EXACT INFERENCE FOR CONTINGENCY TABLES

Rejoinder

Alan Agresti

I thank the discussants for their comments. I
appreciate their compliments, as well as their criti-
cisms and suggestions, which nicely supplement
the presentation in my paper. It is reassuring to
see that, despite what some might call the exces-

sive length of my paper, alternative perspectives

raise yet other noteworthy issues and cast addi-
tional light on this subject.

In my article, I mentioned a need for the develop-
ment of exact methods for model checking, and I
am pleased to see the contribution by Ed Bedrick
and Joe Hill on this topic. They suggest a simple
algorithm for generating the relevant reference set
for logistic regression. Their algorithm would seem
to generalize to loglinear models.

Regarding the problem noted by Bedrick and Hill
of potential near degeneracy in using conditional
methods, I am afraid I do not see any simple solu-
tions (other than perhaps becoming a Bayesian).
Degeneracy is the most extreme form of the severe
discreteness that can occur with conditional meth-
ods. The severe discreteness is the primary weak-
ness of this type of method and is, I believe, at the
heart of the objection many statisticians have with
methods such as Fisher’s exact test. An approxi-
mate solution in logistic regression is to slightly
collapse the data in order to produce a fuller condi-
tional distribution of the data.

I thank Bedrick and Hill for clarifying and ex-

tending my remark about exact analysis for param-
eters when the Jink function in a generalized linear
model is noncanonical. They show that some types
of conditional inference may still be useful, both for
model checking and inference about a parameter of
interest. I would like to see them develop this
discussion further for some interesting noncanoni-
‘cal models for categorical data. Likewise, I would
like to see further discussion of their view treating
Fisher’s exact test only as a goodness-of-fit test.
This is subtly distinct from the usual view of its
also serving as a test comparing two independent
binomials. Perhaps they can help to clarify this
longstanding controversy, although I do not expect
to see statisticians reach agreement about how to
analyze 2 x 2 tables, at least not in my lifetime.

I think that both of Diane Duffy’s ideas merit
considerable attention. We statisticians commonly
complain that users of statistics pay too much
attention to p-values and statistical tests at the
expense of more informative types of analysis. Per-
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haps we can at least convince them to perform
sensitivity analyses, such as the ones Duffy recom-
mends, so that they do not take their p-values too
literally, feeling compelled to report them to sev-
eral decimal places.

When n,,= n,,, deleting an observation from
one row has the same impact on the magnitude of
the one-sided p-value (but in the opposite direction)
as deleting the same type of observation from the
other row. Thus, in this balanced case, the observed
p-value falls in the middle of the interval (P;, Py)
for Duffy’s first type of perturbation. For instance,
for table (10,90/20,80), the one-sided p-value is
0.0367, with P, = 0.0231 and P, = 0.0503. As
shown by her example, this need not happen for the
usual two-sided p-value, for which deletion of an
observation sometimes has no effect on the p-value.

Duffy suggests studying whether algorithms for
exact analyses can be adapted to aid Bayesian com-
putations. She also proposes a conditional Bayesian
analysis and suggests comparing it to ordinary
Bayesian and frequentist procedures. The recent
significant improvements in computational tools
(e.g., Gibbs sampling) for Bayesian methods sug-
gests that we should soon see Bayesian and hybrid
methods more fully developed for multidimensional
contingency tables. For sparse contingency tables,
several problems exist for which unconditional fre-
quentist approaches fail and for which a Bayesian
approach would be a natural alternative to a condi-
tional approach. An example is the analysis of
2 X 2 X K tables with large K. When the true odds
ratio is identical in each 2 x 2 table, its uncondi-
tional ML estimator is inconsistent when K grows
at the same rate as n, such as when each table
consists of a case-control matched pair (e.g., Bres-
low and Day, 1980, page 250). When the true odds
ratios are not identical in each table, a Bayesian or
empirical Bayesian approach would seem to be a
reasonable way of smoothing the stratum-specific
estimators of odds ratios, borrowing from the whole
to get estimators with improved MSE properties.

