EXACT INFERENCE FOR CONTINGENCY TABLES 167

We commend Professor Agresti for pooling to-
gether the tremendous recent developments in the
area of exact inference for contingence tables and
suggesting additional research for the next decade.
We would also like to congratulate Dr. Cyrus Mehta
on his successful development of the extremely use-

ful computer software, StatXact, an important
contribution to our profession.

ACKNOWLEDGMENTS

This research was supported by grants from the
National Institutes of Health.

Comment: An Interdisciplinary Approach to
Exact Inference for Contingency Tables

Cyrus R. Mehta

I congratulate Professor Agresti for a masterful
survey of the blossoming field of exact inference.
This paper would not have been as exciting had it
been written a decade earlier. Few algorithms were
then available for generating permutational distri-
butions or their tail probabilities. Statisticians ur-
gently needing exact tests relied either on brute
force exhaustive enumeration of the reference set,

_or on Monte Carlo sampling. The personal com-
puter industry was in its infancy, and one had to
factor the cost of expensive CPU time on a main-
frame computer into the decision to compute an
exact p-value. But, today, one can buy a 33 mHz
80486 IBM-PC clone for the same price as I paid for
my first IBM-XT, $3,300. Yet the 80486 is a hun-
dred times faster. The trend toward increased com-
puting power, more random access memory and
more disk storage space, at reduced prices, contin-
ues with no end in sight. Are all these computing
resources being fully utilized? Let me draw an
analogy from the automobile industry. Manufactur-
ers of sports cars are always on the look out for
skilled racing drivers able to push a car to its limit
by fully utilizing all the available horse power.
Similarly, computer manufacturers eagerly solicit
software developers whose products can take full
advantage of the phenomenal power inside their
new machines. Permutational inference is one of
the few fields that can satisfy the appetite of an
80486-based PC, a SUN SPARC 2 or a DECstation
5000, eager to devour hard computational prob-
lems. Professor Agresti is to be commended for

Cyrus R. Mehta is Associate Professor of Biostatis-
tics, Harvard School of Public Health and President
of Cytel Software Corporation, Cambridge, Mas-
sachusetts. His mailing address is 137 Erie Street,
Cambridge, Massachusetts 02139.

opening up the field and pointing out so many new
research directions, guaranteed to keep us occupied
for the next decade.

Exact permutational inference is interesting be-
cause of its interdisciplinary nature. It draws on
ideas from four disciplines: statistics, discrete
mathematics, computer science and operations re-
search. I will illustrate this through an exact treat-
ment of the 2 X k contingency table.

1. STATISTICS: THE LINEAR RANK TESTS

Let x denote a generic 2 X k contingency table of
the form:

Coll Col2 Col £ Total
Row1l x; Xy e Xy, m,
Row 2 x; Xy ... X}, m),
Total ny ng ... n, N

Define the reference set of all such 2 X k& contin-
gency tables with fixed row and column margins by

k
F=4{x:> x,=my, x;+x, =n;,i=1,2, ... ky.
i1

For a rich class of statistical problems, the linear
rank tests [see, e.g., Chapter 4 of the StatXact,
(1991) manual]l, one needs the permutational
distribution of

k
i=1

where the w,;’s are arbitrary scores, and for any
xel,

(12) pr(x-2x)- fl(i)/(nﬁ)

IR (X
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @,ﬁ%%
Statistical Science. MINORY
WwWw.jstor.org

168 A. AGRESTI

The support points of this discrete distribution are
the elements of the set

Q(k, my)
1.3

The probability of each teQ(k, m,) is, up to the
normalizing constant N!/m (N — m,)!,

(1.4) ok, my,6)= ﬁ(ﬁj),

xel'(k, my,t) i=1
where

I'(k,m,,t)
(1.5)

The goal is to develop an efficient algorithm to
compute the distribution

(1.6) {(t, c(k, m,, t)): teQ(k, m,)}.

Often, we will only be interested in values of
[t, c(k, m,, t)] in the range a < ¢t < b and will ex-
pect the algorithm to furnish this portion of the
distribution without having to first generate the
entire distribution.

2. DISCRETE MATHEMATICS:
USE OF RECURSION

One could, of course, enumerate explicitly every
x €T, compute (1.1) and (1.2) each time and thereby
generate the desired distribution of T. However, as
Professor Agresti has pointed out, the number of
elements in I' grows exponentially so that explicit
enumeration soon becomes computationally infeasi-
ble. On the other hand, the number of elements
in Q(k, m,) is relatively small (for most choices of
w; scores), and this set of support points, along with
the corresponding probabilities, ¢(k, m,, t) may be
built up recursively in k + 1 successive stages.
Most modern algorithms [e.g., Pagano and Tritch-
ler (1983); Streitberg and Rohmel (1986); Vollset,
Hirji and Elashoff (1991); Mehta, Patel and Sen-
chaudhuri (1992)] can be conceptualized in this
manner, although there may be differences in their
actual implementation. The necessary stagewise
recursions are constructed next.

Let m; = ¥}_,x; denote the partial sum of the
entries in the first j columns of row 1 of any xeT.

