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Rank-Based Robust Analysis of Linear

Models. I. Exposition and Review

David Draper

Abstract. Linear models are widely used in many branches of empirical
inquiry. The classical analysis of linear models, however, is based on a
number of technical assumptions whose failure to apply to the data at hand
can result in poor performance of the classical techniques. Two methods of
dealing with this that have gained some acceptance are the data-analytic
and model expansion approaches, in which graphical and numerical methods
are employed to detect the ways in which the data do not meet the classical
assumptions, and either the data are modified appropriately before the
classical techniques are applied (data-analytic) or the model is broadened
to take account of the departures discovered (model expansion). Another
approach involves the use of robust methods, which are intended to be
sufficiently insensitive to deviations from the classical assumptions that
the data may be analyzed without modification or additional (explicit)
modeling. In this article a comparison is made between the data-analytic,
model expansion and robust approaches to linear models analysis, and the
application of one type of robust methods, those based on R-estimators
(which use the logic of rank tests to motivate inference on the raw data
scale), to problems of estimation, testing and confidence and multiple
comparison procedures in the general linear model is reviewed.

Key words and phrases: Robust estimation, general inferential strategies,
rank-based linear model, R-estimators, Hodges-Lehmann, kernel-type den-
sity estimation, Bayesian robustness.

1. INTRODUCTION: THE CONTEXT OF
ROBUSTNESS IN GENERAL INFERENTIAL
STRATEGIES

The linear model is one of the most widely used

when some or all of them are not reasonable for the
data at hand.

The general fixed-effects linear model can be writ-
ten in the form

tools yet devised by statisticians to aid in empirical (1)) Yi=gXu, -+, Xp)+e, t=1,.--,N.
inquiry. Applications of linear regression, analysis of ) ‘
variance (ANOVA) and analysis of covariance tech- Here (Y;; X, ---, Xjp) is the ith of N total observa-

niques abound in the biological, social, physical and
behavioral sciences, as well as in industrial and other
business settings. It is a basic truth in mathematical
modeling, however, that powerful inferences are often
arrived at only through powerful assumptions, and
linear models provide no counterexample to this state-
ment. It is worthwhile to consider these assumptions
and to take up the question of what to do in practice
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tions on the quantitative dependent variable Y and
the p quantitative or qualitative (nominal or ordinal)
independent variables X, - - -, X, which are consid-
ered to be either under experimenter control or pas-
sively observed without random error; the e; are
thought of as stochastic errors or disturbance terms.
The Y; and e; are taken to be random variables and
the X;; to be fixed known constants. g(-) is assumed
to be of the known functional form

P
(1.2) g§( X, -+, Xpp) = B0+ X XiB8,
=1

in which the 8; are unknown parameters. A number
of assumptions are made in the classical analysis about
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the errors e;, which can be listed roughly in order of
increasing technical constraint as follows:

* the errors are assumed to have expectation 0, to
have the same variance for all 7, to be independent
and to be identically distributed with density f;

» the error density f is assumed to be symmetric;

* and, finally, f is assumed to be a specific symmet-
ric density, the normal.

Denote by Q* this full model with all of these assump-
tions, including linearity of the relationship between
Y and the X;.

Over the past fifty or so years in which the model
has evolved in this form (see Seal (1967) and Scheffé
(1959) for some of the history), four basic approaches
have arisen for dealing with the issue of violation of
these technical assumptions:

0) The do-nothing approach, in which the issue of
possible violation of assumptions is never even raised
and the classical analysis is applied to the data without
question.

1) The data-analytic approach, in which graphical
and numerical tools like residual and adjusted variable
plots (Draper and Smith, 1981; Daniel and Wood,
1980; Chambers, Cleveland, Kleiner and Tukey, 1983),
and quantitative methods for the identification of
influential observations (Weisberg, 1985; Belsley, Kuh
and Welsch, 1980; Cook and Weisberg, 1982), are used
to detect and characterize the ways in which the data
at hand do not fit the linear model assumptions. The
data are then altered, by setting aside outliers and/or
transforming the observed X and Y values, and the
classical analysis is applied to the altered data. This
process is often undertaken iteratively as one of the
potentially many sensitivity analyses conducted in the
overall investigation: the effects of the outlying/influ-
ential observations and transformations on the final
inferences are examined by first excluding and then
including unusual data values, varying the chosen
transformations and so on, all the while observing the
resulting behavior of predicted values, standard errors
and so forth. .

2) The model expansion approach, in which the data
are examined as in approach 1, to characterize the
ways in which they depart from the standard off-the-
shelf model, the difference being that when departures
are found they are modeled directly on the raw data
scale through a broadening of the parametric model
(Cox, 1977; Weisberg, 1984). The class of generalized
linear models (McCullagh and Nelder, 1983), with
inference based on classical large-sample maximum
likelihood theory, is a leading example of this ap-
proach from the frequentist perspective, and Box and
Tiao (1962) provide an interesting Bayesian example
of model expansion.

3) The robust approach, which uses nonclassical
techniques intended to be sufficiently insensitive to
deviations from the classical assumptions that the
data may be analyzed on the raw scale without modi-
fication or additional (explicit) modeling.

In practice there is a fair amount of overlap among
these approaches to inference. Practitioners of strat-
egies 1 and 2 may well differ more in style than in
content, and many analysts who have no interest in
using robust methods inferentially nevertheless find
them useful diagnostically. The idea is to carry out
the classical inference and one or more robust proce-
dures in parallel, to see if they produce sharply differ-
ent answers. If not, report the classical findings, be-
cause they may be most readily accepted by consumers
of the analysis; if there are major differences, proceed
as in approaches 1 or 2. This overlap notwithstanding,
it is useful to draw overall strategic distinctions like
the ones above to help organize thought about the
strengths and weaknesses of various approaches to
inference, and such distinctions will figure in the
discussion that follows.

The do-nothing method is widely accepted even
today. This can be seen, for example, by observing
that until quite recently the ANOVA programs in
SPSS (Hull and Nie, 1981), BMDP (Dixon, 1983) and
Minitab (Ryan, Joiner and Ryan, 1985), three of the
most widely used statistical computing packages, did
not permit the user to examine in any way the resid-
uals from fitted models, and another such package,
SAS (SAS Institute Inc., 1985), perhaps the most
extensively used of the four, still does not. (It has long
been possible in all of these packages to do residual
analysis in ANOVA by re-expressing the problem in
regression terms, but many users of programs like
SAS do not know how to do this or are not in the
routine habit of doing so.) It is my experience that
many people applying linear models simply are not
aware of any need to consider the assumptions built
into Q* Among practitioners of method 0 there also

- seems to be a class of users who are acting in the hope

that the well known optimality properties of the clas-
sical methods under Q* (Rao, 1973) continue to hold
when some of its assumptions do not (a reliance on
the reasonable sounding but false principle of conti-
nuity of optimality—“What is optimal at the model
should be nearly optimal near the model”), and in the
belief that the classical analysis is robust against
significant departures from these assumptions. These
hopes and beliefs persist in spite of evidence to the
contrary; it has been amply shown (Bradley (1978)
and Scheffé (1959), for instance) that there are many
deviations from the basic assumptions against which
the classical analysis is not robust, and much work
has been done (Lehmann, 1963b; Huber, 1981; Bickel,
1973; among many others) to show that techniques
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exist that perform noticeably better than the classical
methods when one departs from some of those basic
assumptions.

It is easy to see why the do-nothing strategy persists.
It is straightforward to carry out, there is much prec-
edent for it and the-findings of off-the-shelf analyses
are easy to interpret (at least naively) by the ultimate
users (not a point to be taken lightly—in practice
there is constant tension between the best choice of
inferential procedure and ready interpretability of
findings by the end-users of the analysis). But it has
been repeatedly demonstrated (for instance, Weisberg,
1985; Cook and Weisberg, 1982; Atkinson, 1985) that
when classical methods are applied unquestioningly a
few strange values or transposed digits can yield a
completely misleading analysis, particularly with
modest sample sizes. Tukey (see Mosteller and Tukey
(1977), for example) usefully decomposes the potential
failings of a piece of inferential machinery into two
components: he speaks of robustness of validity (as
measured, for instance, by standard frequentist crite-
ria like confidence interval coverage probability and
type I error rate) and robustness of efficiency (effective
separation of signal from noise, as indexed by things
like confidence interval length and type II error rate).
Analysts adopting the do-nothing approach are often
subject to penalties in efficiency and validity relative
to the other three strategies listed above. Examples
of efficiency losses of this type will be given in
Section 2, and examples of validity difficulties (effects
of dependence and heteroscedasticity on type I
error rates of the usual F tests, for instance) can be
found in Scheffé (1959, Chapter 10) and Box (1953,
1954a, b). C

