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Developments in Decision-Theoretic

Variance Estimation

Jon M. Maatta and George Casella

Abstract. This article traces the history of the problem of estimating the
variance, o2, based on a random sample from a normal distribution with
mean p unknown. Considered are both the point estimation and confidence
interval cases. We see that improvement over both usual estimators follows
a remarkably parallel development and stemmed from the innovative ideas
presented in Stein (1964). We examine developments through the most
recent dealing with improved confidence intervals and conditional evalua-

tions of interval estimators.
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1. INTRODUCTION

The chronological history behind the estimation of
the multivariate normal mean is well known. Stein’s
1956 paper, which demonstrated the existence of an
estimator that improved upon the usual maximum
likelihood estimator with respect to squared error loss,
was followed by the famous 1961 paper of James and
Stein. Each subsequent step, and there are many, lay
out the history for all to see. The list of participants
in this history reads like a Who’s Who in modern 20th
century statistics. Much less well known, though not
any less illustrious in its participants, is the chrono-
logical history surrounding the estimation of the nor-
mal variance. In many ways, the two histories parallel
each other. For example, both start with the innova-
tive ideas of Charles Stein. Both continue to include
not only improvements with regard to point estima-
tion, but also to encompass improvements in set esti-
mation. Both continue to include statements about

conditional confidence properties based on the ideas .

originally put forth by Fisher (1956a) and later ex-
panded by Buehler (1959) and Robinson (1979a).
' In this paper, we trace the history of this estimation
problem starting with Stein’s (1964) elegant proof of
the inadmissibility of the “usual” estimator of vari-
ance. Later results flow from Stein’s result in a natural
sequence. First, Brown (1968) then Brewster and
Zidek (1974) improved upon Stein’s result for point

Jon M. Maatta is Assistant Professor, Department of
Statistics, University of Missouri, Columbia, Missouri
65211. George Casella is Professor in the Biometrics
Unit at Cornell University, Ithaca, New York 14853. -

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

20

estimation. (All three papers include results that are
more general than will be discussed here.) Using
Brown’s result, Cohen (1972) constructed intervals for
variance that were the same length as the “usual”
interval (based on the minimum length interval) but
with uniformly higher coverage probability. About 10
years later, Shorrock (1982) used Brewster and Zidek’s
result to construct an interval that improved upon
Cohen’s. More recently, adapting Shorrock’s tech-
niques, Goutis (1989) has produced an interval esti-
mator that is better than that of Shorrock, and
improves on both coverage probability and length over
the usual intervals. The conditional confidence prop-
erties of the usual intervals and the improved versions
of Cohen and Shorrock were investigated in papers by
Maatta and Casella (1987) and Casella and Maatta
(1987).

A brief review of general notation is needed before
we proceed. Let X = (X;, X, ---, X,.) be iid random
variables from a normal distribution with mean p and
variance o2 both unknown, i.e.,

(1.1) X1, Xz, - -+, Xo ~ iid N(g, °).

The problem of interest is the estimation of ¢2. Let
X =2X;/n and S? = 2(X; — X)? the usual mean and
sum of squared deviations about the mean, respec-
tively, calculated from the random sample. Define

(1.2) Z = VnX/S.

With our normality assumption, we have the follow-
ing sampling distributions:

S?/e% ~ x3,
nX?/e? ~ x3(Yan?), n = u/o,

(1.3) v=n-—1,

(1.4)
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a central and noncentral chi-squared distribution, re-
spectively, the former with » degrees of freedom and
the latter with 1 degree of freedom and noncentrality
parameter Y¥2n2 The density of Z, fz(z | 1), depends on
u and o only through the parameter 7.

In the point estimation case, we will be considering
the performance of .estimators, §, with respect to the
loss function

(15) Lma%=§w—ﬁﬂ

which is a scaled version of squared error loss. In
terms of admissibility considerations, it is equivalent
to looking at performance with respect to squared
error loss. Also, under this loss function, the decision
problem is invariant under affine transformations.

2. POINT ESTIMATION

At the time of Stein’s 1964 paper, two basic results
concerning the point estimation of the normal vari-
ance were known. First, if a sample is drawn from a
normal distribution with known mean u and unknown
variance o2, the estimator

3(X; — u)?

(201) 60(Xl’ . v+ 3 ’

*y Xn) =
where » = n — 1, is admissible for estimating ¢* with
squared error loss. (See Hodges and Lehmann, 1951,
or Girshick and Savage, 1951.) The second result was
that, in the unknown mean case, the minimizing value
of ¢ for estimators of the form ¢S? (with respect to
squared error loss) was ¢ = 1/(v + 2). That is, the
estimator

2(X,~—X)2_ S?
v+ 2 Ty 42

(2~2) 51(X1’ Sty Xn) =
minimizes risk with respect to squared error loss.
Furthermore, 6,(X) is the best among all scale and
translation invariant estimators and is minimax with
respect to the loss (1.5).

For Stein, interest lay in considering a larger class
of estimators, those that were scale invariant. These
estimators are of the form

2.3) 3(X, S%) = ¢(2)82

where Z is defined by (1.2), and ¢ is a real-valued
function. Note that this estimator depends on both X
and S? while those that are a constant function of S*
((2.2) for example) depend on X only through its
appearance in S2 This represents the first time that
it was thought that an estimator for a mean could be
used to “improve” the estimator of a variance. Stein
showed that an estimator of the form (2.3) dominates
the usual estimator (2.2) with respect to loss (1.5).

THEOREM 2.1 (Stein). With assumptions (1.1),
define

1 1+Z2>

(2.4) ¢s(Z) = mm(y 132’ , 43

where Z is defined by (1.2). Then the estimator ¢s(Z)S?

dominates [1/(v + 2)]S? with respect to the loss (1.5).