Conditional on m » the possible candidates for m a1

the partial sum up to column (j + 1), are the sets of
integers

Xk: ni)

S(J, mj) = {m;,;:max|{m;, m, —
i=j+1

(2.1)

=m;,; <min(n;,, - m;, mk)}.

Again, conditional on m;, the possibie candiates for
m;_,, the partial sum up to column (j — 1), are the
set of integers

P(J, mj) = {mj_l: m; — min(m;, n;) < m;
(2.2)

i=1

j-1
=m; - max(O,mj - > ni)}.
Define A, = {0} and, for j = 1,2, ...k,
(2.3) A= U S(j -1, mj—l)’

m;_1€A;_,
as the set of all possible partial sums, m j» up to
column ;. Now, define Q(j, m ;) and c(j, m;, t) as in
(1.3) and (1.4), respectively, but with j replacing k.
Initialize ©(0,0) = {0}, and ¢(0,0,0) = 1. Then, for
J=1,2, ...k, and each m; €A, form the sets

Q(j, m;) =
(2.4)

{t' + wi(m; —m;_,):
m;_1€P(j, mj)

teQ(j—-1,m,;_,)}.
For each teQ(j, m), compute

e(J, m;, t)

25 - ¥

m;_1eP(i, mpy \ " T -1

* C(j - 1, mj_l,t - wj(mj - mj_l)).

We end up at stage k& with the desired distribution
(1.6).

3. COMPUTER SCIENCE:
THE DATA STRUCTURES

A crucial step in the implementation of the above
recursions is the proper choice of data structures
for storing and updating the intermediate informa-
tion, stage by stage. Particular care must be given
to the data structure used to store the sets Q(j, m)
These sets carry all the support points of the distri-
bution at stage j. Equation (2.4) shows that each
support point ¢’ € Q(j — 1, m;_;) is extended by an
amount w;(m; — m;_;) and then inserted into
Q(j, m;). The question to be addressed during this

EXACT INFERENCE FOR CONTINGENCY TABLES 169

insertion is whether there already exists a support
point in Q(j, m;) that matches the one about to be
inserted. Unless the data structure for the ele-
ments of Q(j, m,;) is appropriately selected, the in-
sertion of each new element will necessitate a costly
search for matching elements, over the entire set.
This could kill the algorithm outright.

If all the support points, ¢t € Q(j, m;) are equally
spaced (as they will be when the w; scores are
equally spaced), a simple data structure suffices. At
each stage j, we may store the distinct values of ¢
in a linear array, one below the other. Now, each
new value of ¢ to be inserted into Q(j, m;) has a
unique address on the linear array, and matching
elements are instantly identified without any
search. However, if the w; scores are arbitrary, the
support points will not be equally spaced. In that
case, one of the most practical techniques for dy-
namic search and insertion of new elements into
Q(J, m;) is hashing. The elements of Q(j, m;) are
transformed through a hash function into an ad-
dress in a hash table. Identical elements will hash
to the same address, thus avoiding the costly search.
There may be collisions, however, whereby differ-
ent elements hash to the same address. A good
hash function keeps these to a minimum. See
Horowitz and Sahni (1983, page 456) for a good
discussion of hashing, and Mehta and Patel (1986)
for a description of the data structures used to store
intermediate support points for Fisher’s exact test
on r X ¢ contingency tables.

4. OPERATIONS RESEARCH:
INTEGER PROGRAMMING

As stated previously, we might be interested in
generating the distribution (16) only in the range
a < t < b. It is then wasteful to generate the entire
distribution and extract from it the values in the
desired range. One can, however, weed out values
of t=1¢+ wi(m;— m;_,) prior to their insertion
into Q(j, m;) as stipulated by (2.4). To accomplish
this, it is necessary to hypothetically extend ¢, from
its current value at stage j to the range of possible
values it could assume at stage k. If we can estab-
lish at stage j itself that the extended value of ¢
can never fall inside the interval [a, b], this support
point may be dropped from further consideration,
and the number of elements in Q(j, m;) is corre-
spondingly reduced. This is a valuable saving, for
elements of Q(j, m;) tend to proliferate in subse-
quent stages, using up valuable storage space
and consuming large quantities of CPU time
needlessly.

Now, the hypothetical extension of the present
support point, from stage j to stage k, is an exer-

cise in integer programming. In the context of the
2 X k contingency table, the following minimiza-
tion (maximization) problem must be solved:

Minimize SP(jm j)(Maximize LP(J» mj))

k
= Z W;X;,

i=j+1

k
subjectto Y. x;,=m, — m;,
i=j+1

x;integerand 0 < x;, < n;,,vi=j+1,...,k.

The special structure of the problem can fre-
quently be exploited to optimize the above objective
function subject to the linear integer constraints.
For this problem, a “greedy algorithm” that sorts
the w,’s is ascending order and assigns as large an
x;,, as is compatible with the linear constraints to

J
w;, 1, rapidly. Sometimes these optimization prob-

leJms require more work. See, for example, the opti-
mization problems connected with the linear-by-
linear association test (Agresti, Mehta and Patel,
1990) or Fisher’s exact test (Joe, 1988). Backward
induction on a network (e.g., Mehta, Patel and
Senchaudhuri, 1992) is yet another approach to
these optimization problems.

