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Biostatistics and Bayes

Norman Breslow

Abstract. Attitudes of biostatisticians toward implementation of the Bayes-
ian paradigm have changed during the past decade due to the increased
availability of computational tools for realistic problems. Empirical Bayes’
methods, already widely used in the analysis of longitudinal data, promise
to improve cancer incidence maps by accounting for overdispersion and
spatial correlation. Hierarchical Bayes’ methods offer a natural framework
in which to demonstrate the bioequivalence of pharmacologic compounds.
Their use for quantitative risk assessment and carcinogenesis bioassay is
more controversial, however, due to uncertainty regarding specification of
informative priors. Bayesian methods simplify the analysis of data from
sequential clinical trials and avoid certain paradoxes of frequentist infer-
ence. They offer a natural setting for the synthesis of expert opinion in
deciding policy matters. Both frequentist and Bayes’ methods have a place
in biostatistical practice.
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1. INTRODUCTION

As a graduate student during the mid 1960s, 1
attended a series of lectures on the theory of games
and statistical decisions that provided some familiar-
ity with formal aspects of Bayesian inference: how to
convert prior into posterior probabilities by selecting
special conjugate priors; how to combine posterior
distributions with loss functions so as to take optimal
actions; and how to keep one’s objectivity by pretend-
ing to be uninformed at the beginning of the investi-
gation. An elementary text was available (Chernoff
and Moses, 1959) but the more advanced material was
taught from scattered articles and notes since the
textbooks in current use had not yet appeared. There
were few realistic examples of applications, and those
that I came in contact with emphasized decision mak-
ing in social contexts that appeared far removed from
my growing interest in medical science.
~ Once out into the “real world” of biostatistical prac-
tice, it was not long before this mild exposure to
Bayesian ideas came to be regarded as one of those
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intellectual exercises one conducts as a student that
has little apparent relevance to the task at hand. This
attitude was reinforced by a postgraduate year spent
in England, where statistics was taught more as an
applied science and where skepticism regarding the
decision-theoretic approach to statistical inference
was openly expressed. Since the Bayesian outlook was
at that time firmly coupled to formal decision theory,
at least in my mind, it seemed less helpful than
informal, frequentist methods of inference for biomed-
ical applications. P-values and standard errors served
just fine when it came time to analyze clinical or
laboratory data, or to instruct medical students on
how to interpret the results of statistical studies. A
major goal in communicating with medical colleagues
was simply to get them to recognize the importance of
statistical power for planning the next investigation
and of confidence intervals for interpreting the uncer-
tainties associated with the present one. The compu-
tations associated with these standard tools were
simpler than those required for a Bayesian analysis
and, more importantly, they were implemented in
standard computer packages. There were far too many
studies to plan and too much data to analyze to worry
seriously about what the p-values and confidence coef-
ficients produced by the packages actually meant. One
consoled oneself for this lack of philosophical rigor
with the vague notion that, in many standard prob-
lems, frequentist and Bayes’ inferences with suitably
flat priors led to more or less the same conclu-
sions about whether a treatment effect had been
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demonstrated or a new risk factor discovered. Fur-
thermore, the research community was unlikely to
accept any new finding until it had been replicated in
a variety of circumstances, regardless of what the
statistician inferred from the particular study in which
he or she had been involved.

In later years this experience with clinical trials and
therapeutic medicine led to new interests in epide-
miology, disease control and the regulation of hazard-
ous substances. The statistical advances that seemed
most relevant were those extending the tools of mul-
tiple regression analysis for use with censored obser-
vations on survival times (Kalbfleisch and Prentice,
1980; Cox and Oakes, 1984) and with the outcome-
dependent sampling schemes known to epidemiolo-
gists as the “case-control” study (Breslow and Day,
1980). The development of the generalized linear
model (McCullagh and Nelder, 1983) neatly synthe-
sized the most valuable analytic tools for regression
modeling of continuous and categorical data into a
common conceptual framework and provided in-
creased flexibility for dealing with “overdispersion”
and other more complicated variance structures. Re-
cent developments that hold great promise for medical
applications include computationally intensive meth-
ods for exploratory data analysis (Breiman, Friedman,
Olshen and Stone, 1984; Silverman, 1986; O’Sullivan,
Yandell and Raynor, 1986; Hastie and Tibshirani,
1986), the generalized estimating equation approach
to the analysis of discrete longitudinal data (Liang
and Zeger, 1986; Zeger and Liang, 1986) and resam-
pling methods such as the bootstrap (Efron, 1982) for
realistic assessment of the uncertainty inherent in
complicated inference procedures.

What, then, is the role of Bayesian statistics in
biomedical applications? As preparation for this talk,
I was invited to review the March 1979, Special Issue
of Biometrics, dedicated to Gertrude Cox, which con-
tains 24 articles on diverse aspects of biometry written
by the leading statisticians in the field. Not one
title, one summary, nor a single keyword referred to

Bayesian statistics nor to prior, posterior or predic-

tive distributions. A couple of articles mentioned a
Bayesian rationale or derivation for a particular result,
but no prominence was accorded this viewpoint. Prior
to his death in 1979, Cornfield (1969) was essentially
alone among biostatisticians in giving serious atten-
tion to Bayesian ideas.

The current decade has witnessed a substantial
change in the attitudes of many biostatisticians and
other applied statisticians toward implementation of
the Bayesian paradigm. In spite of my early experi-
ences in England, a major stimulus has come from
there, notably Lindley’s (1965) vigorous, philosophical
advocacy and, perhaps more importantly, the work of
Smith, Skene, Shaw, Naylor and Dransfield (1985)

and Smith, Skene, Shaw and Naylor (1987) to develop
computational tools that bring Bayesian treatment
of realistic, complex problems within the reach of
practicing statisticians. This work has inspired the
statistical research group at the Swiss pharmaceutical
firm CIBA-GEIGY to develop realistic Bayesian
approaches to a number of important biostatistical
problems including bioassay, crossover trials,
bioequivalence studies and pharmacokinetics (Racine,
Grieve, Fliither and Smith, 1986). In the United States,
Dempster and Rubin and their students have led the
way with Bayesian analyses applied, among other
things, to historical control data in toxicology and to
longitudinal studies of both human and animal popu-
lations. Some of the work of both these groups is
mentioned further below. There has been a welcome
reversal of the unfortunate tendency of Bayesian stat-
isticians to publish their papers in specialized journals
or conference proceedings that were read only by other
Bayesians. Recent advances in statistical computing
(Tierney and Kadane, 1986; Tanner and Wong, 1987;
Gelfand and Smith, 1990) promise to make Bayesian
analyses even more feasible for those who wish to
experiment with them.

The remainder of this paper strives to identify areas
of contemporary biostatistics where Bayesian meth-
ods, broadly defined, offer promise of improvement on
past practice. Although my practical experience with
this methodology is essentially nil, I venture to
comment on it because of my belief that frequentist
inference, in spite of generally great success, fails to
deal adequately with a number of important problems.
I hope that the Bayesians will excuse my relatively
superficial understanding of their subject and that the
biostatisticians do not dismiss all of my remarks as
due to the naiveté of the nonpractitioner.