Each of the data-analytic, model expansion and
robust approaches possesses strengths and weaknesses
as inferential strategies generally and in particular in
the linear model. Data-analytic techniques based on
transformations can yield quite efficient inference on
the transformed scale (Box and Cox, 1964), even after
paying the appropriate price for using the data to help
determine the transformation (Carroll and Ruppert
1981, 1984). Moreover, this inference will be in the
context of the familiar classical methods applied to
the transformed data, which aids in interpretation of
results; but interpretation is simultaneously made
more difficult by having strayed away from the raw
scale (for example, in situations where the original
scale has direct substantive meaning and effect sum-
maries like (additive) pairwise comparisons are
desired—see Tukey, 1977). The model expansion ap-
proach can also lead to quite efficient inference
(McCullagh and Nelder, 1983) and has the advantage
that this inference takes place on the raw scale by
construction; but with modest amounts of data the
accurate specification of the expanded model can be

i

difficult, leading to problems with stability of infer-
ence. With samples of small and moderate size, two
models that are close enough to be recognized by the
data as about equally plausible can result in sharply
different inferences, with standard errors differing by
factors of 50% or more (Tukey (1960), in the paper
that might be said to have kindled modern interest in
robustness). Inference based on robust methods, when
available, can be successful on all the above grounds—
efficiency, raw scale interpretability and stability—
but these goals have not yet been fully attained in the
general linear model. Despite the all-too-widely-held
view among practitioners that phrases like “robust”
and “nonparametric” are proxies for “assumption-free
inference,” the word robust is just a shorthand for
“insensitive with respect to departures from the fol-
lowing underlying assumptions - - - ,” and the truth is
that most existing “robust” linear models methods
only address failures of the explicit distributional as-
sumptions in Q* (symmetry, normality). This is cer-
tainly not because violations of these assumptions are
the most critical (they are not—departures from the
homogeneity of variance and independence assump-
tions typically have more serious consequences: see
Scheffé, 1959), but stems rather from the fact that
this has been the most analytically tractable area in
which to make initial progress. Recent robustness
work on less tractable but more important issues, for
instance:

+ Ruppert and Carroll (1982) on dealing with het-
eroscedasticity,

» Portnoy (1977, 1979) on coping with dependence
in the data, and

* many authors (for example, Cleveland, 1979;
Stone, 1977; Hastie and Tibshirani, 1986) on
nonparametric regression (which attempts to re-
lax the assumption of known functional form for
the relationship (1.2) between Y and the X;)

is promising, but significant effort remains to be ex-

.pended toward the practical implementation of infer-

ential methods which are robust with respect to vio-
lation of the non- (symmetry, normality) assumptions
in Q*.

Among statisticians who see the need for methods
to deal with violations of the assumptions in Q* use
of data-analytic and model expansion techniques has
been far more prevalent to date than use of robust
methods. One of the reasons most often given for this
(see Hettmansperger and McKean, 1978) is that ro-
bust methods so far have generally failed to satisfy
criteria of ready usability by the final consumers of
the linear model analysis. Such criteria might reason-
ably require that the techniques used:

+ should have clear intuitive appeal;
* should be of a unified nature and of general
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applicability rather than being put together in
patchwork form out of solutions to separate but
related problems; and

» should be based on inferential machinery (esti-
mates, tests and so on) possessing simple, closed-
form expressions where possible.

It can be seen in recent work (Hettmansperger and
McKean, 1977; Draper, 1981) and will be seen in this
article that for some robust linear model techniques
these criticisms are no longer valid.

Progress to date in the development of robust meth-
ods in linear models has been based on generalizing
existing robust techniques for the one- and two-
sample problems, and on starting with the constructs
that lead to the classical methods and replacing them
at key points with devices that make the resulting
techniques more robust. This work has proceeded
roughly along three parallel lines: the generalized max-
imum likelihood type or M-methods (Huber, 1973;
Schrader and Hettmansperger, 1980; Sen, 1982);
the rank-based or R-methods (Lehmann, 1963b;
Jaeckel, 1972; Hettmansperger and McKean, 1977;
Hettmansperger, 1984) and methods based on linear
combinations of order statistics, the L-methods
(Bickel, 1973; Koenker and Bassett, 1978). Each of
these approaches has advantages and disadvantages
in robustness, efficiency, applicability and usability,
depending on the situation. None of them clearly
dominates the others in efficiency and robustness
(Huber, 1981), but with respect to practical consider-
ations in implementation, like the ones listed above,
there are some differences. The L-methods have his-
torically been the most awkward of the three in gen-
eralizing to linear models (Huber, 1981; although
recent work on regression quantiles and trimmed-
mean analogues by such authors as Bassett and
Koenker (1982), Ruppert and Carroll (1980) and
Welsh (1987a) may eventually change this appraisal),
and, although the M- and R-methods are both quite
unified in their approach and intuitively appealing,
the R-methods (particularly in estimation) often
have simple, closed-form expressions whereas the
M-methods do not. In the rest of this article, attention
will be restricted to methods based on R-estimators.

Thirty years ago the phrase “rank-based analysis of
linear models” would have conjured up images of
methods like the Wilcoxon (1945) rank-sum test in
the two-independent samples problem, the Kruskal-
Wallis (1952) test in the one-way layout, Spearman’s
(1904) rank correlation coefficient, the Friedman
(1937) procedure for analyzing randomized complete
block designs and so on. There are two main draw-
backs to the approach to linear models analysis rep-
resented by these techniques:

* Most methods of this type simply amount to
transforming the raw data to the rank scale and
feeding the ranks into the classical normal theory
procedures (Conover, 1980). For example, the
Wilcoxon rank-sum statistic is in disguise just a
monotone function of the usual (pooled-variance)
two-independent samples ¢ statistic applied not
to the original data but to the ranks of the original
observations in a data set formed by combining
the two samples into one. These methods can
thus be seen as a special case of the data-analytic
approach in which the rank transformation is
used exclusively. This means that in addition to
having the general data-analytic disadvantage of
loss of raw scale interpretability, these rank scale
methods have the further disadvantage of provid-
ing no flexibility in the choice of transformation.

* These rank methods also have the appearance of
failing the second implementational criterion
above (the desirability of a unified set of tech-
niques rather than a patchwork quilt). T'o poten-
tial users watching the rank-based literature
evolve, the resulting package of techniques has
had a distinctly piecemeal flavor: with one type
of linear model data the method of choice is
Friedman, with another it is Kruskal-Wallis and
so on. In fact, because all these methods are based
on the rank transformation, there is more meth-
odological coherence than appearances might in-
dicate, but the methods still lack complete unity
in that they all have different null distributions
and different versions of the ranking operation.

The R-estimator methods to be described in this ar-
ticle represent an improvement over these previous
rank methods in linear models on both of the above
counts: they present a unified approach to the analysis
rather than offering a collection of separate but related
procedures, and the estimates and quantities from
which the test statistics are constructed are on the
same cardinal measurement scale as the original data.
The basic distinction is that the R-estimator methods
are not rank methods but rank-based methods—they
are robust procedures whose motivation stems from
rank methods.

Two R-estimator approaches to linear model analy-
sis are described in Sections 2 and 3: the analysis of
variance techniques of Lehmann (1963b) and the gen-
eral linear model methods of Hettmansperger and
McKean (1976, 1977). In both approaches the analogy
with classical methods is quite strong. The results
include robust estimates of functions of the parame-
ters B; and standard errors for those estimates, and a
robust version of the analysis of variance table, com-
plete with R-estimator analogues of sums of squares,



RANK-BASED ROBUST ANALYSIS 243

degrees of freedom and F ratios (Lehmann, 1963b;
Schrader and McKean, 1977; Draper, 1981). Both
approaches use the robust estimation techniques to
construct confidence regions and significance tests
and to carry out multiple comparisons, Lehmann us-
ing Hodges-Lehmann two-sample estimates (Leh-
mann, 1963a) and Hettmansperger and McKean using
the rank-based regression estimates of Jaeckel (1972).
Each method has its drawbacks. The Hettmansperger
and McKean approach was originally presented as
requiring the assumption of symmetry of the under-
lying error distribution, and more recent attempts
(Aubuchon and Hettmansperger, 1984a,b; Sheather
and Hettmansperger, 1985) to relax this assumption,
although promising, have not yet been fully validated
in the general linear model with sufficiently compre-
hensive simulation studies. The Lehmann method
only applies to ANOVA situations with several obser-
vations per cell. Moreover, both approaches to infer-
ence yield procedures that are distribution-free only
asymptotically, so that a check on their small-sample
behavior is needed. This article describes results
pertaining to two issues—the implementation of the
Lehmann and Hettmansperger-McKean significance
testing techniques in a way which dispenses when
possible with the assumption of symmetry, and the
small-sample empirical properties of these techniques
(Section 4). Multiple comparison methods and confi-
dence procedures are addressed only briefly here, in
Sections 2 and 3; for further examples of the rank-
based robust approach to these inferential tools see
Hettmansperger and McKean (1978). Although the
emphasis below is on fixed-effects models, several of
the methods described would be expected to work well
in certain random effects and mixed models also;
see Lehmann (1963b).