Leonardo Epstein and Stephen Fienberg also sug-
gest the worthiness of a Bayesian perspective,
pointing out that it may be no more difficult com-
putationally than exact conditional methods. It is
interesting to note that, before much development
of methodology for multiway contingency tables
had taken place, Lindley (1964) argued that
Bayesian methods had the advantage (compared to
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frequentist methods) of extending to such tables
with fewer complications.

Epstein and Fienberg claim that, even for sparse
tables, asymptotic methods are often well behaved
for certain model-based inferences. I agree with
this comment, and my experience also indicates
that Haberman’s (1977) results are particularly im-
portant (Agresti and Yang, 1987). Yet, cases will
always exist in which the use of such asymptotics is
questionable, such as when a table contains both
very large and small counts. Exact methods can
help us to highlight situations in which asymptotic
answers may be unreliable.

Many of the Epstein and Fienberg criticisms
about p-values for exact tests are applicable to any
type of statistical test, and I do not disagree with
their main thrust. Even though I am interested in
exact tests for contingency tables, I realize the
limitations of tests in any statistical analysis. I
think statisticians generally are in agreement about
this, but many practitioners are unaware of such
basic considerations as the dependence of results of
tests on the sample size and the distinction be-
tween statistical significance and practical signifi-
cance. Because of this, I have taken pains in my
writings for nonstatisticians to point out the limita-
tions (e.g., Agresti and Finlay 1986, pages
152-153). Nonetheless, the ubiquitous use of statis-
tical tests is likely to continue, particularly for
such common problems as judging whether there is
sufficient evidence to distinguish between effects of
two treatments.-

So, given the obvious limitations, why would one
ever want to use a test.(exact or otherwise) to check
the fit of a loglinear model? I believe the following
justification makes sense. We realize that the model
being tested is an approximation for reality and
does not hold perfectly in the population of interest.
In this sense, we know before conducting the test
that the null hypothesis is false. Whether the test
statistic is “large” may simply depend on how
much data we have. Yet, we also know the benefits
that accrue from using parsimonious models. For
example, unless the sample is extremely large, we
obtain better estimators of parameters of interest
by using a simple, decently fitting model rather
than a more complex model or the saturated model
(Bishop, Fienberg and Holland, 1975, Section 9.2;
Altham, 1984; Agresti, 1990, Section 6.4.4). Test-
ing goodness of fit for models in a nested set gives
us some indication of how much simplification we
can reasonably apply in our attempt to obtain such
improved estimators. I am curious about how much
technical justification can be given for such use of
tests.

Epstein and Fienberg claim that exact tests us-

ing the efficient score statistic only approximate
analogous tests using the likelihood-ratio statistic.
Their argument is correct, but there is no reason
the efficient score statistic is not itself a valid
statistic for measuring departure from the null hy-
pothesis. My paper utilized this statistic because
exact tests are then simpler to conduct for models
requiring iteration. For each table in the condi-
tional reference set, one can compute the efficient
score statistic without needing to fit the model. Of
course, if one wants to assume the extra computa-
tional burden of fitting the model for each such
table, then one could also formulate an exact test
using the likelihood-ratio statistic. This is not yet
done for indirect models in any commercial soft-
ware, but in principle it provides no difficulty.

Svend Kreiner has amplified my remarks about
tests for conditional independence for higher di-
mensional arrays often being feasible by exploiting
connections with equivalent tests for collapsed ta-
bles. As he points out, expressing some models as
graphical models is useful for giving insight about
when this can be done. I also very much like
Kreiner’s idea of simulating exact distributions in
high dimensions by a simpler sequential approach.
I disagree with his comment that there seems to be
no practical solution to tests of higher order inter-
actions in the predictable future. Zelen’s (1972)
influential work was an early start in this direction
and is available in StatXact. Also, Morgan and
Blumenstein (1991) recently described a simple
general algorithm for tests comparing hierarchical
loglinear models that can be applied for such a
purpose.