Stein’s proof is magnificent and will be repeated in
detail since Brown’s and Brewster and Zidek’s results
flow naturally from it. Within the proof, two innova-
tive ideas lead to the result and these ideas are ger-
mane to the subsequent results of Brown and Brewster
and Zidek.

Proor. Consider the risk of the estimator (2.3) with
respect to the loss (1.5),
E(qS(Z)S2 - d?)?

0,4

2 2
(2.5) = E<¢(Z)(%> - 1)

2\ 2 2
= E<¢2(Z)<%> - 2¢(Z)<%> + 1).

By iterating the expectation, (2.5) is equal to
S2\? S?
o] -n(s) - 4
S2 2 2
=Ez{¢2(Z)E<<?> z) + 1}.

S
Z> - 20(Z)E (;
Consider the term inside the curly brackets of (2.6).
Stein noted that, for fixed u, % and for each Z, this
is a quadratic in ¢(-) with minimum at

(2.6)

E(S%¢%|Z)
* =\ /7 14)
27) $*(2) E((S%/¢%)?\|2)’
a function only of |Z| and |n| = |u]|/c (see Fig-

ure 1). Stein then showed that max, 2 ¢*(Z) is at-

tained at u = 0, ¢ = 1, which eliminated the need to

Quadratic

| ] | ¢

| | |

¢* és 1/(n+1)
Fic. 1. For fixed 2z, the quadratic ¢*(2)E((S*/d%)?|2) -
2¢(2) E(S%/c?|z) + 1. The value of ¢* is the minimum (see (2.7)),
and ¢g yields Stein’s estimator (see (2.10)).
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work with noncentral chi squareds. Now, straightfor-
ward calculations yield

__E(8¥4°|2)
1(2) = 557572 2)
. (with u =0, ¢2=1)
(2.8) __EGCIx¥/xi =27
E((x2)?|x3/x: = Z?)
_1+2z
T y+3°

using that fact that x? and x?2 are independent (a
consequence of the independence of X and S? in the
normal case).

IfZ2<1/(v+2),then (1 + Z%) /(v + 3) < 1/(v + 2)
which also implies that

(29) *(Z) < o01(Z) < ——, for all g, 0%,
v+ 2

that is, ¢o,1(Z) is closer to the minimizing value than
1/(v + 2). Define

1+22 1 ]

(2.10) os(Z) = mln[ 13,49

Referring to Figure 1 it is obvious that for each u,

o) <)

50 ¢s(Z)S? is better than [1/(v + 2)]S? and the result
is proved. O )

There are two ideas in this proof that are innovative.
In hindsight, these ideas will probably seem almost
trivial, but they led to many new developments. The
first innovative insight in Stein’s proof was the con-
ditioning argument that led to considering the quad-
ratic function of ¢(Z) in (2.6). Treating the risk
conditionally (on what might be considered an ancil-
lary statistic) leads to consideration of the quadratic.
‘The second insight is realizing that a relationship like
(2.9) is a possibility. That is, describing values of Z
for which ¢01(Z) is closer to the minimizing value
than 1/(v + 2) is a major breakthrough. This argument
can also be traced through subsequent work.

Stein knew that his estimator was not admissible,
perhaps speculating that such estimators would be
limits of Bayes solutions and hence analytic, as in the
one parameter exponential family. (This circum-
stance, however, is not always the case, even in nice

situations with convex losses, as seen in Cohen and
Sackrowitz, 1970.) However, it appears that Stein’s
enthusiasm for the problem had waned before the time
of publication, for he states that he finds “. .. it hard
to take the problem of estimating % with quadratic
loss seriously,” or he may have continued like his
successors.

The intuition behind Stein’s result is also quite
illuminating. Consider that if Z% < 1/(v + 2) we have

1+ 22
v+ 3

¢s(2)S* = S?

14 (v +1)X%/8?
v+ 3

SZ

(2.11)

1
= X2,
v+ 3 !

a special case of the estimator (2.1). When p is known
to be zero, it is admissible. So if Z2 is small, this can
be interpreted as evidence that u is equal to zero, and
we can “pool” S? with (v + 1).X? to get an extra degree
of freedom. In effect, we get an estimator that agrees
with the admissible estimator (if ¢ = 0) when Z2 is
small.

This, in fact, is the rationale Brown (1968) uses to
justify his estimator. Brown gives the following argu-
ment, which has an empirical Bayes flavor.

If the estimator, say %, of the location parameter
is small compared with the estimate, say s2, of
the variance then this indicates that the location
parameter, u, is near 0. However, when u is known
to be near 0 and x is also near 0, the best estimator
of the variance is a smaller multiple of s? than it
is when u is unknown. Thus, by this reasoning
one should use the usual estimator for ¢ when
| %] /s is large and a somewhat smaller multiple
when | % | /s is small.

Clearly, this is a reasonable justification for consid-
ering a new estimator and is a rationale behind
Stein’s estimator. However, it is not needed to jus-
tify Stein’s proof, which stands alone on a purely
decision-theoretic basis. Brown’s results are much
wider ranging, going far beyond normality and squared
error loss, presenting interesting results about differ-
ent loss functions and best invariant estimators.

A special case of Brown’s paper, concerning the
normal variance, is to consider estimators of the form
¢8(Z)S?, where

if Z% < r?,

(2.12) if 72 > r?

¢s(2) = {fl
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for constants c, d, and r. For the loss (1.5), the risk of
¢s(Z)S%is

E[(¢B(Z)Sj - *a2>2]

o

o ={8)-
A

Differentiation of (2.13), with respect to ¢, shows that

for each u, o2, the best value of ¢ is given by
E(S%/¢%| 2% < r?)

E((S%/¢®)?%|Z2% < r?)"

Brown showed that, for every u, 62, and r?,

Z% < r"’]P(Z2 =< r?)

zZ%:> rz]P(Z2 > r?).