There is a broad literature on rank transformation
and other rank-based approaches to linear model
analysis which will not be addressed further here;
relevant work includes Adichie (1978), Koul (1969,
1970), Puri and Sen (1969, 1973, 1977), Srivastava
(1972) and references cited therein.

2. THE METHODS OF LEHMANN: ANALYSIS
OF VARIANCE, SEVERAL OBSERVATIONS
PER CELL

The model which Lehmann (1963a) considers for
ANOVA with several observations per cell can be
written

I
o
~
Nk
S
I
2
—_

2.1) Y=+ e {

~.

y s i

in which the e¢; are independent, identically distrib-
uted (iid) continuous random variables with density f
satisfying

(2.2) 6= J: fix) dx <

and o? = Var(e;;) < ». Here y; is a measure of centering
for the ith of I total cells, Y;; is the jth of the n;
observations in cell i and N is the total number of
observations. For the u; to be identifiable an assump-
tion is needed on the manner in which the distribution
of the errors e;; is centered at 0; for example, if
E(e;;) = 0 is assumed then u; is the mean of the
distribution of the observations in cell i. In much of
this section the cell centers u; are not as relevant as
the differences u; — u; between cell centers, and iden-
tifiability of the u; is not necessary. In such cases the
identical distribution of the e;; is enough for u; — u; to
be identifiable as the size of the shift in a two-sample
shift model using the observations in cells i and j. In
what follows, when an assumption is needed for the
identifiability of u; the condition E(e;) = 0 will be
understood, in which case y; is the ith cell mean; in
other cases where the choice of centering is immaterial
u; will be called the ith cell center.

The above continuity assumption on the e; and
consequently on the Y;; is made to avoid technical
complications involving ties in the ranking of the data.
When ties are present in linear models data, they are
often due to the measuring process having made a
conceptually continuous variable discrete, and in such
situations, provided the size of the roundoff is not
large, the methods below may be applied with little
harm in acting as if the rounding had not occurred
(Lehmann, 1975). The finiteness of § and o2 are
needed because division by 1/8 and ¢? plays a role in
what follows; these conditions place little or no prac-
tical restriction on the use of the methods. Note that
the notation of the model (2.1) is most natural only
for the one-way layout, but larger layouts can be
accommodated simply by numbering the cells from 1
to I.

The genesis of Lehmann’s method was as follows.
Hodges and Lehmann showed in 1963 how to use rank
tests like the one- and two-sample Wilcoxon proce-
dures to construct robust estimates of the center of
symmetry of a distribution and the size of the shift in
a two-sample shift model, and at about the same time
Lehmann began looking for a way to apply these
methods to other linear models. For widest applicabil-
ity of the results it was preferable to adapt the two-
sample version of the Hodges-Lehmann estimation
technique, because there is no assumption of symme-
try implicit in its derivation (as there is in that of the
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one-sample estimates), so this suggested trying to
estimate u; — u; in a robust fashion. Lehmann reasoned
that this would be sufficient as a basis for robust
versions of many of the most useful classical tech-
niques, because most inference in ANOVA (linear
hypothesis testing, multiple comparisons and so on)
is based on contrasts in the cells means, and any
contrast

1 I
(2.3) ¢ = 21 Cili, 21 c;=0,

is expressible in terms of differences in the cell means:

I I-1 I
(2.4) Yew=Y X byjlw—w).

i=1 i=1 j=i+1
Note that the b;; are not unique. It is not possible with
this approach to obtain estimates of the cell means
themselves or of the grand mean

M~

(2.5) ,1 = N_l nu;,

~
J

1

which essentially corresponds to the intercept term 3,
in the model Q* of the previous section. In effect,
Lehmann was treating the ANOVA setup as an I-
sample shift model and obtaining estimates by work-
ing separately with the () two-sample shift models
embedded within it. (With a different approach
Lehmann (1963a, 1964) also extended the
Hodges-Lehmann one-sample estimates to linear
models with several observations per cell and devel-
oped rank-based methods for some linear models with
one observation per cell, but this work is of less
generality and is not-discussed further here.)

Lehmann found that the simple Hodges-Lehmann
estimate of u; — p;,

T,'j = med{ Y,‘k - Y}li
k= 1, .

(2.6)
'9ni;l=1’ ""nj}9

the median of the set of all pairwise differences among
the observations in cells ¢ and j, was unsatisfactory,
because the T}; do not satisfy the linearity constraints
which the u; — u; themselves do:

@7 (- w) + (= ) = (i — ),
but
(2.8) Tij + Ty # Ta,

because the operations of subtraction and taking a
median do not commute. This makes the raw Hodges-
Lehmann estimates (2.6) unsuitable as a basis for
tests of linear hypotheses about the u;, because in
small samples an arbitrary renumbering of the cells
would yield somewhat different estimates and test

statistics. Lehmann proposed instead adjusting the T';
and estimating u; — u; by

(2.9) wi=T! - Tj,

where

I
(2.10) T=I"Y Ta.
k=1
(Note that T}; = 0 for all i.) The linearity problem was
thus removed, at the cost of offending (frequentist)
intuition by using observations in cells other than i
and j to help in the estimation of w; — p;. Lehmann
pointed out, however, that the size of the influence of
cells other than i and j on the estimator of u; — y;
tends to 0 in probability as the sample sizes increase.
A different drawback of this estimation method was
noticed by Spjgtvoll (1968)—cells with unequal num-
bers of observations get equal weight in the calculation
of the T/, which is inefficient with unbalanced data.
Spjgtvoll suggested several ways of remedying the
situation, the simplest of which was to work with
weighted averages:
I
211) W;=T,-T, T:=N"Y nTa.
k=1
This is the form of Hodges-Lehmann estimation that
is used in what follows. Note that T is an estimate of

I
(2.12) N kE e — ) = pi — B,
=1

and that, because T}; = —T};,

.-.l

(2.13) n; = 0.

v~

~.

In effect, the Lehmann-Spjgtvoll adjustment process
linearizes the estimates by making all comparisons
relative to the grand mean: u; — u; is expressed as
(wi — ) — (w; — i) and estimated by T; — T,.

A natural estimate of the contrast (2.4) is then

: R I-1 I
(2.14) =23 X bW,
i=1 j=i+1

It seems on the face of it that the resulting estimate
will not be unique, because the b;; are not; but in fact
by virtue of the above linearization all choices of b;;
lead to the same estimate of ¢.

Lehmann’s method of constructing robust tests of
linear hypotheses based on these estimates was to
express the classical test statistics in terms of con-
trasts and to replace the classical estimates of those
contrasts by their robust analogues, the W;;. A linear
hypothesis H in the model (2.1) amounts to placing
some number ¢ of linearly independent constraints on
the vector (u,, - - -, ur) of cell means, so H can always
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be expressed in terms of a statement that this vector
lies in an (I — g)-dimensional subspace of R’. The
classical test statistic for such a hypothesis is based
on

I
(2.15) C= 3 n(Y. — i)}
i=1
where
(2.16) Y. = 2 Yii/n;
j=1

and (i, ---, ur) is the projection of the cell means
vector into the subspace of R’ specified by H. This
statistic, when divided by the variance o2 of the error
distribution, follows a x? distribution with g degrees
of freedom under H when the error density f is
N(0, ¢?), and under mild regularity conditions (see
Huber, 1972) C/s? converges in distribution under H
to xZ as n,, ..., ny — o even if f is not normal. If ¢*
is not known, it is necessary to estimate it to obtain a
working test statistic for H; with any consistent esti-
mate 62 used in place of ¢2 in the denominator of the
testing ratio, the asymptotic distribution will still be
x4. The classical estimate of o2 is

I n;
217) =WIN-D1Y Y (Y;- Y.)?
i=1 j=1

which when divided by ¢% and multiplied by N — I
is x%_; when f is normal, so that because ¢ and C are
independent the ratio

(C/e))/q c/

(N - Dé*/a®)/(N 1)~ ¢*

(2.18) FC =

has a null F distribution with ¢ and N — I degrees of
freedom under normality.

Lehmann’s (1963b) approach to obtaining rank-
based tests of linear hypotheses involving contrasts
was in effect to note that W;; is an estimate of u; — u;,

* with corresponding classical estimate Y;. — Y;., so that
rewriting the classical numerator as

I-1 I 2
(2.19) c=Y ni[ Y a;(Y. - Y,)] ,

i=1 j=i+l

which is always possible because the 4; are linear
functions of the Y., the robust analogue of C becomes
clear:

I-1 I 2
(220) L = 2 ni( 2 aijW,-j> .

i=1 J=i+l

Another way to put it, considering (2.12), is that T;
and Y; — Y (where Y= N7 Y., n;Y,) are estimating
the same thing, (u; — 1), so that the analogue of

I

(221) C = Iil ni{ 2 aij[(Yi, - Y) - (Y,, - Y)]}

j=i+l

is

-1 1 _ _ 2
(2.22) L=} ni[ Y ai(T; — TJ)] .
i=1

j=i+1
It is usually not necessary in practice to determine the
a;j; to obtain L for a given problem one simply replaces
the quantities Y;. — Y in the classical numerator by
T (or, equivalently and even more simply, in view of
(2.13) one can replace just Y;. by T}).