2. BAYES’ THEOREM

Biostatisticians are of course well acquainted with
Bayes’ theorem. Elementary courses taught to health
professionals often introduce the theorem in the con-
text of the diagnostic tests used in screening programs.
If ¢ denotes the sensitivity of the test, 8 the specificity
and « the prior probability that someone has the
disease, we know that the predictive value of a positive
test (PVP) is given by
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and thus that even very accurate tests will identify a

large number of false positives when the disease is
rare. This knowledge has helped to discourage the
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well-meaning but counterproductive proposals for rou-
tine HIV testing of populations at low risk for AIDS.
Gastwirth (1987) investigates the sampling error of
the PVP when { and 6-are estimated from laboratory
studies while = is estimated from the screening pro-
gram itself. Since a major source of error in estimation
of the PVP is contributed by the standard error of the
estimate of 6, he recommends that many more disease-
free individuals need to be tested in order to better
evaluate its usefulness. This message could well be
heeded also by toxicologists who use the Ames/sal-
monella and other low-cost, short-term test proce-
dures in an attempt to predict the carcinogenicity of
chemicals (Chankong, Haimes, Rosencrantz and Pet-
Edwards, 1985). More testing of “noncarcinogens” is
needed.

Bayes’ theorem is used in therapeutic medicine to
evaluate patient prognosis and thus contribute to clin-
ical decisions. The journal Medical Decision Making,
now over 10 years old, contains a section, “Clinical
Decision Making Rounds,” that features case studies
in which a prior probability of success with a particular
medical procedure is converted into a posterior prob-
ability after appropriate consideration of individual
patient characteristics.

In epidemiology, Bayes’ theorem constitutes the
essence of Cornfield’s (1951) demonstration that the
exposure odds ratio for diseased (D) and nondiseased
(~D) persons equals the disease odds ratio for exposed
(E) versus nonexposed (~E),

pr(E | D)pr(~E|~D) _ pr(D| E)pr(~D | ~E)
pr(~E | D)pr(E|~D) pr(~D|E)pr(D|~E)’

and thus that the relative risk of a rare disease is
estimable from a case~control study. It is now recog-
nized that this result holds much more generally,
provided that “relative risk” is understood as the ratio
of disease incidence rates and that controls are sam-
pled at random throughout the period in which inci-
dent cases are diagnosed (Greenland and Thomas,
1982). Modern methods of analysis of case-control
data derive largely from this key relationship
(Prentice and Pyke, 1979). Bayes’ theorem plays a
similarly prominent role in statistical genetics. How-
ever, these commonplace applications of Bayes’ theo-
rem, where the “prior probabilities” often are based
on objective data, do not constitute Bayesian statistics
per se and need not concern us further.

3. PROBLEMS OF MULTIPLICITY

Multiple inferences abound 'in biostatistics. Clinical
trials statisticians may attempt to estimate treatment
effects separately for different categories of patients
defined by age, stage of disease or prior treatment
(Simon, 1982). Geneticists contend with a myriad of

associations between different diseases and distinct
genotypes, defined for example by the multiple alleles
of the HLA system (Takasugi et al., 1973). Occupa-
tional epidemiologists undertake the simultaneous
assessment of relationships between multiple can-
cer sites and multiple job/exposure categories
(Siemiatycki et al., 1982). Toxicologists working to
identify chemical carcinogens must examine the data
on occurrence of cancer at multiple sites in multiple
strains and species of animals (Haseman, 1984). En-
vironmental epidemiologists contend with rates of
cancer at multiple sites in multiple geographic areas
in order to construct disease maps (Mason and
McKay, 1973). Orthodontists use serial measurements
of the ramus bone height in order to establish the
degree and rate of bone growth and thus plan treat-
ment for a multiplicity of children (Elston and Grizzle,
1962).

Each of the areas mentioned above involves the
estimation of an unknown quantity 6; of interest, for
example a treatment difference or a relative disease
risk, under a large number of different but possibly
related conditions. Individual estimates of each 6; are
likely to be highly variable and virtually useless unless
the corresponding sample sizes are large. Simultane-
ous testing procedures that compare each individual
estimate against a null value 6, in such a way as to
control the probability of reaching any false positive
conclusions tend to be overly conservative since they
fail to account for the relatedness of the ;. In order
to make progress, it is essential to reduce the degree
of multiplicity by imposing some reasonable structure
that expresses this relatedness. Empirical Bayes (EB)
methods (Efron and Morris, 1973) were developed’
expressly for such problems.

In some circumstances, it is feasible to develop a
regression model of the form g(8;) = x;a where the x;
are covariables associated with each estimate, g is a
suitable “link” function and o denotes the regression
coefficients. Thus in clinical trials we study interac-
tions between treatment and prognostic factors (Byar

“and Corle, 1977), while in epidemiology we model

variations in relative risk according to age and calen-
dar year (Breslow, 1976). However, a regression ap-
proach is not always feasible and, even where it is, the
observed variation in the individual estimates of 6;
about the regression surface is often larger than rea-
sonably can be ascribed to known sampling errors.
This suggests that we regard the unknown parameters
6; as drawn from a (prior) probability distribution, one
that depends on the available covariables though the
regression coefficients and on one or more additional
parameters ¢ that represent variances and covariances
among the random error terms. After estimation of
these parameters from the data, the mean or mode of
the posterior distribution gives an improved estimate
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that “borrows strength” from information on related
parameters. Some examples will illustrate the point.

3.1 Longitudinal Data Analysis

The analysis of serial or repeated measurements on
individuals has a long tradition in biometry. Such data
may be collected for the purpose of constructing curves
of normal growth, investigating the effects of air pol-
lution on respiratory function or predicting future
bone loss from osteoporosis. Some key contributions
are those of Potthoff and Roy (1964), Rao (1965) and
Grizzle and Allen (1969). Because of computational
constraints, most practical applications were to com-
plete sets of data where measurements were recorded
at fixed times for each individual.

An influential paper by Laird and Ware (1982)
demonstrated that Patterson and Thompson’s (1971)
theory of REML estimation in variance component
models (see also Harville, 1977) could be exploited to
treat unbalanced, incomplete data in a common con-
ceptual framework that subsumed much of the earlier
work. Their starting point is the general linear mixed
model for the vector y; of (continuous) measurements
on the ith individual, namely

yi=Xia + Z;b; + ¢,

where X; and Z; are design matrices linking the re-
sponses (y) to fixed (a) and random (b;) effects. The
b; and ¢; are assumed to be drawn from multivariate,
normal populations with 0 means and covariance mat-
rices D and R;, respectively, that are determined by a
vector ¢ of variance components. Following work of
Dempster, Rubin and Tsutakawa (1981), Laird and
Ware emphasize the connection between REML and
Bayesian estimation of a and ¢ in order to provide a
unified treatment of estimation and computation via
the EM algorithm (Dempster, Laird and Rubin, 1977).
The essential step is the EB estimation of the random
effect via

I;i(Q;R) = E{bilyiy &(¢;R), <I§R}
= (ZTR7 ($r)Z; + D" (¢r))
. ZiTRi_l(Q;R)(yi —'Xi&(QgR)),

where ¢ is the REML estimate of the variance com-
ponents. By “borrowing strength” from the entire
sample, the individual estimates of b; are pulled back
from the ordinary least-squares estimates, obtained
by treating the b; as fixed effects, towards the common
mean of 0. Rao (1975, 1987) develops the EB approach
to prediction of future observations on the ith individ-
ual, and compares it with other methods.