(2.14) c=c,2(r?) =

1
2) < 2
C, 2\l = C r < .
B, 2( ) 0,1( ) ” 9

(Compare (2.15) to (2.9).) The estimator ¢4(Z2)S?,

with
%(2y _ JCo1(r?) if Z2 < r?,
(2.16)  ¢5(2%) = {1/(;/ +2) ifZ:>r?

uniformly dominates [1/(v + 2)]S? with respect to
squared error loss (since co;(r?) is closer to the mini-
mizing value of ¢ (2.14) than is 1/(v + 2)).

Minimization of (2.13) results in a best ¢ (2.14) of
the same form as Stein’s (2.8) and the resulting
inequality (2.15) concerning c, ,2(r?) is similar to (2.9).
Thus, the two innovative ideas in Stein’s proof are
repeated.

Like Stein’s estimator, Brown’s estimator was also
inadmissible (as he knew). In 1974, Brewster and
Zidek extended the argument used by Stein and Brown
to improve upon Brown’s estimator. At the same time
that Brewster and Zidek were conducting their re-
search, Strawderman (1974) also exhibited improved
estimators of the normal variance using a different
technique. He found minimax and generalized Bayes
variance estimators using the representation of non-
central chi-squared expectations conditionally as cen-
tral chi squareds (by conditioning on an auxiliary
Poisson random variable). Since Strawderman’s ulti-
mate results are similar to those of Brewster and
Zidek, his techniques will not be described in detail
here.

Extending the work of Brown, Brewster and Zidek
selected, for fixed r as above, r’, with 0 < r’ < r and
considered the estimator ¢(Z2)S?, where:

Coa(r'?) ifZ%2=r'%

2.17) ¢(2?) = {co_l(r?) ifr2<Z?<r?
Y +2) ifrt<2Z?

(2.15)

By noticing that ¢, (r’?) < co1(r?) and by repeating
the arguments of Stein and Brown, they conclude that
(2.17) yields a better estimator than (2.16). Obviously,
this process can continue: take r”, with0 <r” <r’ <
r and construct a corresponding new ¢(Z?2) function.
In this way, they built new estimators that are each
better than the previous. Again, all of these resulting
estimators are inadmissible.

However, Brewster and Zidek had another innova-
tive idea. For i = 1, 2, .- -, m; they showed that they
could select a finite partition, R;, where

(2.18) 0 = ri,o < ria < e < ri,mi_l < ri,mi =
and define

¢ D (R;) = con(r?)
(2.19) o1

forr?}_1<R,~5rfj j=1, -, m,
with ¢g,1 (%) = 1/(v + 2). Furthermore, letting

lim 7y, = o,

[—>00

and

lim max |r;—rij-1| =0,

i—w 1=sj=m;—1
results in

lim ¢ “(R;) = ¢*(Z?)
where
E(S?%/6%| 2% < 2?)
*(52) = 2y —

(2.20) eTE) = () E((S?*/a®)?|Z% < 2%)’

p=0, ¢2=1.

Clearly, by construction, for i’ > i, ¢“"(R;)S? is
better than ¢’ (R;)S?, i.e.,

E(¢(R:)S? — ¢%)% = E(¢(R;)S? — o?)?
andforalli=1,2, ---
E(¢*(Z2)8? — ¢2)% < E(¢?(R;)S? — o2)?,

" showing that ¢*(Z2)S? is superior to any of the esti-

mators based on a finite partition. The intuitive appeal
of the estimator is obvious, repeated application of a
process that improved an estimator would continue to
improve the estimator in the limit. Brewster and Zidek
go on to show that ¢ *(Z?%)S? is generalized Bayes, and
is admissible in the class of scale-equivariant proce-
dures. Results by Proskin (1985) have shown that
¢*(Z?)S? is admissible among all estimators of ¢*
(using the loss (1.5)).

It is interesting to note Brewster and Zidek’s argu-
ment for showing that ¢*(Z2)S? is generalized Bayes,
since Shorrock (1990) uses the same argument to show
that his improved interval is also generalized Bayes.
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Brewster and Zidek argue that
~ F(6(Z)S" - *)| Z]

(221) = E[(¢(Z?)(S?%/¢®) — 1)?| Z]
= f (@(z*)t — 1°f (2% t|n) dt,

where f (22, t | ) is a function of u and ¢2 only through
n = p/o. Using a (possibly improper) prior on 4, 7 (),
a (possibly generalized) Bayes estimator against this
prior will minimize, for each z2, the posterior loss

(2.22) J; (¢(2*)t — 1)°g. (2% ¢t) dt,

where

g (2% t) = J: f@@% t|n)x(n) dn.
Expression (2.22) is minimized by taking ¢(z%) equal
to

2w tg.(2% t) dt
[0 t?g.(2% t) dt’

and ¢"(2%) = ¢*(2?), giving the Brewster-Zidek esti-
mator if

¢7(2%) =

(2.23) =(yn) = f w21 + u) ez gy,
0

If we return to the original setting of the problem
(recal! n = u/c), then the Brewster-Zidek esti-
mator is the posterior mean starting from the prior
o 'n(u/o)dudo/a, where 7 (-) is given by (2.23).
While the estimator of Brewster and Zidek is an
admissible estimator of o2 with respect to loss (1.5), it
was not until Rukhin (1987a) that the relative im-
provement was investigated. Rukhin also considers
locally optimal minimax shrinkage estimators and
observes that Brewster and Zidek’s estimator has a

risk function that is very close to the locally optimal -

estimators. However, the maximum relative improve-
ment of Rukhin’s estimators, over the usual estimator
" (2.2), is only 4%, suggesting that there would be very
little practical benefit associated with these improved
estimators. This, perhaps, confirms Stein’s original
intuition concerning estimation of ¢ with respect to
squared error loss. However, as we shall see in Sec-
tion 5, there are interesting cases where substantial
improvement is possible.

