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Comment

Hirotugu Akaike

Professor Rao bases his discussion of the prediction
of future observations entirely on the cross-validation
or leave-one-out technique. In particular, he simply
dismisses the possibility of using other model selection
criteria for the reason that they require some assump-
tions on the form of the conditional expectation of the
future observation given the past observations and an
estimate of the conditional variance.

At this point it might be of some interest to note
the past popularity in the engineering literature of the
cross-validatory approach to predictor selection.
Around 1970, the use of the procedure GMDH (group
method of data handling) for the modeling of linear
and nonlinear systems was advocated by Ivakhnenko
(1971). The basic idea of GMDH was to use polynom-
ial regressions and select system models by the cross-
validatory approach where separate parts of the data
were used for the estimation and checking of a model,
respectively.

In spite of the claim that the method could provide
a very powerful general method of data handling,
apparently the method gained only a temporal popu-
larity. This fact is somewhat suggestive of the future
of the cross-validatory approach to the handling of
statistical data in general.

Obviously, the cross-validatory approach can pro-
vide practical solutions to the problem of model selec-
tion when no other methods are available. However,
this apparent cure all type of versatility tends to block
scientific thinking about the model construction and
evaluation. In that sense I see some danger in uncrit-
ical acceptance of the cross-validatory approach to
model selection.

In the cross-validatory approach, the forms of the
predictor and loss function are assumed to be given.
It is the choice of these elements that crucially con-
trols the process of realizing a prediction and the
proper choice is highly dependent on the type of the
distribution of the data under consideration. The
adoption of the linear predictor and the mean square
loss function is highly indicative of the Gaussian as-
sumption of the distribution of data.

Once this point is recognized, it can easily be seen
that the criticism made by Professor Rao under equa-
tion (3.8) against model selection criteria other than
the cross-validation assessment error (CVAE) is un-
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founded. In particular, the numerical decompositions
of the squared multiple correlations of the three sets
of data given by Professor Rao easily allows the ap-
plication of the AIC criterion to the evaluation of
direct regressions given in Table 5 of the paper. By
assuming the Gaussian structure, the necessary AIC
is defined by

AIC(k) = n log.{S(k)/S(0)} + 2(k + 1),

where n denotes the sample size, £ the number of
regressors and S(k) the residual sum of squares. We
have

S(k) = S(0)A = pfpruip,. .- p—rs11)s

where p{pi1yp,... p-k+1) denotes the squared multiple

correlation coefficient of Y,;on Y, Y1, - - -, Yp_pus.
By using Rao’s notation we have
Plo+ilip, - pkt1] = Plorilip) + Plor1io-1)-p)
+ ...+ p[2p+1][(p—k+1)~p—k+2,-~~,p]

and the necessary numerical values are easily obtained
from the decompositions of the squared multiple cor-
relation coefficients in terms of partial correlations.
The values of AICs are given in Table 1.

The choices realized by minimizing AICs are iden-
tical with those by CVAE for the mice and dental data
but differ for the ramus data. Obviously the differences
of the CVAE and AIC of k = 1 and 2 are very small
for the ramus data and the discrepancy between the
two choices does not seem to be of any practical
significance. The difference between the CVAE of
k =1 and 2 for the dental data also looks small.
However, the difference of the AIC suggests that it is
quite significant.

Taking into account the computational simplicity
of AIC, compared with that of CVAE, the present
result clearly demonstrates that Rao’s rejection of
model selection criteria such as C, and AIC is unjus-
tified.

In the present example of simple regressions, both
CVAE and AIC are based on the estimates of the
prediction error variances. This circumstance ob-
scured the crucial distinction between the selection of
the predictor and the evaluation of the underlying
model.

The fitting of Professor Rao’s last model, the factor
analytic type regression (Method 2), requires the clar-
ification of this point. The method fits a multivariate
Gaussian distribution to the data by using a proper
parametrization and uses the resulting conditional
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TABLE 1
AIC values of simple regression predictor (direct regression)

Previous measurements used

Y-Ye Y,-Ys Y,-Ye Y-Ys Y:-Ys Ys None
a. Mice data (prediction of Y;, n = 13)
k 6° 5 4 3 2 1 0
AIC -17.0 -18.0 -19.8 —-21.3 —-23.1 —24.4° 2.0
Previous measurements used
Yl-Ya Ys None
b. Ramus data (prediction of Y,, n = 20)
k 3 1 0
AIC —47.3 —49.3° —48.3 2.0
Previous measurements used
Y.-Y; Ys None
c. Dental Data (prediction of Y,, n = 27)
k- 3 1 0
AIC —28.9 —30.5° -23.0 2.0

% Might be too large for the application of AIC for n = 13.

¢ Denotes the minimum.

distribution for prediction. The fitting is realized by
using the method of maximum likelihood and thus
AIC can be applied for the evaluation of estimated
models.

In this case, the AIC is not simply defined by the
estimated prediction error variance. A model with
small estimated prediction error variance may be
judged to be a poor fit to the data. In such a situation,
by using exp(—0.5 AIC) as the likelihood of an esti-
mated model, we may find a reasonable choice of the
predictor. This idea could have been applied even to
the example of the simple linear regression predictor
of the ramus data. This kind of scientific investigation
of the structure of data by models is not possible if we
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pay attention only to the cross-validatory assessment
of the prediction error variance.

I admit that the cross-validatory approach taken by
Professor Rao can be useful to provide pragmatic
solutions in certain situations. Nevertheless, my con-
viction is that only through the systematic application
of the scientific approach of statistical modeling and
evaluation can we expect the future development of
statistics as a science.
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involved in growth curves. His earlier work mainly
reflected his concern with estimation, testing and
various covariational structures. Recently he has be-
come more interested in the predictive aspects of this
subject.

In this regard there are basically three prediction
problems of interest. Assuming we have observed n
individuals (vectors) with complete data (over the
same components), we may be interested in predicting,