Hui and Berger’s (1983) study of bone loss in post-
menopausal women is a nice illustration of EB in
practice with longitudinal data. Figure 1 shows the
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Fi16. 1. Random sample of data from a longitudinal study of bone
mass in women. Consecutive measurements of each subject are joined
by straight lines. Reproduced from Hui and Berger (1983) with
permission from the American Statistical Association.

series of observations available for a subsample of
women. They first reduce the data to the slopes s; and
estimated variances d; = Var(s;) that were obtained
by fitting a linear regression model to each woman’s
series by ordinary least squares and pooling the error
sums of squares. The s; are modeled

8| 0; ~ 4 (6;, di),
oi ~ ./V(Olo + alth ¢)7

where t; represents a carefully chogsen summary of the
ages at which data were collected for the ith woman,
oo and «; are parameters of the age specific population
mean rate of bone loss (assumed linear) and ¢ is the
variance component. Although some information may
be lost in comparison with the more comprehensive
modeling strategy of Laird and Ware, this approach
is simple and robust.

The OLS estimates s; display a high degree of vari-
ability due to the limited data available for some
women (Figure 2). The corresponding EB estimates
shown in Figure 3 are drawn in sharply towards the
population average and appear much more reasonable

- on general grounds. Hui and Berger (1983) also con-

sider EB estimation of the error variances d;. This
avoids the assumption of constant error variance
about the separate regression lines, but the refinement
was not needed for the example.

A complication that heretofore has been ignored in
typical applications of EB methodology is the contri-
bution of the errors of estimation of o and ¢ to the
variability of the estimates 6. One line of attack on
this problem has been via the delta method (Cox,
1975; Morris, 1983) and another via the bootstrap
(Laird and Louis, 1987), while a third involves a
hyperprior for (a, ¢) in a fully Bayesian treatment
(Lee and Geisser, 1975; Deely and Lindley, 1981).
Recent work by Kass and Steffey (1989) combines
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Fic. 2. Individual least-squares estimates of rate of bone loss b,
versus t; where the t; are suitably chosen points in the follow-up
intervals. Reproduced from Hui and Berger (1983) with permission
from the American Statistical Association.
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F1G. 3. Individual empirical Bayes estimates of rate of bone loss b;
versus t;. Reproduced from Hui and Berger (1983) with permission
from the American Statistical Association.

elements of the first and third approaches with
Laplace’s method for asymptotic integral approxima-
tion (Tierney and Kadane, 1986) to yield approximate
expressions for var(f;) that appear suitable for use in
hany practical situations. ’

3.2 Small Area Estimation: Mapping Cancer Rates

Several research teams have applied EB techniques
in order to estimate and map cancer mortality rates
according to geographic area (Manton et al., 1987,
1989; Clayton and Kaldor, 1987; Tsutakawa, 1988).
Clayton and Kaldor’s (1987) approach appears partic-
ularly well suited to the task, since it incorporates
internal estimation of age effects and, at least under
one formulation, allows for spatial correlation of ran-
dom area effects as well as their dependence on regres-

sion variables such as degree of urbanization. Briefly,
the observed number O;; of deaths in the jth age group
and ith area is assumed to have a Poisson distribution
with mean 0;{;n;;, where the n;; are known person-
years denominators, the {; denote fixed age effects and
the 6; are random area effects. Four different models
are proposed for 6;: (i) independent Gamma; (ii) log-
normal, without or (iii) with spatial correlation; and
(iv) iid nonparametric. Under model (i), one has
E8;) = ¢/0; = exp(x;a) and Var(§;) = ¢/o?, whereby
the scale parameters o; of the Gamma distributions
are given a regression structure. Empirical Bayes’
estimates are obtained from the equation

0.+ ¢

0; = E6;] 0., 0, $) = E + o

where O;, = ¥; O;; is the observed number of deaths
in area i and the “expected” deaths E; satisfy

E,’ = 2 nij(j.
J

In some applications, the age-specific rates {; are
assumed known or proportional to standard rates de-
termined from national vital statistics (Manton et al.,
1987, 1989). Otherwise, estimates

g‘-. — i Oi{
! Ei nijei

are inserted at each step of the recursion used to
estimate («, ¢), which for the log-normal and nonpar-
ametric models is easily accomplished via the EM
algorithm. This method constitutes the empirical
Bayes’ equivalent of the epidemiologic technique of
indirect standardization, whereby separate estimates
of the standardized mortality ratio (SMR) are made
for each geographic area (Mantel and Stark, 1968;
Breslow and Day, 1975).

Table 1 presents a portion of Clayton and Kaldor’s
(1987) results for estimating lip cancer incidence in
Scottish counties. The columns labeled i-iv corre-

“spond to the four models proposed above for the 6;.

All achieve the primary objective of moving the ex-
treme SMRs based on small numbers of cases towards
a local or global average. The nonparametric model,
for which the estimate of the prior is concentrated on
four masses at § = 0.362, 1.16, 3.08 and 3.89, involves
the fewest assumptions and may be preferred for that
reason. All the EB estimators appear more sensible
for these sparse data than the wildly fluctuating in-
dividual SMRs.

3.3 Estimation of Relative Risks in
a Case-Control Study

In another application, Thomas et al. (1985) tried
to make sense of data from a large case—control study
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TABLE 1
Lip cancer incidence in Scotland by county: Observed numbers (0), SMRs and empirical Bayes estimates of the relative risk

Empirical Bayes estimate®

County (0] SMR - — - Adjacent counties
i ii iii iv
1 9 652.2 421.9 495.5 453.4 345.0 5,9,11, 19
2 39 450.3 414.6 424.5 415.7 367.2 7,10
3 11 361.8 302.2 310.6 313.0 362.2 6,12
4 9 355.7 289.7 298.1 271.8 320.5 18, 20, 28
5 15 352.1 308.0 313.9 328.7 320.7 1,11, 12,13, 19
21 16 153.0 152.0 149.2 152.5 117.4 16, 29, 50
22 31 136.7 137.1 135.7 146.9 116.5 10, 16
23 11 125.4 127.5 124.5 116.8 116.5 9, 29, 34, 36, 37, 39
24 7 124.6 127.7 123.6 83.5 116.8 217, 30, 31, 44, 47, 48, 55, 56
25 19 122.8 124.2 122.5 131.6 116.5 15, 26, 29
51 1 29.1 57.5 65.0 71.9 57.3 34, 38, 42, 54
52 1 27.6 55.4 63.5 64.9 55.1 34, 40, 49, 54
53 1 17.4 38.3 51.6 53.9 40.4 41, 46, 47, 49
54 1 14.2 32.3 47.1 50.3 37.8 34, 38, 49, 51, 52
55 0 0.0 30.9 58.5 92.7 61.2 18, 20, 24, 27, 56
56 0 0.0 56.4 70.4 72.6 40.9 18, 24, 30, 33, 45, 55

« Model (i) independent gamma; (ii) log-normal without or (iii) with spatial correlation; (iv) nonparametric. See text.
Reproduced from Clayton and Kaldor (1987) with permission from the Biometric Society.

designed to discover occupational carcinogens. After
substantial preliminary analysis, they confronted a
collection of 684 relative risk estimates RR;, one for
each combination of 12 cancer sites and 57 exposure
categories. Each relative risk was estimated separately
with adjustment for a priori confounders but not for
other chemical exposures. They chose not to impose
any regression or correlation structure on this table
but rather simply assumed that, as a first approxi-
mation, the log RR; were independently and normally
distributed with means 6; and variances S? that were
determined from the data to account for sampling
error. The ; were drawn from a mixture of two nor-
mals, A7 (0, 6%) + (1 — \)# (u, 03), where A represents
the proportion of “null” associations, ¢% > 0 accounts
for uncontrolled confounding or inappropriate refer-
ence groups, and 1 — A represents the proportion of
true “positive” associations distributed around a mean
of u.