3. INTERVAL ESTIMATION

The development of improved estimators in the
interval case followed directly (about 6-8 years later)
from the improvements in the point estimation case.

Cohen (1972) improved upon the “usual” estimator
using arguments similar to those in Brown (1968).
Shorrock (1982, 1990) produces an improved esti-
mator (improved over Cohen’s) and went on to pro-
duce further improvements using techniques similar
to Brewster and Zidek.

As an introduction, we mention the “usual” esti-
mators of o based on S? only. (See Tate and Klett,
1959, for a more complete review.) These intervals are
of the form

(3.1) C(S?) = {02 aS? =< o® < bS?}

where P(1/b < xZ < 1/a) = 1 — a. To uniquely
determine a and b, an additional constraint is needed.
For example, the most well known interval of the form
(8.1) is the equal-tailed interval that has added
constraint

8.2) Igr: P(x:=1/a) = P(x2 = 1/b) = /2.

At least two other intervals are worthy of mention.
The first, the minimum length interval, is found by
minimizing the length of (3.1) and is determined by
the added constraint

(3.3) Iuv: fr+4(1/a) = f,44(1/b)

where fn(-) is the chi-squared density function with
m degrees of freedom. The second interval, the short-
est unbiased, is associated with the inverse of the
family of uniformly most powerful unbiased tests of
the hypothesis Hy: o = ¢ versus Hy: o # ¢§ and is
determined by the added constraint

(3.4) Isu: fi+2(1/a) = f,42(1/b).

The choice of interval should depend on more than
just ease of calculation, which is the only favorable
factor associated with Ixr. It is generally accepted that
length is the overriding criterion when interval esti-
mation is concerned. Thus, we could consider the
“best” (1 — «) 100% confidence interval for 2 based
only on SZ to be Iy,.

Of course, there are arguments in favor of measures
of volume other than length. One popular alternative
for scale parameters is the ratio of the endpoints.
Using this criterion for normal variance intervals
shows that the interval with smallest endpoint ratio
satisfies (3.4), that is, the shortest unbiased interval
also minimizes the ratio of endpoints. Furthermore,
the constructions outlined here to improve on Iy, can
also be applied to Isy to construct intervals with
smaller endpoint ratio.

Returning to the construction of shorter intervals,
we first note a notationally simpler formulation of
T ML is

(3.5) Ivp: {0%a0S? < 0% = (ap + ¢)S?}
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with ao and ¢, satisfying

( =x’s —1—) =1-a
ao + Co ag
and ¢, is minimum among all c. By differentiation, the
minimum length constraint is satisfied if f,+4(1/a) =
f.+4(1/(a + ¢)). It is this minimum length interval that
Cohen (and later Shorrock) uses for the starting point
of his improved estimator. Both intervals are improve-
ments over Iy, since they will have the same length
but uniformly greater probability of coverage.
Cohen’s (1972) improvement uses Brown’s tech-
nique applied to confidence intervals. Starting with
Iy, fix r > 0, and define

Ic(Z% S?)
(3.6) _ [(8.(r)S?, (8e(r) + c0)S?) if Z% <12,
~ |(aoS? (a0 + ¢0)S?) if Z2>r?"

Note that if Z2 > r?, (3.6) is just the usual minimum
length interval, and if Z2 < r?, (3.6) still has the same
length but no longer agrees with Iyy.. Cohen proved
that ¢.(r) can be chosen so that ¢.(r) < a, and

P(s® € Ic(Z% S*)| 2% = r?)

3.7)
> P(62 € IML|Z2 = rz) Yu, 0'2,

and hence this interval dominates Iy (has greater
probability of coverage).

The rationale behind Cohen’s interval, (3.6), is sim-
ilar to Brown’s motivation for improvement of the
point estimator. When u is known to be near 0 and X
is near 0, the best estimator of o is a smaller multiple
of S. So, when | X|/S is large, use Iy, but when
| X|/8S is small use a somewhat smaller multiple of
S2. This is what (3.6) does. When | X|/S is small, it
shifts the interval toward zero while still maintaining
the overall minimum length.

Shorrock (1982, 1990) extended the work of Cohen.
He showed that for fixed r, the best choice of ¢.(r) (in
the sense of Brown), of minimizing the conditional
expectations, is the unique root, ¢, of

fu+4<i>P(X% = r’/¢)

- _1 2 r?
<l Pl = ).

Shorrock denoted this root as ¢o(r?) and noted the
limiting features of ¢o(r?):

(3.8)

asr’—> oo, ¢ — ao,
the minimum length choice, and

asr?— 0, ¢ — ag*,

the best choice for n + 1 observations and length c,.
Shorrock uses these properties of ¢,(-) for develop-
ment of his improvements.

The setup is the same as that of Brewster and Zidek.
Consider a partition

0=ri0<ri1< et <rim,-=°°,
and define
I9(R;, Z% S?) = (¢o(r};)S? (do(r}) + co)S?)
forri_ <Z:<ri.

(3.9)

By construction, each I%” dominates I”) for i’ > i,
and I© = I; dominates Iyy. Shorrock proves that as
[ — oo, if

im,, — © and max |r; —rij.| —0,
J

then
I9(R;, Z%, S?) — Is(Z? S?),
where
(3.10) Is(Z% S?) = (¢0(Z%)S?, ($0(Z%) + 0)S?),

and, for each t > 0, ¢o(t) is uniquely defined by the
relationship

1 . _t
f”*“<¢o(t)>P (’“ = ¢o(t))

(3.11) )
t
=fil—— P xi s ————).
f “(qso(t) + Co) (X‘ bolt) + CO>
Furthermore,
(3.12) I)(U2 els) > P(O’2 € Ivi) for all p, ol

Thus Is has uniformly greater coverage probability
than Iy, while maintaining the same length as Imv.