Example 1. In the one-way layout, for the usual hy-
pothesis

(2.23) Hy: M1 = o = NI

(here ¢ = I — 1), the classical statistic assumes the
form
I

Ca= ¥ ni(Y = V)%,

i=1

(2.24)
so the robust numerator is simply

I
(2.25) LA = 2 n,-T?.
i=1

Example 2. Consider the r by ¢ two-way layout with
equal numbers, say n, of observations per cell. The
usual notation for this model is

Yir=n+a+8

(2.26) i=1---,r
+ i +epyi=1, »C (s
k=1, , n

subject to the side conditions

227 Yau=YB=Xv4=X% Ymi=0

i=1 j=1 i=1 j=1
foralll=1, ...,cand m =1, ..., r. The three
hypotheses addressed by the usual analysis of variance
table are

HA: al = e = ar = 5
(2.28) HB: ﬁl = ... = 6c = O,
HAB: Y1 = - ='Yrc"'0
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The classical numerators for H,, Hg and H,p can be
expressed as

Ca=nc 2 (Y.. - Y...)z,

i=1

CB = nr 2 (Y.j. - Y...)29

J=1

(2.29)

Cap

n (Yij. - Y...)Z = Cy — Cp,

it
irg-

i J

where as in (2.16) the dot notation indicates averaging
over the indicated subscript(s). Here Y;;. and Y..
play the roles of Y;, and Y in (2.24), and Y... — Y... is
given by

(2.30) Yi.-Y.=c' Y (Y- Y.)
j=1
and similarly for Y.;, — Y..., so numbering the I = rc

cells as in Table 1 the robust numerators, in the
notation of model (2.1), come out

r c 2
-1 5l
L, =nc 2 (4 2 j+G=1ec | »
=1 J

c r 2
(2.31) LB = nr 2 <r_1 2 _j+(i—1)c) )

I

S
™M~
|

|
=

|
$

LAB

This approach of replacing classical estimates by
their robust counterparts in the numerators of the
classical test statistics to obtain the robust numerators
works only when closed-form expressions exist for the
classical statistics. This excludes many situations in
unbalanced two- and higher-way layouts. In problems
of this type the classical numerator is often found in
effect by solving a system of linear equations in the
Y.;—or, equivalently by sufficiency, in the Y. (Scheffé
(1959), Section 4.4)—to determine the ji;, after which
the u; are substituted into (2.15); no closed-form
expression for the resulting numerator will be possible.
In such cases the form of the Lehmann numerator is
equally obscure, but its value can be found simply by
replacing the Y, by the T in the system of equations

TABLE 1
Notational conversion of the two-way layout into a one-way layout

1 2 e c
1 1 2 ¢
2 c+1 c+2 2¢
r (r—1)c+1 r—1)c+2 re=1

whose solution determines the classical numerator and
proceeding as in the classical case.

Example 3. In the r-by-c two-way layout of Example
2 with unequal numbers n; of observations per cell,
the robust numerator for H, is derived by analogy
from the classical to be

L@ T}Hi_nc)Z]
L, = _—_—
4 i§1 [ 2i=1 nj_+1(i—1)c
(2.32)

_ [Xic (B5=1 0k 0e) 7! 2ot Tivmnel?
Yic1 (Th=1 njli—ne) ! ’

and similarly for Lg; but it is necessary to solve a
system of linear equations to obtain the form of the
classical numerator for H,z, so that no simple expres-
sion exists for either the robust or the classical nu-
merator in that case.

The analogy between the classical and robust pro-
cedures carries over to the asymptotic distributions.
Lehmann (1963b) showed that L/c% converges in dis-
tribution under H to x2 as the n, — o, where

(2.33) ok = (126°)7" = [12(Jf*)’]

plays the role for the rank-based numerator that the
error variance o plays for the classical statistic. Their
ratio

(2.34) erc(f) = o®/ok = 126°(Jf?)

is the asymptotic relative efficiency of the robust
procedure to the classical; this is just the familiar
expression (Lehmann, 1975) for the efficiency of the
Wilcoxon one- and two-sample procedures relative to
the corresponding classical ¢ methods. Table 2 gives
some values of this efficiency as well as values of ¢
and 1/6 for various distributions. The skewed mixed
normal distribution referred to in Table 2 has cumu-
lative distribution function (cdf)

F(x) = \®[(x — m)/o1]
+ (1 = N@[(x — p2)/02],

where & is the standard normal cdf.

It can be seen from the table that considerable
efficiency gains are possible using the rank-based
methods on heavy-tailed data, with a loss of only about
4% efficiency for normal data and with a potential
loss for any distribution never to exceed about 14%.
These are asymptotic results, but, as documented in
Draper (1981), empirical small-sample efficiencies are
similar to the asymptotic values in designs with as few
as N = 10 total observations and n; = 3 observations
per cell.

Just as in the classical case, 0%, the denominator
of the Lehmann test statistic, will not be known in

(2.35)
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TABLE 2
o%, 1/6 and asymptotic relative efficiency of Lehmann’s two-sample ANOVA methods to the classical

Distribution f a? 1/0 ok =¢g2/o}

Standard normal 1.0 3.544 1.047 0.9549
Standard logistic 3.290 6.0 3.0 1.097
x? with 8 degrées of freedom 16.0 . 12.8 13.65 1.172

Skewed mixed normal

A=0.75,u,=0,0, =1, us =19, 0, = 2) 2.426 4.670 1.817 1.335
A=082,u,=0,0, =1, u, =19, g, = 3.5) 3.558 4.535 1.714 2.076
t with 3 degrees of freedom 3.0 4.353 1.579 1.900
=0.864

Any f

practice and it is necessary to estimate it to obtain
usable test statistics. As in the classical case, replace-
ment of 0% by any consistent estimate 6% will result
in a statistic whose limiting distribution is still x2.
The estimation of ¢% is described in Section 4 below.

Lehmann’s original proposal was to obtain critical
values for the usable test statistic

(2.36) L/6%

from this x 2 distribution, but, as is discussed below in
Section 4 and shown in Draper (1981), the distribution
of

(2.37)

is approximately x2 for a » which depends on the
method used for estimating o%, and L and 6% are
approximately independent under H, so that a better
small-sample null distribution for the ratio

_ (L/sk)/a _L/q

(vok/ok)/v o}
is the F distribution with ¢ and » degrees of freedom.

Rank-based robust confidence and multiple com-
parison procedures using the Lehmann approach are
straightforward to construct through the same analo-
gies to the classical techniques that gave rise to Leh-
mann’s robust testing ratios. The method (Lehmann,
1963b) consists simply of writing down the classical
confidence and multiple comparisons region of inter-
est, substituting the robust estimates 7T for the clas-
sical Y;., and using an estimate % for the rank ana-
logue of the underlying error variance in place of the
usual 62 (2.17). As a simple illustration, continuing
Example 1 above, the normal theory 100(1 — «)%
confidence interval for a contrast ¢ = Y/, ciu; =

21 31 i1 bij(u; — ;) in the cell means in the one-
way layout has the form

vok/ok

(2.38) F;

. 1 1/2
(2.39) ¢ + ta(1 - a/2)5<2 c?/ni) ,
=1
where ¢, = ¥ Yiois1 b;i(Yi — Y,.) is the classical
contrast estimate and ¢, is the cdf of the ¢ distribution

with » degrees of freedom. The Lehmann-type rank-
based robust alternative to this is simply

=1

I 1/2
(2.40) ¢ =+ t3-,(1 - a/2)&R<Z cf/ni> ,

with ¢ given by (2.14), and using one of the estimates
of ¢% provided in Section 4. Scheffé- and Tukey-type
multiple comparisons regions are constructed simi-
larly. Lehmann (1963b) demonstrates the large sample
validity of this technique and gives an example of its
use.

A FORTRAN program to carry out the Lehmann
estimation and testing procedures in arbitrary one-
way layouts and balanced higher-way layouts with
several observations per cell, using a denominator
estimate ¢% described below in Section 4, is available
from David Draper at The RAND Corporation.