Table 2 contrasts the EB estimates with ML esti-
_ mates for a subset of 17 associations selected as
“positive” by a stepwise variable selection algorithm
applied with a polytomous logistic regression proce-
dure (Thomas, Goldberg, Dewar and Siemiatycki,
1986). The EB estimates are pulled back sharply
towards the estimated median relative risk of 1.30.
Whether or not the EB estimates are closer to the
“truth” depends on our judgment as to whether the
assumed mixed normal prior is more reasonable than
the flat, improper prior that is implicitly assumed by
ML. The flat prior is clearly unreasonable in this
example. However, our confidence in the EB estimates
would be raised considerably if the authors had shown

that they remained fairly stable under a variety of
plausible prior distributions for the log relative risks.

3.4 Multiple Tumor Sites in a Toxicology
Experiment

More structure is assumed by Meng and Dempster
(1987) in a toxicological analysis of tumors occurring
at 17 separate sites for Sprague-Dawley rats in one
treatment group, one concurrent control group and
six historical control groups. They postulate logit
models

lOglt PS = bi + u; + dij,

logit P%i = n + by + u; + do; + t;,

for the binomial probabilities P;; of tumor occurrence
at the jth site for animals in the treatment (T) or ith
control (C) group, i =0, ---, k. The b;, t; and d;; are
assumed to be independently and normally distributed
with 0 means and variances o2, ¢2 and ¢3. The param-
eters n and u; have flat priors, meaning they are
regarded as fixed effects. Thus u; represents the av-
erage (on the logit scale) “spontaneous” tumor occur-
rence at site j in the historical control series, while n
represents the average treatment effect regardless of
tumor type. The interexperimental variation is broken
down into overall (b;) and site-specific (d;;) compo-
nents. A critical assumption is that the treatment and
concurrent control groups have the same assay effects
bo and d;, in other words that there is no extraneous
within assay variation (Board of Scientific Counselors,
1984).
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TABLE 2
Maximum likelihood (ML) and empirical Bayes (EB) estimates of risk parameters for associations selected by stepwise analysis®

Total no. Proportion Expected no. of Log relative risk estimates
of cases exposed exposed cases ML? EB° Prior® Pull back %
246 0.198 48.7 1.55 1.43 1.30 47
212 0.108 22.9 1.89 1.52 1.30 62
100 0.198 19.8 1.85 1.48 1.30 67
246 0.039 9.6 3.88 1.86 1.30 78
69 0.306 21.1 1.58 1.39 1.30 67
187 0.091 17.0 1.88 145 1.30 74
255 0.051 13.0 2.22 1.54 1.30 74
100 0.167 16.7 1.53 1.37 1.30 69
40 0.306 12.2 1.90 1.42 1.30 80
187 0.038 7.1 1.97 1.50 1.30 70
255 0.013 3.3 4.71 1.96 1.30 81
212 0.027 5.7 2.01 142 1.30 83
36 0.108 3.9 3.12 1.51 1.30 88
69 0.043 3.0 2.85 1.47 1.30 89
69 0.032 2.2 2.81 1.45 1.30 90
40 0.041 1.6 4.76 1.56 1.30 92
246 0.005 1.2 3.61 141 1.30 95

“ Entry criterion: p < 0.10 for the score statistic conditional on previously entered associations, no associations eliminated.
® ML estimate derived from logistic regression coefficient, adjusted for the other associations selected by stepwise analysis and for a priori

confounders.
° Based on the expected value of log RR given RR # 1.

¢ Estimated prior mean, assuming common distribution for RRs, fitted to Mantel-Haenszel estimates of RR for all 684 associations.

Reproduced with permission of the publisher from Thomas et al. (1985).

The essential innovation over other random-effects
models for categorical data is the representation of
even the site-specific treatment effects n + ¢; as sam-
pled from a normal population with mean » and vari-
ance o;. For the data they consider, the estimated
mean treatment effect is » = —.10, near zero, but the
estimated variance is a large ¢7 = 0.41, suggesting
the presence of large (positive or negative) treat-
ment effects at individual tumor sites. Meng and
Dempster (1987) suggest using Bayesian p-values
pr[n + t; < 0|data] in order to identify individual
tumor types that may be affected by treatment. These
are contrasted in Table 3 with “chi-square” p-values
that arise from a conventional analysis that uses data
from each 2 X 2 table of concurrent control versus
treated and tumor-bearing versus non-tumor-bearing
animals, with consideration of neither the historical
controls nor the multiple comparison issue. The ad-
vantage of the Bayesian approach is that the number
of “borderline significant” findings for tumor sites
with a highly variable control incidence is substan-
tially reduced. The Bayesian p-values are generally
pulled back toward the middle. However, the positive
finding for testicular adenoma is strengthened by in-
corporation of historical control data that show a
relatively low incidence (1%s3 = 5.4%) compared to
the concurrent control (*Ys = 18.3%) and treatment
("o = 31.7%) groups. The Bayesian p-values are more
conservative than “partially pooled” p-values that are

based on a separate analysis at each tumor site that
incorporates the historical data (Dempster, Selwyn
and Weeks, 1983). For larger values of o7, however,
the Bayesian p-values are less conservative.

