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Hannan has written. With his retirement, I expect to
see papers being generated even more rapidly.
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Comment

R. Dahlhaus

This paper by Hannan is an excellent review of an
important topic in time series analysis: the approxi-
mation of a nonparametric time series by a parametric
rational one. The paper gives insight into the problems
which arise and offers a variety of methods to tackle
these problems.

To regard a fitted parametric model as an approxi-
mation to a nonparametric time series is clearly the
correct point of view when dealing with parametric
time series analysis. Many interesting papers dealing
with related problems have been published in recent
years and there is great need for further results to
develop the theory sufficiently. The present paper is
an important contribution to this goal.

It was therefore a pleasure for me to read this
stimulating paper and to have been asked to comment
on it. I will restrict my comments to the problem of
estimation and in particular to the case of a one-
dimensional process which is approximated by an
autoregressive process.

i. THE APPROXIMATION CRITERION

Since the goal of the paper is the approximation of
the transfer function, it seems to be natural to take a
criterion which measures the quality of the approxi-
mation directly. Suppose the original series has an
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infinite autoregressive representation
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and Y, is approximated by an AR(k)-process whose
coefficients are estimated from the data by a(k), - - -,
dr(k), 6. An appropriate approximation criterion then

Val’(et) = 0'2,

-would be, for example,
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Considering the relative difference between A\
and A()\) is natural, since for Yule-Walker estimates
(1) is approximately equal to o 2T(d(k) — a(k))
R(a(k) — a(k)) with R = {cov(Y;, Y;)};;, which tends
weakly to a x} distribution (if the true process Y, is
also an AR(k)-process), while the limit behavior of
the absolute difference would depend on A(M\). The
choicée of the .#, norm seems to be mainly for
calculational convenience. However, by using the
approximation log(¢/d:) = (¢/ax) — 1 (or by adding
the penalty term 2[(¢/d,) — 1 — log(a/a)] for the
innovation variance estimate to the criterion (1)) one
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concludes that (1) is the same as
1 f)
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where f and f; are the spectral densities of the original
and the fitted process. I(f, g) is equal to the limit
of (1/T) multiplied by the information divergence

2w {— logl[hg 7 (x)/hsr (x)1}hsr (x) dx, where h;r is the
probability density of T observations from a Gaussian
process with spectral density f (cf. Parzen, 1983, Sec-
tion 3). Thus, choosing the %, norm is implicitly a
Gaussian point of view.

Once an approximation criterion like (1) has been
chosen, this criterion should be used to judge the
quality of all estimation procedures including the se-
lection of the order. In order to obtain optimal esti-
mates in this sense, one could minimize the first part
of (2) directly with the unknown f replaced by a
suitable nonparametric estimate, e.g., the periodo-
gram I7(\) with a suitable data taper applied. If 4 is
obtained by minimizing this criterion with the selected
order k, it follows from Sections 3 and 4 of Findley
(1985) that the “expected loss” EI(f, f;) is equal to
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(Note that for the derivation of the above result, R(5)
in (4.2) of Findley takes the value 0 if a data taper is
applied.)

Thus, the expectation of the approximation crite-
rion (1) is minimized by selecting the order k from
JAIC and by using the Whittle estimate (which in the
AR(k)-case is equal to the Yule-Walker estimate). The
same arguments, applied to the information diver-
gence directly (instead of its limit), would lead to
selecting the order from AIC and estimating the pa-
rameters from the exact Gaussian likelihood function.

As already pointed out by Hannan, I strongly rec-
ommend the use of a data taper since this leads to
improved estimates in the' finite sample situation
(Dahlhaus, 1986).

In the light of the above remarks I would now like
to make the following comments on Hannan’s paper.

Judging the quality of the different order selection
procedures by the above criterion (1) favors Cr = 2,
i.e., AIC. Shibata (1980) starts with another approxi-
mation criterion, but he ends with the same result. It
would be interesting to know whether there exists any
criterion like (1) depending on the difference between
the transfer function which favors other values of Cy.
Although the theorem below (5.6) is important from
the mathematical point of view, I doubt its relevance
for practical situations. For me it doesn’t make sense
to consider the distance of orders (which is done by
proving convergence in probability), since this dis-
tance of the orders doesn’t say very much about the
“nearness” of the processes themselves (an AR(2)
process with moderate roots may be much “nearer”
to, e.g., an AR(1000) process, than to an AR(3) process
with roots close to the unit circle).