Shorrock proved that Is is generalized Bayes in the
following sense: Fix co, and consider all intervals of
the form

(3.13) I, = (¢(Z*)S? (¢(Z*) + c0)S?).
Let the loss be
(3.14) L(e% I,) =1 - I(e® € I,).

Then the corresponding risk function is
R(¢% I,) =1 — P(¢* € I,),

the probability of noncoverage. Further, consider the
posterior Bayes risk, conditional on 27,

R(62’ I¢ l zZ)

(3.15)
=1- f I(¢* € I,)7 (0% 2%) do?,
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with
w (0% 22)
_ JIf(? 2%, o) 7wy, o®)du ds?
IS fG6E 2 o) (p, o) dp ds® do®’
where f (s%, 221 u, %) is the joint density function of
S? and Z2 The posterior 7 (02| 22) depends on u and
a? only through 5 = u/o, so (3.16) is really of the form

w(n|2%). If we take w(u, o) = w(u)w(n), then the
posterior risk of I, is

(3.16)

1/¢
(8.17) R(n, I,]2*) =1 - f w(n]2?) dn.
1/¢+cqy
For w(n) equal to the prior (2.23), I minimizes
R(n, I,|2?%), i.e., ¢o minimizes (3.17) for =(n) of
(2.23).

Although the intervals of Cohen and Shorrock have
uniformly higher coverage probability than the mini-
mum length interval, Iy, they have the same length.
They did not attempt the dual problem, that is, to
obtain an interval with uniformly shorter length than
Iy, but the same coverage probability. Cohen (1972)
did establish the following existence theorem, which
shows it is possible to improve upon both length and
coverage probability simultaneously.

THEOREM 3.1 (Cohen). Under assumptions (1.1)
there exists a confidence procedure with coverage prob-
ability greater than 1 — « for all (u, ¢2) and whose
length, on a set of positive probability, is less than the
length Of Iy,

Goutis (1989), using a construction similar to, but
more general than, that of Shorrock, produces proce-
dures that simultaneously improve upon the coverage
probability and length of Iyy,. These procedures are
also shown to be generalized Bayes with respect to
priors that are similar to (2.23). Goutis uses a con-
struction and proof similar to that of Shorrock, but
considers a more general class of intervals given by .

(8.18) I(Z? S?) = (¢:(Z%)8?, ¢,(2%)S?),
where ¢,(t) and ¢, (t) satisfy the two conditions

1 \p(,2 fm)
f"*“(«m(t))P ("‘ =0

(3.19)

ds (t) I st )
[ dt ]f"“<¢1(t))P(X‘ = $u(t)

_ | de:(t) 1 <L
"[ dt ]f"*4<¢2<t))P <" '¢2(t))’

[l

where 7(t) is a positive function satisfying 7(t) = .
Note that if 7(¢) = ¢ then I, reduces to Shorrock’s
interval, as the second condition in (3.19) reduces to
¢2(t) = ¢1(t) + co. If 7(¢) > t, however, the intervals
are different and I, provides a length decrease of Is,
while maintaining 1 — « coverage.

4. CONDITIONAL PROPERTIES

In this section, we present results of investigations
into the conditional properties of the normal variance
intervals mentioned in Section 3. Conditional prop-
erties of all frequentist confidence procedures have
been of interest in recent years partly due to criticisms
leveled at these procedures by Bayesians and others.
(See Berger and Wolpert, 1984; Cox, 1958; Fisher,
1956a.) Suppose that X has a distribution depending
on a parameter 6, and there exists a subset, .7, of the
sample space such that

(4.1) PelCX)|¥)<1l—a V6

for the 1 — a confidence procedure, C(X). The state-
ment that we are 1 — « confident in C(X) is certainly
less than satisfying. If such a set, ., exists, we would
want to identify the set and, if X € .7, we would want
to either quote a different confidence or perhaps mod-
ify C(X) to alleviate the problem of (4.1).

Fisher (1956a) first suggested the existence of such
sets and called them recognizable sets. His suggestion
to eliminate problems like (4.1) was to look at confi-
dence conditional on an ancillary statistic. Fisher’s
solution worked to a degree, however, ancillary statis-
tics sometimes do not exist or may be hard to find. A
more formal structure for the evaluation of conditional
properties of frequentist procedures was presented by
Buehler (1959) following Fisher’s lead. He presented
an argument based on a two-person game, where for
a specific form of bet the expected gain (or loss) can
be interpreted as a conditional probability. It was not
until 20 years later, however, that the theory was
suitably formalized to allow for relatively easy evalu-
ations of conditional properties. Robinson (1979a,
1979b) explicitly formalized the theory with defini-
tions on the types of bets and the biases involved. His
formulation is much more general but can be used to
evaluate a procedure’s conditional properties.

The basic idea is as follows. A confidence procedure
is a pair, {(C(x), v(x)), where C(x) is a set estimator
and v (x) is a quoted confidence (function). If you
assert confidence v (x), you should be willing to take
bets for or against coverage, with odds based on v (x).
For example, if a person bets for coverage, the person
risks y(x) to win 1 — v(x) and vice versa if the bet is
against coverage. A betting strategy or rule, k(x), is a
bounded function of x, which we can assume to satisfy
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—1 < k(x) = 1 without loss of generality. The function
k(x) can be interpreted as follows: k(x) negative
implies a bet against coverage; k(x) positive implies
a bet for coverage. Furthermore, k(x) is said to be
relevant if

(42) Ep{lI(6 € C(X)) —v(X)]k(X)} z Ep | R(X) |

for all § and some ¢ > 0, where I(-) is the indicator
function of a set, and semirelevant if

(4.3)  Ef[I(0€C(X))—v(X)r(X)} =0

for all 6, with strict inequality for some 6. Note that
the left-hand side of (4.2) or (4.3) is just the expected
gain of the betting strategy k(x). So, in the general
betting setup, relevancy is a statement about the
existence of a winning strategy.