3.5 Remarks on Exchangeability

The key concept that allows progress to be made in
all these examples is that of “exchangeability”: ex-
changeability of growth parameters among individuals
in the longitudinal study; exchangeability of treatment
effects at different tumor sites in the bioassay;
exchangeability of relative risks for different can-
cer/exposure combinations in the case-control study;
and exchangeability of SMRs at different geographic
areas in the cancer mapping study. One admits at the
outset the futility of estimating each of these effects
separately and instead determines a mean effect
toward which individual estimates are displaced de-
pending upon their intrinsic stability. Strict exchange-
ability may be relaxed when one has reason a priori
to believe that certain effects are correlated, for ex-
ample, because of the proximity ot similarity of dif-
ferent tumor sites or tissues, or the structural
similarity of different chemicals. Clayton and Kaldor
(1987) illustrate this approach in their model (iii),
whereby high spatial correlations result in the individ-
ual SMRs being displaced more towards local than
global mean values.
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TABLE 3
Posterior p-values of treatment effects
Historical .
T Current control Bayesian Chi-square Partﬁlal
'umor type e pooling
incidence p-value p-value
Control Treated (pooled) p-value
1. Thyroid-adenoma 3/60 4/60 23/391 0.0545 0.0348 0.0464
2. Skin-fibroma 1/60 4/60 19/414 0.0347 0.0085 0.0187
3. Skin-lipoma 1/60 2/60 3/414 0.0348 0.0279 0.0126
4. Skin-squamous cell carcinoma 0/60 1/60 5/414 0.0513 0.0158 0.0346
5. Skin-fibrosarcoma 2/60 1/60 7/414 0.0624 0.0721 0.0534
6. Skin-papilloma 2/60 0/60 4/414 0.0700 0.0923 0.0539
7. Testis-adenoma 11/60 19/60 30/413 0.0038 0.0046 0.0020
8. Kidney-adenoma 0/60 1/60 1/414 0.0411 0.0158 0.0266
9. Pituitary-adenoma 34/60 18/59 196/405 0.0995 0.0998 0.0996
10. Adrenal-adenoma 5/60 6/60 21/405 0.0381 0.0376 0.0287
11. Adrenal-ganglioneuroma 0/60 1/60 1/405 0.0412 0.0158 0.0270
12. Liver-hepatocarcinoma 2/60 2/60 3/415 0.0383 0.0500 0.0218
13. Systemic-reticular cell sarcoma 1/60 0/60 5/409 0.0698 0.0842 0.0529
14. Pancreas-adenoma 8/60 4/60 39/406 0.0828 0.0888 0.0848
15. Brain-glioma 1/59 0/60 7/412 0.0725 0.0844 0.0529
16. Lungs-adenoma 3/60 0/60 5/413 0.0747 0.0960 0.0548
17. Parathyroid-adenoma 2/54 0/57 7/371 0.0758 0.0929 0.0541

Adapted and reproduced from Meng and Dempster (1987), with permission from the Biometric Society.

The major question raised for discussion is the
reasonableness of this assumption of a common prior
distribution for unknown parameters of interest and
the extent to which the often quite arbitrary specifi-
cation of the shape of this distribution influences the
scientific conclusions. In the context of clinical trials,
Cornfield (1976) remarks that the alternative to spec-
ification of a common prior is the assignment of
different priors, which leads to each parameter being
treated separately in the analysis. He notes that the
choice between these two alternatives ultimately de-
pends on one’s belief that the effects represented by
the parameters “have something in common.” Tukey
(1977) argues that such assumptions “do not seem . . .
to be near enough the real world to be a satisfactory
and trustworthy basis for the careful assessment of
strength of evidence to which the ethical issues ...
must dedicate us.” This comment may apply with even
greater force to the toxicology examples in both this

»and the next section. The concept of “borrowing
strength” seems most appealing for longitudinal data
analysis and for the mapping problem.

4. SPECIES TO SPECIES EXTRAPOLATION
IN CANCER RISK ASSESSMENT

A vexing problem in cancer risk assessment is a
relative abundance of data on multiple animal species
exposed to multiple environmental agents, but a pau-
city of such data on humans. The relevance of the
animal data for assessing human risk has been a
subject of considerable debate (Freedman and Zeisel,
1988). DuMouchel and Harris (1983) ambitiously ad-

dressed this issue from a Bayesian perspective that
made rather strong assumptions about the relatedness
of the human and animal studies. Their methodology
was adopted by the BEIR IV (1988) committee of the
National Academy of Sciences to infer the carcino-
genic potency of radioisotopes of plutonium deposited
internally in humans from available data in dogs and
rats (Table 4).

DuMouchel and Harris start with a series of obser-
vations y;; on the carcinogenic potency of agent j in
species i, expressed as the log transform of the slope
of a linear dose-response function fitted to the avail-
able experimental or epidemiological data. The y;; are
assumed to be normally distributed with means 6;; and
standard errors C;; that are estimated from the dose-
response fit but treated as known in subsequent analy-
sis. They further assume that, conditional on the
values of parameters a;, §;, o2,

0:; | (i, Bjy 0%) ~ A (a; + B, 7).

Thus the prior expectation is that the ratio of carci-
nogenic potencies for agent j in distinct species ¢ and
h, namely exp{E (8;;) — E(6,;)} = exp(B;), is constant.
The variance parameter ¢> measures how well the
actual 6;; conform to this expectation.

In applying this model, DuMouchel and Harris ini-
tially assume a flat prior on the «; and §;, so that these
quantities are effectively estimated from the data.
They specify two proper priors for log ¢, both of which
restrict only slightly the plausible range of multipli-
cative factors by which any individual potency de-
viates from the constant relative potency model. Pos-
terior distributions of 6 and ¢ are then used for
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inference. BEIR IV chooses a prior for ¢ based on the
stronger assumption that the (multiplicative) inter-
action factor is unlikely (has prior probability
less than 0.05) to be greater than 10 or less than 0.1.
BEIR 1V also specifies proper prior distributions for
{a;} and {B;}, namely correlated normals that specify
a close relationship between the average potencies
in beagle dogs, regardless of mode of administration,
and a somewhat less close relationship between
the potencies of the two radium isotopes, on the one
hand, and the two plutonium isotopes, on the other.
Table 5 shows the moments of the posterior distribu-
tions of the log relative potencies 6,; in humans, and
Bayesian medians and confidence intervals for the
potencies A = exp(#) assuming the posterior distribu-
tion of # to be normal.

The Bayesian analysis of the limited data in Table
4 reduces substantially the uncertainty in the potency
estimate for 28Ra, for which some human data were
available, and yields extrapolated potency estimates
for the two plutonium isotopes, for which human data
were lacking altogether. Clearly one needs to consider
very carefully the validity of the “extra information”
provided by the assumed model and the assumed prior
before accepting these results at face value. In his
discussion of the DuMouchel and Harris paper, Kass
(1983) remarks that the normal exchangeable prior
assumed for the 6;; is an important cause for concern
since it expresses the idea of relatedness in a very
strong manner. He concludes “I would hesitate to
apply the model without additional theoretical or
empirical knowledge.” Kass and other discussants also
point out that the precision of the Bayes’ estimates
of potency are overstated because of the failure to
consider the uncertainty in other model assump-
tions, particularly the linearity of the dose-response
relationships.

5. BIOEQUIVALENCE

The current protocol of the National Wilms’ Tumor
Study (NWTS), an effort with which I have been

TABLE 4 .
" Log carcinogenic potencies (standard errors) of bone cancer by
‘ radioisotope and test species

Species Isotope
(mode) 226, 28R, 28py 29py
Human —3.30 (0.32) —2.43 (0.72) — —
Beagle dog
(injection) —0.87 (0.21) —0.32 (0.16) — 1.69 (0.17)
Beagle dog
(inhalation) — —_ 1.55 (0.15) —_

Rat — — 0.64 (0.34) 0.29 (0.24)

Reproduced with permission from Health Risks of Radon and Other
Internally Deposited Alpha Emitters, © 1988 by the National Acad-
emy Press.