3. THE TECHNIQUES OF JAECKEL AND
HETTMANSPERGER-McKEAN: THE GENERAL
LINEAR MODEL

The model considered by Jaeckel (1972) in his de-
velopment of rank-based estimation methods and by
Hettmansperger and McKean (1976, 1977) in their
application of Jaeckel’s methods to hypothesis testing
and confidence procedures, is the general fixed effects

~ linear model (Q) of Section 1,

P
(31) Yi=ﬁo+ ZX,»,-Bj+ei, l=1, "°,N,

j=1
or, in matrix form,
(3.2) Y=8+X8+e,

in which as in model (2.1) the e; are iid continuous
random variables with density f such that both 6 =
[ f? and o® = Var(e;) are finite, and X is an N by
p matrix of known constants. Jaeckel’s work simplifies
and makes more usable an approach to robust esti-
mation in the linear model due to Jureckova (1971),
who generalized the work of Hodges and Lehmann
(1963) described above on inverting rank tests to
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obtain estimates. Jaeckel’s starting point; like Leh-
mann’s in Section 2, is the classical estimates; but his
‘rank-based modifications are quite different. He con-
siders the errors or residuals e; as a function of the
parameter vector 8’ = (8o, - - - , B),

(3.3) ei(él) =Y. — B — i:l X6,

and seeks estimates which make the residuals as small
as possible. The measure of residual size minimized
by the classical estimates is the ordinary Euclidean
square norm,

N

Dcle(8')] = le) > = T ei(8")

i=1

(3.4) N
=Y ey(B') - en(8),
i=1

in which e;(8’) is the ith ordered residual. Note
however that the size of a vector of observations z =
(21, - -, 2v) has both a dispersion component and a
centering component; for example, the Euclidean
square norm of z can be written

(3.5) Izl*=1lz-zl*+lzl?

where z is a vector all of whose elements are z =
N7 Zﬁl 2;.

An alternative to minimizing (3.4) in arriving at the
classical estimates involves first minimizing only
the dispersion part of (3.5) applied to the residuals,
le—é&| 2 = N Var(e). This yields the classical esti-
mates (3;, not of all of the 8 but only of (8, ---, 8,),
because this dispersion measure is translation-
invariant and B, drops out. Then the centering part
Il €11* of (3.5) with the previously found (8i, - - - , 8,)
substituted in is minimized to yield ,. In effect, first
the model (3.1) is recast so that G, is regarded as the
center of the distribution of the e; then 8 =
By, -+, By) is estimated by g; and finally, B, is
estimated as the center of the residuals Y; — (X8),.

Note that in the usual method of arriving at the-

classical estimates, in which || e|? is minimized as
a function of 8, as well as of (8, ---, 8,), the mini-
mizing condition which specifies B, in terms of
(B, ---, B,) is & = 0, so the classical measure
of residual size (3.4, 3.5) can also be thought of as a
dispersion measure.

This alternative approach is the one taken by
Jaeckel and Hettmansperger-McKean. As in the clas-
sical case, Jaeckel also restricts himself to trans-
lation invariant dispersion measures and makes no
attempt to estimate 8,; Hettmansperger and McKean
later proposed a rank-based estimate of 8, which
is described below.

From a robustness point of view, the trouble with
the usual normal theory method is that the classical

dispersion measure (3.4) places too much weight on
the extreme residuals when the data contain gross
errors or have a distribution with tails heavier than
those of the normal. Jaeckel’s dispersion function
replaces one of the ordered residuals e; in the product
in (3.4) by a value or score a(i) based on it which gives
less weight to the largest and smallest errors:

N
De(8")] = % ali)en(®’)
(3.6) '

N
= Y a[R!(8')]e:(®),

i=1
where R/ (8’) is the rank of e;(8’) among e, (8'), - - -,
en(B’). To insure the translation invariance of D;
Jaeckel requires of the scores a(i) that they sum to
zero; with this condition D;[e(8’)] no longer depends
on B: .

D,[Y — B, — XB] = D,[Y — XB]

3.7 e
(3.7) = 3 alR(BIIY: ~ (XB).],

where R;(8) is the rank of Y; — (X8); among Y, —
(XB)1, ---, Yy — (XB)n. Further, in order that the
resulting dispersion measure D, be convex, and thus
readily minimized, the scores must be monotone:

(3.8) a(l) = ... < a(N).

Hettmansperger and McKean add to these require-
ments that of symmetry of the scores,

(3.9) a(i) =—a(N +1-1),

an assumption which is not necessary in general and
which is natural only in the context of the assumption
that the e; are symmetrically distributed (a restriction
which is also not needed in Jaeckel’s estimation of
(Bi, -+, Bo)). See Koul, Sievers and McKean (1987)
for an interesting numerical study of the performance
of the Jaeckel estimation procedure with asymmetric
scores.

Different choices of the scoring function a(-) give
rise to estimates with different properties. The sim-
plest are the piecewise constant sign scores

(3.10) a,(i) = sign[i/(N + 1) — %]
and the linear Wilcoxon scores
(3.11) aw(@) = i/(N + 1) — V.

Other possibilities include van der Waerden-type
normal scores,

(3.12) avw(i) = ®7'[i/(N + 1) — Y],

and a mixture of sign and Wilcoxon scores proposed
by Policello and Hettmansperger (1976), in which a
fraction, n/2 say, of the residuals at each end are given
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sign scores and the remaining (1 — ) in the middle
receive Wilcoxon scores.

Choice of scores is based on a compromise between
resistance to outliers and gross errors on the one hand
and efficiency considerations on the other. The sign
scores, which lead to results similar to those from least
absolute deviation (L) regression (Laplace (1793) (see
Stigler, 1986); Kennedy and Gentle, 1980), have ex-
cellent resistance properties but are too inefficient for
most data. In the one- and two-sample problems, the
Wilcoxon scores are known to strike a good balance
between efficiency and robustness for many distribu-
tions. Hettmansperger and McKean (1977) suggest
choosing the scoring function adaptively, by using the
data to estimate the optimal fraction of sign and
Wilcoxon scores in the Policello mixture. Wilcoxon
scores are considered exclusively here; further work is
needed to see if optimizing the scores by adapting
them to the data at hand significantly improves the
performance of the Hettmansperger-McKean method.
(The same investigation could be undertaken for
the Lehmann approach of Section 2, in which the
Wilcoxon scores were used implicitly; see Hodges and
Lehmann, 1963.)

It is convenient in what follows to renormalize the
Wilcoxon scores afy and use instead

(3.13) aw(i) = 12Y2[i/(N + 1) — ).
The resulting Wilcoxon-type dispersion measure is
D;wl[Y — XB]
=12Y4(N + 1)!
(3.14) N ( )

- X [Ri(B) — (N + 1)/2][Y: — (XB):].

=1

Solving for the 8yw which minimizes Dyw[Y — X8]
yields the rank analogue of the normal equations:

N
(3.15) El (Xij — X))[R:(Bsw) — (N + 1)/2] = 0,

j=1""’p’

» where

N
Xj = N—l 2 Xij.

i=1

(3.16)

The “equations” (3.15) are solved in the sense that a
value of ﬁ,,w is sought which makes the lefthand side
of (3.15) as a close to 0 as possible. The resulting
solutions typically do not have closed-form expres-
sions, and iterative computer methods are generally
needed to find numerical solutions. Hettmansperger
and McKean (1976) have investigated several algo-
rithms, including steepest descent and regula falsi,
and report good results with both. A potentially more

serious practical drawback is that the solutions are
not necessarily unique; but Jaeckel (1972) showed that
the diameter of the solution set is bounded and goes
to 0 in probability as N — . In theoretical situations
where this indeterminacy is troublesome, a unique
estimator can be identified by taking the centroid of
the minimizing set or by minimizing Dyw[Y — X8,w],
as defined by (3.14), over all ,é.)w in the solution set to
(3.15). In practice the simpler approach of just being
satisfied with whichever point in the minimizing set
the iterative convergence has yielded seems to work
well enough. Note however that, due to differences in
computer hardware, the same computer program to
perform the iterative search for 8;w may yield some-
what different estimates when run on different
computers.

Example 4. One situation in which the Jaeckel es-
timates based on Wilcoxon scores do have a closed-
form expression is in linear regression with only one
independent variable. Rewriting the model (3.1) in
this case as

(317) Yi=a+BX,~+e,~, i=1,---,N,

the Jaeckel estimate of the slope 8, which was first
derived by Adichie (1967) (although Adichie did not
realize that his estimator had a closed-form expression
and Jaeckel did not recognize his estimator to be
the solution of the equation that implicitly defines
Adichie’s estimate) is a weighted median of the set
of all pairwise slopes

(3.18) {(Y; — Y.)/(xj — x:), (i, j) such that x; # x;}

in which the weights are proportional to the absolute
distance | x; — x;| between the independent variable
values. (To calculate a weighted median, sort the
observations from smallest to largest, carrying their
weights along with them, find the overall sum S of the
weights, and begin adding the weights from the top or
bottom of the sorted list until S/2 is reached. The
corresponding observation is the weighted median.)
This model is examined in more detail in Draper
(1981), in which a new rank-based robust alternative
to the Adichie-Jaeckel estimator is proposed for use
in models with several observations per cell. Note that
in the usual two-sample shift model, in which n of the
x; are 0 and the remaining m = N — n are 1, the
Adichie-Jaeckel estimator is simply the two-sample
Hodges-Lehmann estimate of the shift 3.

