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Comment

Dietrich Stdyan

Professor Kendall’s paper is an excellent survey on
a very important topic and describes many deep and
complicated results obtained by himself and his col-
leagues. It is a pleasure to congratulate him on this
success and to wish him further progress. The publi-
cation in this journal will help to inform many stat-
isticians of these ideas and methods and so lead to
further interesting applications. Because my own work
has had until now only weak connections to Professor
Kendall’s theory of shape (with the nice exception of
being a coauthor of a book that contains a chapter on
shape theory written by W. S. Kendall), I can give
marginal comments only; I take the opportunity to
ask some questions.

In my opinion, in some cases the original problem
of finding collinearities in point patterns can be solved
by means of methods of point process statistics. If the
point pattern under study can be interpreted as a
sample of a stationary point process, then the orien-
tation analysis of Ohser and Stoyan (1981) can be
used to detect orientations and collinearities; see also
Stoyan, Kendall and Mecke (1987). More interesting
is the case of motion-invariant point processes with
“inner orientations’; a nice example is the pattern of
self-intersection points of a motion-invariant planar
line process. Hanisch and Stoyan (1984) suggested
statistical characteristics that are based on third-order
moment measures or two-point Palm distributions.
An example is the mean number of points in a
rhombus with vertices at the members of a “typical”
point pair of the point process with distance r (see
Figure 1). If the corresponding mean, for which an
unbiased estimator was given, is clearly greater than
“intensity X area of rhombus” for interesting values
of r, then some form of collinearity in the point
pattern is detected.
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Fi1G6. 1. A rhombus with vertices of distance r. If the vertices are
points of a point process and in the rhombus there are “many” other
points of the point process, then this shows some inner orientation.

Many statisticians and physicists, geographers (see
the booklet by Boots, 1987) and others are very much
interested in Dirichlet tessellations and the closely
related Delaunay tessellations. Therefore the results
on the Delaunay tessellation are of great value, both
theoretically and practically. In particular, I like the
elegant way of simulating “lone” Poisson Delaunay
cells.

I think that a promising method for a “shape analy-
sis” of tessellations could be based on the angles at
vertices, if all vertices are Y-shaped, with three ema-
nating edges. (This situation very often appears in
practical problems, as physicists and materials scien-
tists say.) Then each vertex corresponds to a triangle,
which is similar to the Delaunay triangle if the tessel-

" lation under study is a Dirichlet tessellation with

respect to a point pattern. Most empirical tessellations
are not Dirichlet tessellations or, if their generating
points are not given, the natural starting points for
the shape analysis are the three angles. Therefore it
would be helpful to transform shape theory results for
triangles into angular coordinates, where, for example,
a triangle is described by its maximal and minimal
angles.

Perhaps it is of interest to mention a further (ad-
ditionally to Professor Kendall’s findings for PDLY
tiles) interesting property of the Dirichlet tessellation,
which in future may be better elucidated by the new
simulation methods. Together with Dr. H. Hermann,
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I studied statistically simulated Poisson Dirichlet tes-
sellations, in particular the point process of vertices
of cells. Surprisingly we found that the corresponding
second-order product density o (r) has a striking form:
it seems to be true that
ling p(r) = o,

or, at least, p(0) seems to be very great. Usually, such
behavior of a product density is an indicator of a high
degree of clustering. By visual inspection of some
simulated tessellations we found that clusters of ver-
tices in the usual sense of the word are not typical for
these tessellations, but there appear frequently very
short edges (of otherwise “normal” cells) or pairs of
vertices very close together.

With respect to statistical shape problems related
to “landmarks” in the sense of Bookstein (1978, 1986),
I should like to ask the following question. Imagine

Rejoinder

David G. Kendall

It is appropriate that Professor Bookstein should
open this discussion in view of the importance of his
work and the great influence that this has had through
his own presentation in Statistical Science and his
earlier 1978 monograph. I was already deeply involved
in shape theory when I first read the latter, but did
not at that time foresee how closely our two different
and differently motivated approaches would converge.
It is all the more valuable, therefore, that he has
generously taken the time and trouble to survey their
current interactions and differences of emphasis. His
remarks will deserve careful study.

Professor Small’s contribution is full of wise in-

sights, and novel suggestions are made that I shall’

think about deeply. “Projection-pursuit” viewing of
higher dimensional shape manifolds may well be a
reality a few years from now. My current practice, not
so technologically ambitious, is to try to understand
these spaces as thoroughly as possible, and then to
seek dimension-lowering projections that retain the
important information and make it visible in a helpful
way. One example of such a procedure will be found
in my contribution to the discussion on Bookstein’s
1986 paper referred to above. Of course I agree with
the remarks that he and others have made about the
advantages of having a variety of visual displays avail-
able. I recall that Kipling wrote a fine poem on a
similar topic many years ago.

three nonintersecting circles in the plane. Take a
random point in each of the circles, for example uni-
formly or with respect to any distribution. Form the
triangle having the three points as their vertices. Is it
possible to give the corresponding shape density?
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Professor Mardia’s contribution was a shock to me
because I did not expect to see so beautiful a solution
as that found by Mardia and Dryden to the important
problem they have studied. It makes one ask, why is
it so beautiful? What has happened to all the horrible
noncentral x2’s? Of course the Gaussian distribution
never ceases to spring surprises on us. I discussed
Mardia’s remarks with Wilfrid Kendall, and it oc-
curred to us that a dynamic approach might at least
“explain” what lies behind such a nice formula. So
here are a few remarks intended only to illuminate
the anatomy of the problem.

To start with it will be necessary to change the
notation a little. We identify Mardia’s « with s3/(4¢?t),
where c is a diffusion constant, ¢ is the time elapsed
during the interval considered and s, is a linear mea-
sure of the size of the triangle A, = (A, By, Co) at the
beginning of that time interval. The Mardia-Dryden
formula then gives the law of distribution of the shape
at the end of the time interval when we know what
the shape was to start with. Notice that in this for-
mulation it is no longer necessary to exclude A, =
B, = C, as a possible initial shape, for then s, = 0, and
this makes « = 0, and then the Mardia-Dryden formula
tells us that the distribution of size at the end of the
interval is uniform over the sphere, as it ought to be.

More generally let us write {(t) for the shape of
A, = (A, B:, C,) at time ¢, this being undefined at