I do not share Kreiner’s concern about tests in-
volving models fitted by iteration. As previously
discussed, for tests using the efficient score statis-
tic, one need only calculate the relevant sufficient
statistic for each table in the conditional reference
set rather than fit the model. An example already

"considered is the exact test for the linear-by-linear

association model, which is fitted iteratively
(Agresti, Mehta and Patel, 1990). Regarding model
search strategies, restriction to decomposable mod-
els is helpful in many cases, but too severe for
applications in which we expect all pairs of vari-
ables to be associated. Finally, I imagine that
Kreiner agrees that significance tests, exact or
asymptotic, should form only part of any model
search strategy. As in any statistical setting, we
learn less from formal tests than from parameter
estimation (in particular, confidence intervals) and
model diagnostics.

My paper did not provide much detail on compu-
tational algorithms for exact inference, and indeed
my knowledge of them is quite limited. The discus-
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sion by Cyrus Mehta, one of the foremost experts
on this topic, is an informative supplement. He
describes the interdisciplinary approach that is nec-
essary to perform the computations in powerful
software for exact inference, such as provided
by his outstanding package, StatXact. My paper
mentions that Mehta has made a long series of
important contributions to exact conditional infer-
ence, and I fully expect that many of the problems
that I posed will be solved by him and his students,
and will be computable by the year 2000 version of
StatXact! The current version of the StatXact man-
ual is, in fact, a very good source for further discus-
sion, as well as promotion, of the exact conditional
point of view.

Samy Suissa’s discussion provides arguments for
the exact unconditional approach for comparing
binomial proportions in 2 X 2 contingency tables.
He and Professor Jon Shuster have made impres-
sive progress in constructing algorithms for exact
unconditional inference, both for independent sam-
ples and matched pairs. Also, Soms (1989a,b)
recently gave a program for exact unconditional
confidence intervals for differences of proportions.
Under the binomial sampling assumption, the un-
conditional approach is reasonable if one does not
mind averaging results for the observed sufficient
statistic with results for quite different possible
outcomes. The sufficient marginal counts deter-
mine the precision with which comparisons can be
made. Some world-reknowned statisticians have ar-
gued against unconditional averaging (for example,
Fisher 1945; Cox and Hinkley, 1974, page 38; Yates,
1984; Cormack and Mantel, 1991), but the issue is
clouded by the marginal counts not-being ancillary
and by practica] implications of the extra discrete-
ness occurring with the conditional approach.

L. J. Wei and D. Y. Lin, in analyzing 2 x 2
tables based on adaptive group sequential designs,
also mention conservativeness problems with exact
conditional methods. Their research, like that of
Suissa and Shuster, indicates superiority for exact
unconditional methods. Their point is well taken
that many practitioners are more comfortable in-
terpreting a difference or ratio of probabilities
rather than an odds ratio. The analyses and the
type of application in their work are noteworthy,
and I regret that I did not cite them in my paper. In
medical studies, the choice of data-analytic method,
as well as the choice of design, has ethical implica-
tions and can have substantive practical conse-
quences. The work by Lin, Wei and their co-authors
is also admirable for giving strong attention to
problems of interval estimation.

The conservativeness of the exact conditional ap-
proach is compounded for the randomized play-the-

winner design discussed by Wei, Smythe, Lin and
Parks (1990) by especially severe discreteness. Not
only are both margins fixed, but also one of the row
totals may be extremely small. In the uncondi-
tional approach for this design, neither margin is
fixed. Wei, Smythe, Lin and Parks (1990) showed
that even the exact conditional test using random-
ization to achieve the desired size performs poorly
for this design.

The exact conditional approach has been strongly
attacked by many statisticians for its conservative-
ness with 2 x 2 tables. Indeed, it can be quite
conservative, and there are settings such as the one
Wei and Lin discuss where its performance is inad-
equate. But one should also keep in mind that
conservativeness problems for exact conditional
analyses diminish with larger tables. As Epstein
and Fienberg point out, in practice, larger tables
are the norm; sole 2 X 2 tables cannot adequately
address issues that are more naturally expressed in
multivariate terms. One can also diminish conser-
vativeness in some cases by using a test statistic
that can assume a greater number of values. For
example, in the exact test for the linear-by-linear
association model, the conditional distribution is
much less discrete when the scores {x;} and {y;}
are unequally spaced rather than equally spaced.