As described above, estimation of B, with the
Jaeckel-Hettmansperger-McKean approach involves
applying an estimator of location to the residuals
é* = Y, — (XB,);. As in Section 2, in order that 3,
even be identifiable it is necessary to specify the
manner in which the errors e; are regarded as centered
at 0; if for example, E(e;) = 0 is assumed then B, is
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the mean of the distribution of the random variables
Y: — (XB):. If the e; are further assumed to be sym-
metrically distributed about 0, then a reasonable
choice for an estimate of 3, is the one-sample Hodges-
Lehmann estimator applied to the é;, namely,

(3.19)

the median of the set of all pairwise averages of the
residuals Y; — (XB,):;. This is Hettmansperger and
McKean’s recommended estimate of 8,. In settings
where the assumption of symmetry is not tenable,
Aubuchon and Hettmansperger (1984b) advoeatg the
use of the ordinary median of the residuals, 3§ =
med{é}}, although in the absence of symmetry the
appropriate measure of residual centering by which
the intercept is to be defined may vary from problem
to problem.

How can the Jaeckel estimation technique serve as
the basis for tests of linear hypotheses? McKean and
Hettmansperger’s (1976) approach to constructing
tests based on the Jaeckel estimates was, like
Lehmann’s, to take as a starting point the classical
techniques. In testing a hypothesis H which places g
linearly independent restrictions on the 8 vector, it is
convenient to parameterize the model Q (3.1) in such
a way that the design matrix X has full rank p. Denote
by w this model plus the restrictions imposed by H.
Expressed in terms of the classical residual dispersion
measure, the classical test statistic for H is based on

(3.20) D% = Dc[Y — XB.c] — De[Y — XBuacl,

the amount of extra lack of fit imposed by accepting
the model » over and above that inherent in Q. Here
ﬁw,c and B¢ are the estimates which minimize the
classical dispersion measure under w and (, respec-
tively.

As in Section 2, this statistic, when divided by the
variance o of the error density £, is x2 under H when
f is normal, and under the same mild regularity con-
ditions as in Section 2 is asymptotically x 2 even if f is

Bo = med{é} + é7)/2,1<i=<j=Nj,
J

not normal. As before it is typically necessary to:

estimate ¢2; the classical estimate is

F=[N-(p+1]"

(3.21) N R R
<2 [Y: = (XBa,c)i — Bo,cl?
where
A N A
(3.22) Boc= N1 ;1 [Y: — (XBac)il

is the sample mean of the full model residuals
Y - Xﬂ Q,C. !

The asymptotic null distribution of D%/¢? is still
X2, but because [N — (p + 1)]6%/6® ~ x¥-(p+1 and

¢ and ¢” are independent under normality, a better
(Scheffée, 1959) small-sample distribution when f is
normal for

Fc = (DAZ:/UZ)/Q
(3.23) {N — (p + D]6*/a"}/IN = (p + 1)]
_D¢/q
6,2

under H is Fy n—p+1)-

Hettmansperger and McKean proposed using the
same approach but with the Jaeckel dispersion mea-
sure instead of the classical. With the Wilcoxon scores
this involves basing a test of H on

Diw = DywlY — XB..;w]
— Dsw[Y — XBaaw),

where as above B, ,w and fo,w are the parameter
estimates under w and (, respectively, that minimize
the Jaeckel dispersion measure. Hettmansperger and
McKean found that 2D7%,,/or converges in distribution
under H to xZ, where as before

(3.25)  or=127V207" = 1272(f f2)7.

Note that, unlike in the Lehmann method, # enters
into the asymptotic distribution of the test statistic
through 1/6 rather than through 1/62. (Intuitively this
is because substitution of the scores a(i) into the
classical dispersion measure (3.4) causes the residuals
to enter into the Jaeckel dispersion measure (3.6)
raised only to the first power.) Even so, Hettmansper-
ger and McKean showed that, as was the case for the
Lehmann method, the asymptotic efficiency of the
Hettmansperger-McKean approach relative to the
classical is ¢%/c% = 120202 Thus the Lehmann and
Hettmansperger-McKean methods are asymptotically
equally effective in efficiency terms.

As in Section 2, with any consistent estimate ¢z of
ar the limiting null distribution of

(3.26) 2D5w/ér

is still x2, and this was the distribution originally
proposed in practice by Hettmansperger and McKean.
They later (1977) found that the x2 distribution is too
light-tailed for use in small and moderate size samples.
In searching for a heavier-tailed approximation to the
small sample distribution of 2D }w/ér, they suggested,
without much justification except by analogy with
the classical methods, the approximation of the null
distribution of

(3.27 (2D3w/q)/dr

by the F, n_(p+1) distribution. The success of this and
other approximations is discussed in Draper (1981)
and in Section 4 below.

(3.24)
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As was the case with the Lehmann methods, confi-
dence and multiple comparison procedures using the
Hettmansperger-McKean approach derive naturally
from the classical techniques, through the replace-
ment of the normal theory parameter estimates Bqc
and estimated error variance ¢ (3.21) by their robust
analogues Bo;w and ¢%. For an informal argument
justifying this and an example illustrating the robust
versions of Scheffé and Tukey multiple comparison
calculations in a two-way layout with several obser-
vations per cell, see Hettmansperger and McKean
(1978). Extensive empirical investigation of the small
sample properties of both the Hettmansperger-
McKean confidence and multiple comparisons pro-
cedures and of those of Lehmann outlined in the
previous section has not yet been made, but in any
given situation one would expect acceptable coverage
behavior and interval lengths that compare favor-
ably with those of the classical procedures, based on
the good performance (described in the next section)
of the testing techniques and the usual connections
between significance tests and confidence intervals.

A rank regression command (RREG) implementing
the Hettmansperger-McKean approach to robust lin-
ear model analysis is now available in some versions
of the Minitab statistical computing system (Ryan,
Joiner and Ryan 1985), and there are plans to make
it available in all versions of Minitab in the next year
or two. Alternatively, a stand alone FORTRAN im-
plementation of these methods can be obtained from
Joseph McKean at Western Michigan University.

4. ESTIMATION OF o%; EMPIRICAL RESULTS

The following is a brief description of results per-
taining to the estimation of ¢% and to the empirical
small sample performance of the rank-based robust
testing ratios of Lehmann and Hettmansperger-
McKean outlined in Sections 2 and 3 above. For more
details see Antille (1976), Draper (1981), Hettman-

sperger (1984), Jureckova (1973) and the other refer- -

ences cited below.

4.1 Estimation of o2

Two main approaches to the estimation in linear
models of % = 127'07% where 8 = [ f? have so far
been examined in the literature: a method for esti-
mating 1/ due to Lehmann (1963c) based on the
lengths of distribution-free confidence intervals, and
an approach to the estimdtion of 6 due to Schuster
(1974) and Schweder (1975, 1981) based on window-
or kernel-type density estimation of f. The two meth-
ods appear quite different but are in fact closely
related—in disguise the Lehmann method is equiva-
lent to a particular version of a density estimate

(Draper, 1981; Aubuchon and Hettmansperger,
1984a)—and they have been shown (Draper, 1981) to
be asymptotically equally accurate in the estimation
of ¢%, but (as will be seen below) there are modest
differences in small sample performance and substan-
tial differences in ease of implementation. Other
approaches to the estimation of ¢% not described here
can be found in Antille (1974), Lehmann (1963b),
Koul, Sievers and McKean (1987) and Sheather
(1985). Data resampling methods such as the boot-
strap and jackknife provide a natural alternative to
the methods presented here for estimating ¢% and
obtaining p-values from the Lehmann and Hettman-
sperger-McKean testing procedures, but this possibil-
ity has not been explicitly investigated to date.

4.1.1 Lehmann’s Method Based on Length of
Confidence Intervals

As was the case with Lehmann’s robust contrast
estimates of Section 2, his idea (Lehmann 1963c) for
estimating o% arose out of his work with Hodges (1963)
on inverting rank tests to obtain estimates of the
center of symmetry in the symmetric one-sample
model and of the size of the shift in the two-sample
shift model. Consider first the usual symmetric one-
sample model, in which, say, Z,, ---, Zy are iid with
continuous density f, symmetric about u. The rank-
based one-sample Hodges-Lehmann estimate of u is
obtained by inverting the Wilcoxon signed-rank test,
and takes the form

# = med(S’),

4.1) o
S'={Z;+Z)/2:1<i=<j= N}

the median of the set of all pairwise averages of the
observations. Lehmann showed that this set S’ of all
pairwise averages could serve as the basis of a family
of confidence intervals for u whose confidence levels
depend only on the Wilcoxon signed-rank null distri-
bution and not on f, and he then showed how the
lengths of these intervals could be used in the esti-
mation of o%.