A special case of the betting setup leads us to a
statistical (conditional inference) interpretation. For
conditional evaluations of frequentist confidence pro-
cedures take v(x) = 1 — «, which is the case if C(X)
is a frequentist procedure (since Py(f € C(X)) =
1 — a). Consider the betting strategy k(x) =
I(x € A) where A is a subset of the sample space. If k
is relevant then either

(44) P,OECX)XEA) =1—a+e V9,
or
(45) P,BECX)XEA) <1-a—c V0.

Similar statements hold if & is semirelevant except the
corresponding statements for (4.4) and (4.5) would
have no ¢. The inequality (4.4) is positively biased
(semi) relevant and (4.5) negatively biased (semi) rel-
evant. If such a strategy exists we have a subset of the
sample space where the conditional probability does
not agree with the unconditional. Certainly, negative
bias is most serious: the stated (1 — «) level of confi-
dence is not attained if x € A of (4.5). Although still
a problem, positive bias is less worrisome since 1 — «
would represent a conservative confidence level.

" Procedures that are free of relevant betting are
usually considered to have good conditional proper-
ties, although the exact desirable conditions are not
yet agreed upon, indeed, not yet known. See Bondar
(1977), Robinson (1979a, 1979b), or Casella (1988) for
a more extensive discussion of these ideas.

We next consider how to show that a confidence
procedure, (C(x), v(x)), has good conditional prop-
erties, i.e., is free from relevant betting. Suppose we
have X ~ f(x|9), (C(x), v(x)), and we want to know
when there does not exist k(x) such that (4.2) holds.
Let ., (0) be a prior distribution. If (4.2) is true then

we have

LEa{[I(ﬁ € C(x)) — v(X)]R(X)}mn(6) db
(4.6)

=¢ LE,Ik(X)Iwm(G) dé.

If the order of integration can be changed, the left-
hand side of (4.6) is equal to

- k(x)m(x) dx,

where 7,,(f | x) and m(x) are the posterior and mar-
ginal distributions resulting from the prior distribu-
tion, w,(f), respectively. If v(x) is equal to the
posterior probability of C(X), or a limit of posterior
probabilities, then under suitable conditions (4.7) —
0 and, hence, the left-hand side of (4.6) — 0. However,
the right-hand side of (4.6) does not equal zero unless
k is trivial. This is a contradiction. Thus, we can
conclude that procedures that are limits of Bayes’
rules and satisfy

(4.8) ~v(x) =lim j(; 10 € C(x))m, (0] x) db,

are free of conditional problems (relevant betting).
Conditional properties of some classical procedures
have been established, with most of the results apply-
ing to the case of X;, X, - -+, X, ~ iid N(u, 02) with
both u and ¢ unknown. Buehler and Fedderson (1963)
showed that for n = 2 the usual Student’s ¢ confidence
procedure (X + tS/v/n, 1 — o), where ¢ is the appro-
priate 1 — « cutoff point, allows positively biased
relevant subsets. Brown (1967) extended this result
to arbitrary sample sizes, showing that sets of the
form {(X, S): | X|/S =< k} are positively biased rele-
vant for certain choices of the constant k. Thus, on

. sets that can be interpreted as acceptance regions of

the hypothesis Hy: u = 0, the conditional confidence
can be bounded above 1 — «. Furthermore, Robinson
(1976) showed that no negatively biased relevant sets
exist for the ¢ procedure, demonstrating acceptable
conditional behavior.

Negatively biased semirelevant sets do exist for the
t interval, a fact which follows from the above results.
The interesting interpretation here is that there are
negatively biased semirelevant sets of the form
{(X, S): | X|/S = k}, sets that can be interpreted as
rejection regions of the hypothesis Hy: u = 0. These
results have been extended by Olshen (1973) to the
analysis of variance to show that, conditional on re-
jecting the null hypothesis that all treatment means
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are equal, the Scheffé intervals have conditional con-
fidence that can be bounded below 1 — «.

Conditional investigations in case of two means
with unequal, unknown, variances (the Behrens—
Fisher problem) were done by Fisher (1956b) and
Robinson (1976). Fisher showed that negatively biased
relevant subsets exist for the intervals of Welch
(1947), and Robinson showed that the Behrens-Fisher
solution allowed no negatively biased relevant subsets.
Robinson (1979b) also investigated conditional prop-
erties of procedures in more general situations, show-
ing, in particular, that relevant subsets do not exist
for location or scale procedures based on Pitman-type
estimators.

We are now prepared to look at variance intervals.
We start with intervals of the form (3.1) and consider
conditional properties of the interval estimator
(C(S?), 1 — a). Note that this includes all the usual
interval estimators, both one-sided and two-sided. To
show that (C(S?), 1 — «) admits no relevant bet-
ting, it is sufficient to find a sequence =,,(u, 02) that
satisfies

lim ff E,{I(s* € C(S?) — (1 — a)]

(4~9) * k()_(9 Sz)fﬂ'm(ﬂ, 0'2) d/*" do,2
< lim ff E, 2[| (X, S?)|]nm(p, ¢2) du do?

for all bounded k& (X, S?).

There exist some technical problems in the estab-
lishment of (4.9), however. For the variance intervals
of (3.1), the sequence of improper priors

1 1/2 \ a
(410) 7(u, 0®|r, a) x (—;) e V2D lz
re

o

can be used to show that there is no relevant betting

against the usual variance intervals Igy, Im, and Isy

(Maatta and Casella, 1987).

It is interesting to note that both Iy, and Isy are
Bayes’ highest posterior density regions using the
following improper priors: )

3
I 7 (s, o%) = (%) dy do®
o
(4.11) and
1 2
Isy: w(, %) = <;—2-) du do?.

Furthermore, the posterior probabilities of coverage
satisfy -

'YML(Sz) = P(O'2 (S IMLISZ) >1—-a«

and
vsu(8%) = P(c* € Igy|S8?) =1—-a VSZ

These results show that there is no relevant betting
against

(Imu, YML(S?)) or (Isy, vsu(S?)).