TABLE 5
Posterior distributions of carcinogenic potencies in man following
Bayesian analysis of Table 4 data

Parameter of Isotope

posterior distribution 2R, 28R, 28py, 29py

Moments of log potency 6

E(0) -3.22 -281 -111 -1.12

Standard deviation (6) 0.30 0.46 0.65 0.65
Percentile of potency A

As 0.04 0.06 0.33 0.33

A ozs 0.02 0.03 0.09 0.09

Aots 0.07 0.15 1.12 1.12

Reproduced with permission from Health Risks of Radon and Other
Internally Deposited Alpha Emitters, © 1988 by the National
Academy Press.

associated for more than 20 years, compares “stand-
ard” combination chemotherapy with “pulsed/inten-
sive” administration of the same two agents. The
intent is not so much to improve on the already
excellent 90% cure rate for the majority of “low-risk”
patients with this rare childhood kidney tumor, al-
though this of course would be a welcome outcome, as
it is to reduce the enormous financial and social bur-
den borne by the patients’ families, without compro-
mising therapeutic effectiveness. Demonstration of
such biological “equivalence” is also the goal of phar-
maceutical firms trying to convince the FDA that their
generic drug is absorbed into the bloodstream just as
completely and rapidly as the brand name product. In
view of the logical absurdity of trying to prove the null
hypothesis, at least in a study of finite duration, it is

~ well recognized that the usual formulation of testing

the hypothesis of equality against an alternative of
therapeutic efficacy is inappropriate (Westlake, 1979).
Instead, one typically decides on a zone of “indiffer-
ence,” such that differences in biological activity or
therapeutic efficacy within this zone are judged irrel-
evant in comparison with the anticipated savings in
cost or toxicity. The study is designed so that larger

- differences are ruled out with high probability if the

two treatments are in fact equivalent. Interval esti-
mation is an obvious approach (Westlake, 1979).
However, interval estimation may be complicated by
the presence of a nuisance parameter, for example the
unknown mean for the standard treatment when
the criterion is the ratio of means. Accordingly,
some authors (Dunnett and Gent, 1977; Hauck and
Anderson, 1986) have advocated a hypothesis testing
framework in which the null and alternative hy-
potheses are interchanged, such that the null hypoth-
esis is specified as the limit of the indifference zone.
This specification seems rather unnatural, however, a
fact that was brought home to me when an NIH study
section nearly refused to fund our trial because the
statistical section of the protocol had adopted it.
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Bioequivalence is a perfectly natural concept for the
Bayesians. Given appropriately diffuse prior distri-
butions on parameters specifying the outcome distri-
butions in treatment and control groups, they simply
compute the posterior probability that the parameter
of interest falls in the indifference zone and declare
the two treatments “equivalent” if it is sufficiently
large. For example, Fluher, Grieve, Mandallay, Mau
and Moser (1983) consider a normal theory model
involving means (u;, u.) of continuous outcome vari-
ables for treatment and control with constant un-
known variance 2. The prior on (., y., o2) is assumed
proportional to ¢2. They define ¥ = u./u. and declare
“equivalence” if pr[0.8 = ¢ < 1.2 | data] exceeds 0.95.
Racine-Poon, Grieve, Flither and Smith (1987) use the
same model with a two stage sampling procedure to
show that, given the first stage data, the predictive
probability of establishing bioequivalence is a useful
guide as to whether it is worth the effort to go on to
the second stage.

Selwyn, Dempster and Hall (1981) utilize similar
techniques to analyze data from crossover trials car-
ried out in connection with Abbreviated New Drug
Applications submitted to the FDA. In more recent
work, Selwyn and Hall (1984) propose a Bayesian
analog of the “75/75” rule, which stipulates that at
least 75% of the subjects in a study must have blood
concentration levels (measured by time-weighted av-
erage or maximum concentration) that are at least
75% of those for the standard formulation. Specifi-
cally, using paired observations (W;, Z;) on the blood
levels measured under standard and new drugs for the
ith of n subjects, they calculate the predictive proba-
bility pr(Z,+1 > 0.75W,.,|data] that the outcome
ratio meets the criterion, and determine whether it
exceeds 0.75.

One reason the Bayesian formulation appears so
natural in this context is undoubtedly the cost-
benefit, decision nature of the problem. The goal of
the pharmaceutical firms is to satisfy explicitly stated
federal criteria for efficacy, safety and equivalence.

Much of the work of specifying indifference zones and.

confidence levels, which often seems so arbitrary when
carried out ad hoc, has been mandated already by
government.

6. SEQUENTIAL CLINICAL TRIALS

Experimentation on human subjects poses a conflict
between the desire for scientific proof of therapeutic
effectiveness and the ethical imperative of providing
patients with the best available treatment. Clinical
trials that are carried out with a fixed, large sample
size generally provide the most convincing evidence of
therapeutic efficacy. However, adherence to a prede-
termined sample size may prove untenable when dif-

ferences between regimens start to appear earlier than
anticipated at the outset of the trial. Medical statis-
ticians have developed sequential stopping rules that
are explicitly designed to control Type I and II errors
in such situations (Armitage, 1975; Whitehead, 1983).
A problem with this approach is that the error prob-
abilities, which are often rather arbitrarily selected
when used to help plan fixed sample size studies, are
now translated into inflexible decision procedures that
cannot easily accommodate changes in trial goals and
other unforeseen developments. My only attempt to
employ a formal sequential design with the NWTS
was frustrated when the study committee decided in
the middle of the trial that the end point used for
design purposes, namely, relapse to any site, was an
inappropriate basis for the decision to stop. Since the
trial was of radiation therapy, the committee ulti-
mately concluded that the only relevant criterion was
the much rarer end point of relapse to the (irradiated)
tumor bed.

Part of the difficulty in specifying flexible sequential
decision rules has been the technical problem of eval-
uating the operating characteristics of proposed
sequential boundaries. The classical parallel line and
wedge-shaped boundaries based on variations of
Wald’s sequential probability ratio test are used as
much because their sampling properties are well
understood as for their purported optimality in sim-
ple decision problems. Current practice emphasizes
group sequential designs (Pocock, 1977; O’Brien and
Fleming, 1979) in which a sequence of tests at pre-
scribed significance levels is carried out at fixed time
intervals or after a fixed number of patients have been
entered. With one of the popular O’Brien-Fleming
tests used for Phase II cancer studies, for example, a
decision is supposed to be made after 20 patients have
been enrolled as to whether to proceed with the trial.
In multicenter trials, however, it frequently happens
that more patients (say 25) actually have been entered
by the time the decision to stop or continue is taken.
Strict adherence to the sequential plan would require
that data on five patients be discarded, for example,
according to the date of arrival of the records in
the statistical center. Fortunately, clinical trial stat-
isticians behave more sensibly in actual practice
(Crowley, personal communication).