Specifically, let A(;) be the ordered elements of S’
fori=1,..., K=N(N+1)/2;thenforc.,=1, .--,
[K/2]

(4~2) (A(c’a) ’ A(K+1—c’a))

is a confidence interval for u, symmetric in the A,
with confidence level 1 — o =1 — 2Py(V = ¢/ — 1),
where Py (V) denotes the null distribution of the Wil-
coxon signed-rank statistic V and [x] is the integer
part of x. Lehmann’s result on estimating ¢% was that,
as is intuitively reasonable, the lengths L’(a) =
Ag+i-c;y — Ay of these distribution-free confidence
intervals, when properly normalized, can be used to
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estimate the variability of observations with density
f. He demonstrated that as N — «

43)  (BN)2L’()/®7'(1 — a/2) => 1/8

for all levels 0 < o < 1, where ®~! is the usual inverse
normal cdf. Thus,_

(4.4) [NV2L'(a)/2®7'(1 — /2)]?

is a consistent estimate of ¢% for each a.

Consider now the usual two-sample shift model, in
which, say, X, ---, X, and Yy, ---, Y, are inde-
pendent, the X; with continuous density f (x) and the
Y; having density f(y — A), so that stochastically
Y =, X + A. The two-sample Hodges-Lehmann esti-
mate of A is obtained by inverting the Wilcoxon rank-
sum test and has the form

A=med(S),
(4.5)
S={Y,-X:l1l=<i=m,1=<j=nj

the median of the set of all pairwise differences of the
Y’s and X’s; this estimator was the basis of Leh-
mann’s rank-based linear model inference described
in Section 2. As in the one-sample model, Lehmann
showed that this set S of all pairwise differences yields
a family of confidence intervals for A whose confi-
dence levels are again independent of f, depending
in this case only on the Wilcoxon rank-sum null
distribution.

More precisely, let Dy, be the ordered elements of S
fori=1, ..., mn;thenforc,=1, --.,[mn/2]

(4-6) (D(ca); D(mn+1—ca))

is a confidence interval for A, symmetric in the D,
with confidence level-1 — a =1 — 2Py(W < ¢, — 1),
where Po(W) is the null distribution of W, the Mann-
Whitney form of the Wilcoxon rank-sum statistic. As
in the one-sample case, Lehmann showed that the
lengths L(a) = Dimn+1-c,) — Dy, of the intervals (4.6),
when suitably normalized, can provide an estimate of
o%: His result was that as both m and n — o so that
m/m+n)—p,0<p<l,

@7 [Bmn/(m + n)]’L(@)/®7(1 - a/2) > 1/6
for all 0 < « < 1. Thus, in this case for each «
(4.8) {[mn/(m + n)]"’L(«)/227'(1 — a/2)}"

is a consistent estimate of ¢%.

There are a number of ways to apply these basic
results in the linear model. In models with several
observations per cell like (2.1), the one-sample method
can be applied to the cells separately, with a composite
estimator formed from the separate one-sample cell
estimates, for example by taking a weighted average;
or the twoe-sample method can be applied separately
to all pairs of cells in the layout, with a weighted

average composite estimator again constructed. In
more general linear models like (3.1) without any
replicate structure, the only way to use the Lehmann
confidence interval approach is to apply the one-
sample method to the residuals of the full linear model
fit, treating them as one large sample. The one-sample
Lehmann methods have the disadvantage of requiring
symmetry of the underlying error distribution, making
the two-sample approach more promising in settings
for which the Lehmann robust estimation methods of
Section 2 were designed, namely models with several
observations per cell.

Focusing attention again on the model (2.1) of Sec-
tion 2,

i=1,...,1
(4.9) Yj=m+ e ]1= Looeesm |

Y n;=N,

i=1

consider choosing two cells 1 < i < k < I and letting
Li.(a) be the length of the 100(1 — «)% confidence
interval for (u; — u.) based on the Wilcoxon rank-sum
statistic applied to cells i and k. Then set

Bi(a)
= [3mne/(n; + ny)]1"?Lin() /@71 — o/2).

The Bi.(a) form a set of () dependent estimates of
1/6 because for example B;, and B;. have the data in
cell i in common. A weighted average composite esti-
mator of 1/6 would take the form

(4.10)

-1 I
B(a) =Y ¥ MBu(a).

=1 k=i+1

(4.11)

Two practical issues now arise: the choice of the
weights A, and specification of the confidence level
1 — «. One natural way to choose the \; is to
minimize the asymptotic variance of the composite
estimator subject to the asymptotic unbiasedness con-
dition Y., A = 1. Draper (1981) showed that, under
the simplest realistic asymptotic specifications, in
which the n; — ® in such a way that n,/N — p;
O<p;<1l)foralli=1, ..., ]I the best choice of the
Aix in this sense is

Aie = 2[(I = 1)(p; + p&) — 1)/[ — 1) — 2)]

(this result holds only when the number I of cells in
the layout is greater than 2). In practice p; is replaced
by n;/N, leading to the estimator

(4.12)

B(a)
(4.13) _ I-1 I (I _ 1)(ni + nk) _N
- i=1 k=zi:+1 2 NUI-1)(I-2) B (a)

of 1/6, with corresponding estimate B%(«)/12 for o%.
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Choice of the confidence level in (4.13) corresponds
roughly to choosing the bin width when making a
histogram; as shown empirically in Draper (1981), as
the intervals widen, the bias of B(a) goes up but the
standard error goes down. If the central objective were
estimation of o% itself, it would be reasonable to
resolve this tension by minimizing the root mean
square error [(bias)? + (standard error)?]/? as a func-
tion of . But when the main goal is to construct good
denominator estimates for use in the Lehmann and
Hettmansperger-McKean testing ratios of Sections 2
and 3, it turns out (in order to be able to refer the
testing ratios to familiar distributions like the F)
that bias considerations dominate (Draper, 1981;
Aubuchon and Hettmansperger, 1984a), and to make
the bias small in small samples o should be fairly
large. Simulations (Draper, 1981) indicate that after
a simple bias correction is applied (replacement of
®7'(1 — @/2) in Bix(a) (4.10) by t7}n,-2(1 — a/2)), the
two-sample estimator 6z = B(a)/12'? with a confi-
dence level of about 100(1 — a)% = 50% performs
well both as a denominator estimate in the testing
ratios of Lehmann and Hettmansperger-McKean and
as an approximate standard error in the associated
confidence procedures, in models with several obser-
vations per cell (in practice this means that most of
the cells should have three or more observations).

4.1.2 The Schuster-Schweder Approach Based on
Density Estimation

The Schuster-Schweder approach to the estimation
of 0, rather than 1/6, is a one-sample technique. Their
method, in the one-sample problem with Z,, ..., Zy
iid with cdf F and density f, is based on the observation
that

(4.14) 0= [f%x)dx = [f(x) dF(x),

~ so that a reasonable estimate of 6 can be constructed
by using the data twice simultaneously, once through
a density estimate fy of f and once with the empirical
cdf F, N-

. N
(4.15) Oy = [n(x) dFn(x) = N7' 3 [n(Z)).

The density estimator Schuster and Schweder use
is a window or kernel estimate (Rosenblatt, 1956;
Wegman, 1972; Tapia and Thompson, 1978; Cheng
and Serfling, 1981),

N .
(4.16) fx(@) = N7 T wn(x, 2),

in which

@17  wn(x, y) = hRw[( — y)/hy]

is a window or kernel function, where w is any den-
sity symmetric about 0, and in which hy is the
window width. Putting (4.15)-(4.17) together gives
the Schuster-Schweder estimate of 6,

N N
(4.18) Oy =N7hy' Y ¥ wl(Z: - Z;)/hw],
i=1 j=1
which can be rewritten
0y = w(0)/Nhy

+ N7?hy' 33 wl(Z: — Z;)/hn]),

i#j

(4.19)

and the corresponding estimate of ¢% is then 127167
Schweder (1975) demonstrated consistency of b for 6
under the assumption of symmetry of f (together with
some conditions on the window width Ay to be dis-
cussed below), but it was later pointed out by Aubu-
chon and Hettmansperger (1984a) and others that
symmetry of f is not needed in the Schuster-Schweder
approach.

The principal application of this method in the
general linear model setting is, as with the Lehmann
one-sample method, to treat the residuals from the
full model fit as one large sample and insert them as
Z!sin (4.18). The fact that the residuals are dependent
random quantities would be expected intuitively to
affect the small sample behavior of the Schuster-
Schweder estimator (requiring an upward bias correc-
tion to compensate for the underestimation of varia-
bility induced by the dependence), but not its large
sample performance in an asymptotic setting in which
the number of predictors p in the model (3.1) remains
fixed and the sample size N grows, and indeed Aubu-
chon and Hettmansperger (1984b) have shown that
consistency of 8y for 6 still holds in that case (under
standard regularity conditions on the design matrix X
in (3.1)).