In addition, since ymp(S?) > 1 — «, no nega-
tively biased semirelevant betting exists against
(Iyw, 1 — ). Similarly, since ysy(S?) = 1 —a, neither
negatively biased nor positively biased semirelevant
betting exists for (Isy, 1 — a), an extremely strong
conditional property for a frequentist procedure.

Though no relevant betting exists for the equal
tailed interval, Igr, the stronger conditional properties
exhibited by Iy, and Iy are not characteristic of Igr.
In fact, there exists semirelevant betting against (Igr,
1 — a). If we bet against coverage if X2/S8? < q, for
some (not too large) constant gy, and otherwise do not
bet, this strategy is negatively biased. Our intuition
suggests that perhaps Igr would not have the best
properties when X?2/8% < q,, since this is the case
when S? can be improved on as a point estimate. We
would therefore expect an interval that is shifted
toward zero when X2/S2 < g, to be an improvement.
This is exactly the case for Iy, and Igy, and they both
have better conditional properties than does Igr.

As mentioned before, intervals of the form (3.1)
also include the one-sided intervals. In particular, the
theorem applies to the upper tailed interval C,(S?) =
{o% o < bS?}, which results from the inversion of a
uniformly most powerful unbiased test, and the lower
tailed interval C;(S?) = {¢%: 6% = aS?}, which results
from the inversion of a uniformly most powerful test.
Further conditional properties of these intervals are
studied by Maatta and Casella (1987).

The conditional properties of the improved variance
intervals of Cohen (3.6) and Shorrock (3.10) were
investigated by Casella and Maatta (1987) and agreed
with expectations: both procedures allow no relevant
betting. In addition, the smooth procedure (Shor-
rock’s) allows no negatively biased betting while the
discontinuous procedure (Cohen’s) does. These results
are in general agreement with the statement that
procedures with good conditional properties are Bayes
or limit of Bayes’ rules and thus must be smooth.

Shorrock’s interval is a Bayes HPD region in the
following sense. Start with the prior

1 5/2 foo . U—1/2
2y =— —unu2/20' N
(4.12) 7 (p, o?) <az> , € (n+v) @,

which yields a posterior

w(c?| X, S?)
_ __[+a(8?/0®)P(x} < nX?*/c®)
[S*/v(v + YIP(F,, < v(nX?/8?))

(4.13)
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The posterior probability of an interval of the form
(¢(Z?)8?, (¢*(Z?) + c)S?) is

(¢(Z22%)+c0)S?

7 (%] X, S?) do.

(4.14) ~(X, 8 =f
»(22)8?

This is maximized, for a fixed c,, by choosing ¢ = ¢,
(as in (3.8)). Call the resulting posterior probability
vo(X, S%). Using the argument at (4.6)-(4.8), it is
easy to see that no relevant betting exists against
(Is, vo(X, S?)). In addition, it can be shown that
10X, §?) = 1 — a VX, S? which implies that no
negatively biased betting exists against (Is, 1 — a).
This is the desired result, since (Is, 1 — a) is a
frequentist procedure (as 1 — « is a pre-experimental
confidence report), but (Is, vo(X, S2)) is not (strictly)
a frequentist procedure, as vo(X, S?) is not a pre-
experimental confidence report.

Goutis (1989) also demonstrated that his intervals
have acceptable conditional properties. For the inter-
vals I, = (¢:(Z%)S?, ¢,(Z?)S?%) defined in (3.18)
and (3.19), define the confidence procedure
(I, v.(X, S?)), where v, (X, S?) is given (analogous
to (4.14)) by

$2(Z?)
(4.15) ~,(X, 8% = f 7(d?| X, S?) do?.

$,(2?)

Then (I,, v,(X, S%)) allows no relevant subsets. Fur-
thermore, v, (X S?) = 1 — «, so the confidence proce-
dure (I,, 1 — a) allows no negatively biased relevant
subsets.

5. PRACTICAL IMPROVEMENTS

As previously mentioned, Rukhin (1987a) has
shown that the maximum relative improvement ob-
tainable in the point estimation case (in terms of
relative risk) is only 4%. Thus, the improvement as-
sociated with the Brewster-Zidek point estimator, and
the confidence intervals of Shorrock and Goutis, can
only be expected to be minimal. However, these (some-
what) negative statements only apply to the univariate
case, where we observe one sample mean along with
our variance estimate. The multivariate case, better
known as the generalized linear model, offers the
possibility of more substantial improvement.

All of the results presented here immediately apply
to the generalized linear model case, where we observe
X = (X3, X,), a (v + p) X 1 vector with X; = (X;,
co, X)) and Xp = (X441, - -+, Xivp). We assume that
X is a multivariate normal random vector with mean
(0, u), where 0 is of order » and u = (w1, ---, pp)
is unknown. The covariance matrix is ¢2 times the
v + p identity matrix, and we are interested in esti-
mating the unknown parameter ¢2. This setup is the
familiar analysis of variance.

Continuing with our general definitions, we have
S% = X{X,, with S%/¢% ~ x2
and
Y? = X3X,, with Y*/o% ~ x2(\),

with A = u’u/e? (In analysis of variance terminology,
Y? represents the model sum of squares and S? rep-
resents the error sum of squares.) In this setup, Stein’s
estimator of (2.4) becomes ¢s(Z)S%, where

L[ 1 1+2Z? , Y?
(5.1) ¢s(Z) —mm<u+2 , y+p+2>, Z%= S
As before, this estimator is better than the usual
estimator under squared error loss. The point esti-
mators of Brown and Brewster and Zidek can similarly
be generalized, and their optimality properties also
carry over.