Lan and DeMets (1983) proposed a new concept
for sequential testing, namely to “spend” the Type I
error at a prespecified rate throughout the trial. This
lends greater flexibility to the group sequential
approach since it accommodates multiple looks at
arbitrary time points. However, inference is still
dependent upon reaching a prespecified boundary. If
the trial must be abandoned before a boundary is
crossed, due to a loss in funding or a change in
priorities, no inference is possible.
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Jennison and Turnbull (1989) developed further the
concept of spending Type I error in their construction
of repeated confidence intervals for interim analysis.
These allow informal exploration of the data at each
time point and do not depend on a rigid stopping rule.
If the trial has to be abandoned before a definitive
outcome is reached and before all the Type I error has
been spent, the only cost is conservatism in the con-
fidence interval for the treatment difference observed
at that point. However, the paradox that affects this
and all other frequentist approaches to sequential
analysis is evident from the fact that, once all the
Type I error has been spent, “no use can be made of
any future data” (Jennison and Turnbull, 1989).

The logical shortcomings of frequentist sequential
inference have been articulated convincingly by
Anscombe (1963), Cornfield (1966, 1976) and Berry
(1987). At the heart of the matter is the fact that the
statistical conclusions drawn from the data available
at the end of the trial depend critically on the stopping
rule selected at the outset. Faced with exactly the
same set of data, two statisticians may report radically
different p-values because one entertained the possi-
bility of early stopping while the other did not. Interval
estimates of parameters of interest following a sequen-
tially stopped trial (Tsiatis, Rosner and Mehta, 1984)
likewise depend on the stopping rule and thus on
consideration of “data that might have been observed
but were not” rather than on the relevant sufficient
statistics. The repeated confidence interval approach
is unable to accommodate new data once the prespe-
cified Type I error has been “used up.”

Bayesian statisticians have much greater flexibility
in dealing with sequential clinical trials because their
posterior and predictive distributions depend only on
the likelihood of the observed data and not on the
stopping rule. Work by Chaloner and Duncan (1983)
and Freedman and Spiegelhalter (1983) should help
to familiarize the medical community with the concept
of prior distributions and their elicitation from those
responsible for the conduct of the trial. It is entirely
appropriate that the prior so determined is considered
as part of the decision to stop. This decision is prob-

,ably best made informally, by consideration of the
posterior distribution of the treatment effect or
the predictive probability that future observations
will provide conclusive evidence of effectiveness to
share with colleagues (Herson, 1979; Spiegelhalter,
Freedman and Blackburn, 1986). Formal decision-
theoretic treatments based on minimizing the number
of patients assigned to the “wrong” treatment have
not yet taken sufficient account of the fact that clinical
trials are designed to provide scientific data to an
international community of physicians, as well as to
improve treatment in the specific population from
which the subjects are drawn. This is a difficult

arena in which to formalize the cost-benefit equation
(Cornfield, 1976; Simon, 1977).

A nice example of Bayesian sequential inference in
practice is provided by Spiegelhalter, Freedman and
Blackburn (1986). They study the use of the predictive
distribution to answer a question frequently posed by
data monitoring committees, namely: “What, given
the data so far, are the chances of getting a conclusive
result if we complete the trial?” They define a critical
region R, based for example on a fixed sample size
test, such that observations falling in R would be
widely interpreted as conclusive evidence of a treat-
ment difference. Given the data x, available at some
interim point in the trial, they then calculate both the
conditional power pr(R |6, x,) and the posterior dis-
tribution pr(f | x,) as functions of the parameter 6 of
interest. Averaging the conditional power with respect
to the posterior produces the predictive probability of
rejecting the null hypothesis. This has the advantage
over stochastic curtailed sampling (Halperin, Lan,
Ware, Johnson and Demets, 1982) of accounting in
the posterior distribution for the accumulated infor-
mation about 6. The conditional power function at a
prespecified 6 is not relevant for interim analysis if 6
is no longer a plausible value.

Figures 4 and 5 illustrate this process with binomial
observations on the probability of failure in a control
(C) and treatment (T) group. At an interim point,
with 887 patients already observed on each treatment
arm and 592 more to come, 43 failures have occurred
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Fic. 4. “Conditional power” contours showing the probability of
rejecting Ho: p. = p. in favor of p. > p, given the data so far, as a
function of true mortality rates p. and p,. Reprinted with permission
of the publisher from Spiegelhalter, Freedman and Blackburn (1986).
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Fi1Gc. 5. Current joint belief concerning p. and p., expressed as
contours of 1%, 10%, 50%, 90% and 99% of the maximum ordinate,
assuming pretrial independence of p. and p,. Reprinted with permis-
sion of the publisher from Spiegelhalter, Freedman and Blackburn
(1986).

on T and 67 on C. Figure 4 shows conditional power
contours of eventually rejecting the null hypothesis as
a function of (P,, P;), the true failure probabilities,
while Figure 5 shows contours of the posterior distri-
bution of (P,, P,) starting with a product of “nonin-
formative” beta distributions as prior. The predictive
probability of R is 0.950, which may be decomposed
into 0.004 when integrating over the region P, < P,
(control superior) plus 0.946 when integrating over
the region P, > P, (treatment superior). The posterior
probability that P, < P, is 0.009. The predictive dis-
tribution of the numbers of future failures in each
group (Figure 6) shows that the bulk of the plausible
values would lead to rejection of the null hypothesis.

The Bayesian’s choice of prior is particularly im-

portant in sequential applications. Rosenbaum and
Rubin (1984) demonstrate that the sampling distri-
butions of Bayesian coverage probabilities for interval
estimation, which are concentrated on the nominal
0.95 if the model is correctly specified, are much more
sensitive to misspecification of the prior when the
sample size is sequentially determined rather than
fixed in advance. Especially when the trial stops early,
correct specification is critical if the inferences are to
be reasonably well “calibrated.”

This reservation notwithstanding, the Bayesian ap-
proach offers a considerable advantage in the context
of sequential clinical trials by keeping the scientific
inferences based on the observed data, as expressed in
the likelihood and the posterior distribution, inde-
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FiG. 6. Joint predictive distribution of future number of deaths,
superimposed on critical region R (lying to the right of the asterisks),
where R includes values leading to the rejection of H, at the 5% level.
Contours shown are 1%, 10%, 50%, 90% and 99% of the maxi-
mum ordinate. Reprinted with permission of the publisher from
Spiegelhalter, Freedman and Blackburn (1986).

pendent of the particular stopping rule used to deter-
mine the trial size. Once the data are reported, others
are free to analyze them according to their own prior
beliefs, which may or may not have led them to make
the same stopping decision. This is precisely what
happens in practice! For those who are concerned
about the problem of sampling to a foregone conclu-
sion (Armitage, 1963), I can do no better than repeat
Cornfield’s arguments. Such concern belies a prior
that gives substantial weight to the null hypothesis.
Once this is properly incorporated in the decision
procedure, for example by specification of a prior that
places a mass of probability at the null, the problem
largely evaporates (Cornfield and Greenhouse, 1967).

7. ASSESSING MODEL UNCERTAINTY

A recent review of the literature on benzene and
leukemia estimated that for every 1000 men exposed
at 10 ppm for a working lifetime of 30 years, 50 would
die from leukemia because of the benzene exposure,
in addition to a baseline expectation of seven leukemia
deaths (Austin, Delzell and Cole, 1988). The authors
conclude: “However, this estimate is speculative and
whether or not enough confidence can be placed in it
to justify a lower occupational benzene standard re-
mains a decision for policy makers.” Regrettably, no
help was offered the policy makers in assessing the
uncertainty inherent in the risk assessment. Austin,
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Delzell and Cole acknowledged that the available
epidemiological data were too sparse, or too subject to
confounding, to substantiate a causal association at
the low levels (1-10 ppm) of interest to them. Conse-
quently, they followed standard guidelines by extrap-
olating from higher levels of exposure where there was
a demonstrable effect, using a statistical model that is
effectively linear at low doses.