In carrying out the Schuster-Schweder idea there
are two main choices to be made: the window or kernel
function, and the window width. Popular choices for
the window density (Aubuchon and Hettmansperger,
1984a; Hettmansperger, 1984) include the normal,
rectangular (uniform), and triangular distributions
(the triangular being a convolution of the rectangular
with itself). Many authors (for example, Bean and
Tsokos, 1980) have noted that the choice of window
function in density estimation is not nearly as critical
as the specification of the window width; in practice
the rectangular or triangular densities are often fa-
vored on grounds of computational simplicity and
speed. The main difficulty with the density estimation
approach is the choice of window width, which like
the confidence level (1 — «) in the Lehmann methods
plays the role of the class interval width in histogram
plotting but which, unlike Lehmann’s confidence
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level, requires considerable delicacy of selection. The
same bias/variance tradeoff as in the Lehmann meth-
ods is present with the density estimation approach:
large window widths lead to density estimates with
small variance but large bias. Some guidance comes
from asymptotic_considerations: to get increasing ac-
curacy as N increases, it turns out that hy must go to
0, but not too fast. As with the Lehmann methods,
the goal in constructing good denominator estimates
of o% for calibrating the Lehmann and Hettmansper-
ger-McKean testing ratios of Sections 2 and 3 is to
choose hy to minimize the small sample bias of O,
and to make the bias small hy should go to 0 as fast
as possible. Aubuchon (1982) showed that the fastest
possible rate at which hy can tend to 0 for consistency
of f for # in linear model applications with dependent
residuals is hy = O(N~V2),

Schweder’s (1975) original work on bias minimiza-
tion has been extended by several authors, including
Aubuchon and Hettmansperger (1984a) and Sheather
and Hettmansperger (1985). Aubuchon and Hettman-
sperger’s idea is first to modify Oy (4.19) slightly as
follows:

Oy = (NE)™ + [N(N — 1)hy]™

(420 55 wl(Z: - 2)/hw).

i

This does not affect consistency and reduces the bias
of Oy from O(N~?2) to O(N7'). They then take hy =
k/N'/? and choose k to minimize bias (fy), obtaining

w o -1/3
(4.21) k=6[2“11 [f{(x)]zde u2w(u)du] .

Here [ u®w(u) du is-a known constant determined by
the choice of the kernel function, ¢ is a scale factor
obtained by reexpressing the underlying error density
f as f(x) = 6" f1(x/5), and [[f{(x)]* dx is a shape
factor whose appearance in a good choice of window
width is sensible on intuitive grounds: [ (f’)® is a
global measure of how rapidly f changes its local
behavior, and if [ (f’)? is large the window width
should be small.

Expression (4.21) summarizes the delicacy of the
density estimation approach to estimating [ f2 For
good performance in small samples it is necessary to
use the data in selecting the window width; in fact,
the data must be used twice, to specify both the scale
and the shape of the underlying distribution. Scaling
is not difficult; Aubuchon and Hettmansperger
(1984a) propose using the interquartile range or me-
dian absolute deviation from the median. The problem
is with shape: one starts out estimating [ f* and dis-
covers that to do so it is necessary to estimate
[ (f")2 Schweder’s original idea, echoed by Aubuchon
and Hettmansperger, was to choose a distribution like

the Gaussian, calculate [ (f’)? for it and hope that
this choice works fairly well for all data sets, but
simulations (Draper, 1981; Sheather and Hettman-
sperger, 1985) reveal predictably poor small sample
performance of this implementation. Sheather and
Hettmansperger (1985), following up on an idea also
mentioned by Schweder, propose to carry out a second
level of window estimation for [ (f’)% They find, not
surprisingly, that sensible choice of the window width
at this level depends on the data through [ (f”)% but
they also find through simulations in the one-sample
iid case that when a constant is inserted in place of
J (f”)? at this second level of the density estimation
process, much less harm is done than at the first level,
and the method actually performs reasonably well in
small samples across a variety of distributions in
removing most of the bias of fy. The success of this
approach when applied to dependent residuals from
the full linear model fit in (3.1) to construct a denom-
inator estimate for the Hettmansperger-McKean test-
ing ratio has not yet been fully explored in simulations
or theory.

4.2 Empirical Findings: Significance Testing

Once accurate estimates of o2 are developed, it still
remains to arrive at good small sample approximations
to the null distributions of the Lehmann and Hett-
mansperger-McKean testing ratios L/¢% (2.36) and
2D}w/or (3.26), and to learn about their small sample
performance. The asymptotic x2 distributions dis-
cussed in Sections 2 and 3 for both the Lehmann and
Hettmansperger-McKean testing ratios have been
found (Hettmansperger and McKean, 1977; Draper,
1981) to provide quite poor approximations to the null
distributions with even fairly large sample sizes. This
is because the extra variability imposed on the ratios
by using an estimate of ¢% in the denominator instead
of the true value results in distributions with heavier
tails than x 2. Huber (1970) conjectured that the small
sample distribution of v6%/0% might be well approxi-
mated by xZ for a value of » depending on the error
density f; simulations (Draper, 1981) have supported
this conjecture quite well for bias-corrected versions
of the Lehmann one- and two-sample estimators of
o% described above. This encourages the approxima-
tion of the null distribution of the Lehmann statistic
(L/q)/a% by the heaver-tailed F, ,, but suggests that it
might be necessary to estimate the denominator de-
grees of freedom v from the data. In practice it has
been found empirically (Draper, 1981; Hettmansper-
ger and McKean, 1977) that the same F distribution
that would be used with the classical statistic in the
linear model at hand provides a surprisingly good
approximation for both the Lehmann and Hettman-
sperger-McKean ratios (L/q)/¢% and (2D3w/q)/ox.
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TABLE 3
Typical Monte Carlo power comparisons between the classical and rank-based robust testing procedures

Linear Error Testing method Power at level

model density Numerator Denominator 0.10 0.05 0.01

One-way layout, 6 cells, Standard normal Hettmansperger- Lehmann 0.94 0.87 0.70
10 observations per cell McKean two-sample

Classical 0.96 0.90 0.75

One-way layout, 6 cells, t with 3 degrees of Lehmann Lehmann 0.99 0.98 0.90
10 observations per cell freedom one-sample

Hettmansperger- Lehmann 0.99 0.97 0.88
McKean two-sample

Classical 0.91 0.85 0.70

Two-way layout, 12 cells, Skewed mixed nor- Hettmansperger- Lehmann 0.72 0.61 0.34
5 observations per cell mal (fourth McKean two-sample

entry in Table 2) Classical 0.62 0.49 0.24

Note: Approximate standard errors for these power estimates p based on n = 1000 Monte Carlo replications can be calculated in the usual
[A(1 — p)/n]1*? binomial manner and range for the given power values from about 0.003 to about 0.016.

This finding is convenient both from the point of view
of not having to adapt the null distribution to the data
and of preserving the analogy with the classical pro-
cedures, thus making the robust methods easier to use
by practitioners accustomed to the traditional analy-
sis. Simulations (Hettmansperger and McKean, 1977;
Draper, 1981) indicate that the resulting tests not only
have approximately correct levels with the wide vari-
ety of error distributions listed in Table 1 (with the
actual level at nominal 0.05 ranging from about 0.04
to about 0.065, for instance, as N ranges from 10-60
in one- and two-way ANOVA layouts using the Leh-
mann two-sample denominator estimate), but also
fulfill their promise in terms of asymptotic efficiency
as indicated in that table by exhibiting good power
characteristics relative to the classical F test. Table 3
(Draper, 1981) presents some typical power compari-
sons, which demonstrate that the power loss at the
normal model for the robust methods is small, whereas
the gain with skewed and heavy-tailed distributions
can be considerable. In the robust analogues of the
estimation and multiple comparison procedures typi-

. calin linear models work this efficiency gain manifests
itself in more precise estimates and narrower confi-
dence intervals.

5. CONCLUSIONS
In 1959, Henry Scheffé wrote:

“... it appears that there probably exist tests
which have the robustness of the [classical]
F-tests concerning type I errors, a little less power
against normal alternatives, but much greater
power against ‘most’ nonnormal alternatives. At
present such- tests have not been developed for

the relatively complicated hypotheses usually
considered in [linear models], and even if they
were, the methods of estimation with which one
would usually want to follow them up when they
rejected, --. while then possible in principle,
would seem hopelessly complicated to carry out
in any but the simplest cases - .- ”

Thirty years later such robust testing and estimation
methods have indeed been developed and are essen-
tially ready for general use. Recent work of Hettman-
sperger and McKean (1977), Draper (1981) and others
has provided rank-based methods that supply the
linear models user, in modeling situations in which
the assumption of an iid error structure is at least
roughly tenable, with a comprehensive analysis pack-
age, from estimation and significance testing to con-
fidence and multiple comparisons procedures, based
on methods that have excellent efficiency and robust-
ness properties relative to the standard methods and
sufficient similarity in interpretation to the classical
techniques that users should have little trouble adapt-
ing to them. It is my hope that these and other robust
methods of comparable quality will gain increasing
acceptance in the near future, so that evidence may
continue to accumulate about the comparative
utility of data-analytic, model expansion and robust
approaches to linear model analysis.
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