For most cases in which conservativeness is
an issue, I find recent arguments by Barnard
and others supporting the mid-p approach to tests
and confidence intervals quite persuasive. For the
standard independent binomials design, I will be
surprised if the exact unconditional test for 2 x 2
tables maintains its consistent power and sample
size superiority when compared with the modifica-
tion of the exact conditional test using the mid-p
value. In this regard, Routledge (1990) used an
Edgeworth expansion to show that at least for large
n, the conditional mid-p value and unconditional
p-value tend to be closer to each other than each

- is to the regular conditional p-value. Also, as I

mentioned in my paper, I will be surprised if the
unconditional test does not suffer from its own
conservativeness problems for larger tables with
greater numbers of nuisance parameters (e.g., inde-
pendent multinomial samples). Indeed it is a
tremendous computational challenge to perform
such generalizations of the exact unconditional test,
and I look forward to seeing whether Professors
Suissa, Shuster, Wei, Lin or others can prove me
wrong.

Exact conditional mid-p tests are easily invert-
ible to confidence intervals and generalizable to
inference problems for larger tables. Of course, one
sacrifices “exactness” with the mid-p approach, but
results I have seen so far are very encouraging.
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Mid-p inferences tend to behave better than asymp-
totic methods, particularly in unbalanced cases for
small n, yet do not display the conservativeness of
the exact conditional and unconditional methods.
Consider the choice between (1) a slightly approxi-
mate method in which intervals are constructed
such that, in the long run, quite close to p% of
them contain the parameter of interest, and
(2) “exact” methods in which wider intervals are
constructed such that, in the long run, at least p%
contain the parameter of interest. When the inter-
vals obtained by method (2) tend to be much wider
and may have actual confidence level considerably
higher than the desired p%, my belief is that most
practitioners will opt for method (1).

Dupont (1986) gave similar remarks to Suissa’s
about-potential anomalies in Fisher’s exact test
with two-sided p-values based on hypergeometric
probabilities, caused by the skewness and discrete-
ness. As Duffy notes in her discussion, this is an
issue for all tests using highly discrete distribu-
tions, not just Fisher’s exact test. Yates and discus-
sants (1984) provided an interesting commentary
on this issue. In my experience, anomalous behav-
ior is less common for mid-p versions of p-values. It
also seems to be less common for the Fisher and
Yates recommendation of obtaining two-sided p-
values by doubling the single-tail p-value. For in-
stance, the two-sided p-value obtained by doubling
the minimum one-tail p-value is 0.114 for table
(0,35/4,31) and 0.108 for (0, 36/4,31); it is 0.062
for (9,163/2,169) and 0.060 for (9,162/2,170).
However, this type of two-sided p-value has its own
disadvantages, including lack of interpretation, lack
of a natural generalization for I X J tables, greater
conservativeness than the ordinary p-value and a
null expected value for the corresponding mid-p
value unequal to 0.5.

In a personal communication to me, Dr. Duffy
has indicated that she expects confidence intervals
to be more robust than p-values to the types of
perturbations she discusses. This is also my experi-
ence and is another reason for preferring interval
estimation over tests. For instance, the usual exact
conditional 95% confidence interval for the odds
ratio is (0, 1.07) for table (0,35/4,31) and (0, 1.04)
for (0, 36/4, 31); it is (0.94, 44.85) for table
(9,163/2,169) and (0.95,45.39) for (9, 162/2, 170).

In summary, I believe the discussants’ comments
illustrate that each type of “‘exact” or approximate
inferential method for contingency tables has its
strengths and weaknesses. Statisticians are un-
likely to reach agreement on judging one type of
method as superior to others for all purposes. Cur-
rently, the exact conditional approach does have

the important advantages of wide scope and in-
creasingly feasible computability.

I thank the discussants for their insights, and I
look forward to new work on this topic by them and
other statisticians.
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