Approximation criteria of the form (1) are attractive
because the variance of the parameter estimates turns
out to be an implicit natural penalty term for selecting
an order which is too high. Is it possible to incorporate
this idea into the considerations of Section 3 by com-
paring the Hankel matrix with estimated parameters
with the true one? Furthermore, the Hankel norm
considered (the greatest singular value) corresponds
to the absolute difference of the transfer functions. In
view of the above discussion, I would prefer a criterion
which corresponds to the relative difference of the
transfer functions. Could this be achieved by consid-
ering the relative differences of the singular values?
Furthermore, it would be interesting to know whether
the use of the I, space in the singular value decompo-
sition is related in some way to a Gaussian point of
view (as the %, norm in (1) is).

2. THE ESTIMATION PROCEDURE

In the practical situation one has many possible
estimation procedures, each of which may be prefera-
ble under different aspects (exact Gaussian likelihood
procedure, approximations to it, nonGaussian proce-

" dures, robust procedures, etc.). From a technical point

of view it is often too difficult to compare them with
an approximation criterion like (1), and I therefore
want to look at the procedures from a different point
of view.

Suppose the parameter estimate 6 is obtained by
minimizing a function Lr(f) (likelihood function, fre-
sidual sum of squares, etc.). What parameter 6 do we
actually estimate if the underlying process is not of
the fitted structure? Obviously that parameter 6, that
minimizes ELr(f) or, if the fitted model doesn’t
depend on T, lim ELy(#), provided this limit exists.
It should be noted that we have an “approximation
effect” in the sense that different Lr(6) may lead to
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different 6, if the underlying process is not of the fitted
structure, although they lead to the same 6, if the
process is of the fitted structure. Suppose we fit an
AR(k) model. Consider, for example, the Gaussian
likelihood '

1. - 1
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and alternatively an M estimate

§ p(ﬁ a; Yt—s)

=0
with Y, =0 if t=<1

(if ¢2 is unknown the estimate has to be modified, cf.
Martin and Yohai (1985)). Then,
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and
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If Y, is also an AR(k) process then both EL7(#) and
EL%(0) are minimized by the true parameter value,
while in the case where Y, is not an AR(k) process,
ELr(0) and EL%(0) are minimized by different values.
This means that one has not only to consider the

Comment

Jorma Rissanen

In this exceptionally lucid and comprehensive sur-
vey, Professor Hannan covers essentially all the im-
portant ideas in the theory of linear dynamic systems,
both deterministic and stochastic, developed during
the past twenty years or so. In addition, he describes
the more recently introduced new statistical ideas for
selecting such models for time series. I was particularly
impressed by the apparent ease and elegance with
which Professor- Hannan managed to explain the
rather intricate notions without any undue sacrifice
in precision.

I would like to comment on two issues of a general
nature raised by Professor Hannan. There have been
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quality of the estimation procedure, but also the “qual-
ity” of the estimated parameter.

In the formula below (5.8), Hannan should not
compare the estimate ®,(j) with ®(;j) but with the
estimated parameter ®,(j) (in the above sense), ob-
tained as a solution of the theoretical counterpart of
equation (5.8), and then ask in a second step how good
the ®,(j) represent the structure of the series (in fact,
the finitely many ®,(j), j = 1, ---, h, describe the
structure of the process “better” than the finitely
many (b(])’] = 1’ ] h)'

It is obvious that the choice of an estimation pro-
cedure doesn’t only imply an estimated parameter 6,
but also an optimal order. The results of Shibata
(1980) 'favoring AIC are only for the case where the
parameters are estimated by the Yule-Walker equa-
tions. It would be interesting to know whether using
other estimation procedures (e.g., robust ones) leads
to other order criteria.
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several attempts to apply the beautiful and deep ap-
proximation theory of Adamyan, Arov and Krein in a
statistical context for the purpose of obtaining an
optimal low order model reduction. As explained in
the paper, such a procedure begins with a high order
dynamic system, arrived at, perhaps, by applying
physical or chemical laws to a process, or by other
means. This is then, in the second stage, reduced to a
desired complexity, optimally in the sense of minimum
distance in a certain norm. The point I wish to make
is that because the initial system, which necessarily
has the status of a model rather than any “true”
system, is nonunique, the end result cannot be as-
signed any meaningful optimality property. Instead, it
is just an optimal approximation of an arbitrary model
of the data.

My remaining comments aim to amplify and,
perhaps, modify some of the concluding remarks in



