made even if uncertainty is represented
by belief functions instead of distribution functions.
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