These epidemiologists were fortunate to have had
human data to work with. The pervasive public fear
of cancer and birth defects resulting from exposure to
radiation and toxic chemicals, coupled with advances
in analytic chemistry that permit detection of trace
amounts of chemicals in food, air and water, has led
regulatory agencies to rely increasingly on quantita-
tive risk assessments of many agents for which ade-
quate epidemiology is lacking. Results in bioassays
with a few hundred animals treated at “maximally
tolerated” doses are extrapolated down the dose scale
and across species to predict the results of long-term,
low-level exposure in humans. It is well known that
competing statistical models based on different con-
cepts of toxicology and carcinogenesis can yield
roughly equivalent fits to the data in the observable
effect dose range, yet lead to low-level risk estimates
that are orders of magnitude apart (Brown and Koziol,
1983). Unless a greater consensus can be achieved
regarding their proper use and rationale, the shaky
scientific foundation for quantitative risk assessments
invites attack by critics who may well force their
abandonment (Freedman and Zeisel, 1988).

The debate over quantitative risk assessment is a
reminder of the subjectivity inherent in many forms
of statistical modeling. As Robins and Greenland
(1986) put it, “... all modelling strategies contain
implicit prior beliefs about nature . ..” The rationale
for selection of a model for analysis is the belief that
the savings in variance afforded by the model assump-
tions will offset the increase in bias that results from
the assumptions being incorrect. The common prac-
tice of allowing the data to dominate the model selec-
tion process, whether by stepwise entry of variables
into a regression equation or evaluation of goodness-
of-fit to data in the observable effect range, is often
inappropriate. A preferable strategy is to determine
which of a broad class of models are reasonably con-
sistent with the observed data and to select among
these based on prior understanding of the subject
matter. If the lack of such understanding precludes a
definitive model choice, it is much wiser to admit this
openly and accept the resultant uncertainty than it is
to sweep the whole issue under the rug by presenting
a single “best” model.

Current approaches to the assessment of model
uncertainty involve the fitting of different plausible
models in order to measure the “sensitivity” of the

inferences, such as the prediction of low-level effects,
to model assumptions. A drawback of this approach
for decision-making purposes is that it does not pro-
vide a quantitative measure of the uncertainty of the
prediction. Risk assessors have a hopeless task if faced
with a wide range of predicted outcomes and no indi-
cation of their relative likelihood. Nor are they well
served by a single estimate, based on the best-fitting
model whose standard error accounts only for trivial
sampling errors. What is needed is a framework that
explicitly recognizes model uncertainty and that
places greatest weight on those models that have the
strongest subjective support among experts in the
field, based on their understanding of fundamental
mechanisms (Hattis and Smith, 1987).

The Bayesian paradigm provides a natural structure
for the synthesis of expert opinion. Model uncertainty
is expressed by the experts in the form of a prior
distribution on a discrete set of models that are chosen
to span a reasonably comprehensive model space. Ad-
ditional specification of priors for the parameters in
each model are required, but in many cases these could
be assumed diffuse. Within this framework, Hodges
(1987) emphasizes the propagation of model uncer-
tainty through to model-based predictions by use of a
predictive distribution that integrates over the model
space as well as over the parameter space for each
model. Thus, at least in theory, one could arrive at a
distribution on the number of excess leukemia deaths
observed among the 1000 men exposed to 10 ppm of
benzene for 30 years that accounted for all the major
elements of uncertainty: structural uncertainty about
the model; estimation uncertainty about the parame-
ters in the model; and prediction uncertainty about
the future outcomes given the model and parameters
(Draper, Hodges, Leamer, Morris and Rubin, 1987).
This is obviously an extremely ambitious program that
has not yet been employed in any risk assessment that
I am aware of. Nonetheless, I believe it is important
that some such approach be attempted lest the defi-
ciencies in current guidelines for risk assessment lead
to their total abandonment.

8. CONCLUSIONS

Bayes’ or empirical Bayes’ procedures are useful, or
at least promise to become so, for estimation of a
multiplicity of related effects, for demonstrating bio-
equivalence of pharmacologic compounds, for deciding
when to stop a sequential clinical trial and for synthe-
sizing expert opinion so as to more adequately express
model uncertainty. With the exception of the multi-
plicity problem, each of these areas involves the ex-
plicit use of scientific data for decision-making or
regulatory purposes where the introduction of prior
beliefs is both natural and unavoidable. It is perfectly
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appropriate in a democratic society that a carefully
quantified measure of expert opinion be used to assist
decision makers with their task.

Bayesian methods have a more limited attraction
when the goal is scientific description or explanation
(Efron, 1986). Exploratory data analysis techniques
where uncertainty is assessed via cross-validation or
the bootstrap facilitate scientific inferences with a
minimum of prior assumptions and a maximum of
objectivity. However, more structure is likely to be
needed when the statistician starts to confront large,
complex datasets and multidimensional problems.
The model assumptions that necessarily enter into the
process of frequentist inference need to be examined
just as critically as the model assumptions, including
specification of the prior, that enter into Bayesian
inference. Whether one subscribes to Box’s (1983)
ecumenism or Cox’s (1978) eclecticism, it seems clear
that Bayesian and frequentist approaches each will
have a role to play in biostatistical applications in the
years to come.
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Comment

Peter Armitage

This persuasive paper should be welcomed by all
biostatisticians, not least because the author succeeds
in conveying his enthusiasm for (although to some
extent his reservations about) Bayesian analysis with-
out indulging in the Messianic fervor so characteristic
of some of its proponents. For my part I am convinced
that Bayesian methods have a major role to play
in the analysis of biomedical data, although I am
as skeptical about claims that they provide an
all-embracing “world-view” of statistics as I am
about similar claims in the realms of politics, art
or religion.

Since Dr. Breslow starts with some fascinating au-
tobiographical detail, it may not be out of place to add
a few personal comments. When I entered medical
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statistics in 1947, the discipline was still struggling to
take on board the pre-war advances of Fisher and his
contemporaries. In Britain, J. O. Irwin was, among
biostatisticians, almost a lone representative of the
Fisher-Neyman traditions; in the United States,
Cochran had yet to enter biostatistics and take on his
important leading role. (The developments of the
1920s and 1930s were, of course, more deeply estab-
lished in agricultural research.) Jeffreys appeared as
a lone figure of great stature but almost completely
lacking in influence. Bayesian methods were pro-
pounded, in the U.K., by a few people, including
W. Perks, an actuary, and I. G. Good, but to little
effect, and it was not until the appearance of L. J.
Savage’s book in 1954 that more than a handful of
statisticians took Bayes seriously.

In the gradual process of consolidating the use of
“standard” methods, most of us gave little thought to
the apparently more formidable task of introducing
Bayesian inference and decision theory. I must have
been one of the English statisticians, during Norman