In the confidence interval problem the analogous
generalizations hold, and optimality properties are
also preserved. For example, Shorrock’s interval gen-
eralizes to

(6.2) Is(Z% S?) = (¢0(Z%)S?, ($0(Z?) + ¢0)S?),

where ¢, is the length of Iy, and ¢o(Z2) is the unique
root of

1\ o 2
f”*“<¢>P <"" = ¢>

(5.3)
IR D S Y PO
=/ ”+4<¢ + cO)P<x’° =5+ c0>'

The interval Ig retains its dominance over Iy, and,
contrary to Rukhin’s findings in the univariate point
estimation case, the improvement here can be sub-
stantial. For example, Shorrock reports numerical
studies that show for large p (p = 29, v = 28) the
maximum coverage probability of a nominal 90% in-
terval can reach 92.3%. Other cases show a similar

. degree of improvement, with the maximum coverage

generally increasing in p. (The coverage probability of
Shorrock’s interval is a nonconstant function of the
noncentrality parameter A\, with the maximum being
attained for a medium value, and coverage decreasing
to the nominal level as A — ».)

In practice, the improvements of Shorrock’s inter-
val, although reasonable, are not tangible. That is, an
experimenter still has an interval of the same length
and same nominal coverage (although higher actual
coverage). With the intervals of Goutis, however, a
tangible gain is realized in that the length is decreased
while keeping the coverage probability above the nom-
inal level. These intervals also carry over to the case
of the generalized linear model, with all of their opti-
mality properties intact. For the generalized linear
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TABLE 1
Relative length reduction (in percent) of the interval I, over Iy,
for 7(t) = 2t.
l1—a=.95 1—a=.90
D -
n=10 n=25 n=>50
.22
1 (951)
5 3.3 1.1
(.951) (.902)
2.9
6 (952)
5.3 2.4
10 (952) (.902)
3.3
20 (:902)

Values in parentheses are the maximum coverage probability.

model the class of intervals is given by
(54)  L(Z% 8?) = (¢:1(Z2%)S? ¢2(Z2%)S?),
where ¢,(t) and ¢, (t) satisfy

L V(e T)
F <¢ (t))P ("" = ¢>1(t)>

= _1 2 T ®)

= ”*“(«bz(t))P("" = ¢2(t)>’
ds (t) 1 t
[ dt ]f ”*“<¢1 (t)>P<"g = ¢>1(t)>

_[de=®) 1 st )
[ dt ]f"*“<¢2(t)>P ("”5¢2(t>’

for a positive function 7(t) satisfying 7(¢) = ¢. The
goal of reducing length (over either Iy, or Is), while
maintaining coverage probability close to (but no
smaller than) the nominal level, results in reasonable
practical improvements, as the following table illus-
trates.

From Table 1 we can see that the amount of im-
provement possible is large enough to warrant the use
of these improved procedures, particularly in the
analysis of variance. Although these newer procedures

(5.5)

require more computing power, there is widespread-

_availability of such power, so this requirement is no
longer a drawback. Furthermore, these procedures all
have the minimax property that they are uniformly
superior to the usual procedures. Thus, even if the
situation is one where only a minimal improvement is
possible (small p), it is reasonable to try for that small
improvement.

6. DISCUSSION

The problem of estimating the normal variance,
using a decision-theoretic approach, has an illustrious
history. The seed of the idea used to improve the usual

point estimator of o2, stems from Stein and flows
naturally to Brown and then to Brewster and Zidek.
Improvement of the interval estimator also stems from
Stein (and Brown) and flows naturally, in similar
fashion, to Cohen, Shorrock and Goutis.

Outside of the normal case, there have been many
advances in the point estimation of scale parameters.
Berger (1980) investigated simultaneous estimation of
gamma scale parameters for a variety of loss functions,
and discovered a Stein-type phenomenon there. Nu-
merous authors have shown how to improve on the
usual estimators of exponential scale. In particular,
Rukhin and Stawderman (1982) consider the more
general case of improved estimation of exponential
quantiles, and produced estimators that substantially
improve on risk. Less effort has been made, outside of
the normal case, in the interval estimation case, a case
that is ripe for consideration.

All of the interval estimation results considered here
implicitly use a loss function with two components,
coverage probability and length. Work of Cohen and
Strawderman (1973) relate the coverage probability-
length loss function to a loss function with compo-
nents of coverage probability and probability of false
coverage. They prove that if a procedure is admissible
with respect to the coverage probability-length loss
function then it is almost admissible (a slightly weaker
condition) with respect to the coverage probability—
probability of false coverage loss function. (The proof
uses the identity of Pratt, 1961.) The conditions of
the Cohen—Strawderman result are satisfied for inter-
val estimation of the normal variance, so length opti-
mality will transfer over (almost) to false coverage
optimality.

While Rukhin (1987a) has shown that the maxi-
mum relative improvement is minimal in the univar-
iate case, the possible improvement in the generalized
linear model (analysis of variance) case can be sub-
stantial. Regardless of the amount of improvement
possible in these cases, the innovative ideas presented
in the original proof of Stein, and the subsequent
modifications, certainly merit recognition as ground-
breaking work. The fact that so much work in the
point and interval estimation cases has come
from these ideas, ideas that seem almost trivial in
retrospect, is testimony to their innovation and
importance.

Intersecting this progression of improvement has
been the result of the conditional evaluations of inter-
val estimators by Maatta and Casella (1987). While
showing that the usual intervals generally have ade-
quate conditional properties, it is shown that Isy, the
shortest unbiased interval has stellar conditional char-
acteristics. In addition, the work of Casella and
Maatta concerning Cohen and Shorrock’s improved
intervals serves as a starting point for subsequent
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improvements. The most recent addition of the work
of Goutis (1989) shows that it is possible to construct
generalized Bayes invariant intervals that improve
upon the intervals of Shorrock and also maintain
acceptable conditional properties.
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