Thus, there may be in general several operations
research techniques available to solve the same
optimization problems. The point is to find one that
solves them quickly, for it will be required repeat-
edly throughout the algorithm. Each time the opti-
mization problem is solved, one verifies that either
t + SP(j, m;) < aor t + LP(j, m;) > b. Either con-
dition disqualifies the current value of ¢ from
insertion into Q(j, m;).

5. THE NETWORK PARADIGM

In Section 7.1 of his paper, Professor Agresti was
kind enough to say that the network algorithms
developed by Nitin Patel and me, along with vari-
ous coworkers, provide a “general and versatile”
approach to exact permutational inference. He then
went on to give a network representation for the
reference set of r X c¢ tables with fixed margins. It
may, therefore, appear odd that in this discussion, I
have made no mention of the network algorithm.
The omission was deliberate. I wanted to demon-
strate that the recursions (2.4) and (2.5) can be
written down without any reference to networks.
However, the process by which they were derived
did depend on a network. It was the representation
of T' as a network of nodes and arcs that gave us
the necessary insight to write down and implement
the recursions (2.4) and (2.5) and to improve their
efficiency through integer programming. To make

170 A. AGRESTI

this clear, I will express the same recursions in
network terms. .

The network consists of nodes and arcs over & + 1
stages labeled 0,1, ..., k. The nodes at stage j are
ordered pairs of the form (j, m;), where m;€eA;.
The set S(j, m;) defines the successor nodes to the
node (j, m;), while the set P(j, m;) defines its par-
ent nodes. If we start with an initial node (0, 0) at
stage 0, and apply (2.1) systematically to all the
nodes created at each stage, we end up with a
single terminal node (k,m,) at stage k. Each
successor to node (j, m;) is a node of the form
J+1,m;,). It is connected to (j, m;) by an
arc of length, w;,,(m;,, — m;) and probability
niql/(m;, — mpin;q — m + myl. A path
through the network is a sequency of directed arcs
connecting the initial node (0,0) to the terminal
node (k, m;). Its length is the sum of lengths, and
its probability the product of probabilities, of the
arcs constituting the path. Through this specifica-
tion, each path through the network represents one
and only one table x eT'. Its length is given by (1.1)
and its probability is given by (1.2). The problem of
. generating the distribution (1.6) is now equivalent
to generating the distribution of the lengths of all
paths through the network. The set Q(j, m;) repre-
sents the distribution of the lengths of all the paths
from node (0, 0) to node (j, m)). The recursions (2.4)
and (2.5) amount to expressing the distribution of
lengths at node (j, m;) in terms of the distributions
of lengths at its parent nodes P(j, m;). Also, com-
puting SP(j, m;) and LP(J, m;) amounts to com-
puting the lengths of the shortest and longest paths,
respectively, from node (j, m;) to the terminal node
(k, m;). These may be obtained by backward induc-

Comment

Samy Suissa

Professor Agresti must be congratulated for this
long-awaited review of the principal issues and
methodology surrounding exact inference in contin-

Samy Suissa is an Associate Professor, Departments
of Epidemiology and Biostatistics and Medicine,
McGill University, and Research Scholar in the Di-
vision of Clinical Epidemiology at the Montreal
General Hospital. Mailing address: Purvis Hall,
1020 Pine Avenue West, Montreal, Quebec H3A 1A2,
Canada.

tion on the network (Mehta, Patel and Senchaud-
huri, 1992) or by more formal integer programming
theorems (Joe, 1988; Agresti, Mehta and Patel,
1991).

In our research papers, although not in this dis-
cussion, the network representation of a computa-
tional problem has always preceded its algebraic
representation. It is certainly elegant to express
the computational problem directly in terms of re-
cursions like (2.4) and (2.5). However, it is not so
easy to gain the necessary insight to write out the
recursions in the first place. Nor is it clear how one
implements them on a computer once they are
written down. We regard the network approach as
a general technique for deriving these recursions,
guiding us in selecting appropriate data structures
for computer implementation, and solving the nec-
essary integer programming problems. We have
used this approach for 2 x k tables, stratified 2 x k
tables, r X c tables and logistic regression.

In summary, this discussion has attempted to
show, through a detailed dissection of the 2 X k
problem, that the basic ingredients of an efficient
numerical algorithm for permutational inference
comprise of, recursive generation of the distribu-
tion of the test statistic, good data structures for
storing intermediate distributions through all
stages of the recursion and the use of integer pro-
gramming to generate a truncated distribution. The
network paradigm is a useful aid for carrying out
these steps. In particular, forward processing of the
network is a general way to conceptualize and im-
plement complicated recursions, whereas backward
induction on the network is a general way to solve
the integer programming problem.

gency tables. Since Fisher proposed his exact
method of analysis for the 2 x 2 table in 1934, the
amount of literature produced on the subject and
the resulting debates have reached immeasurable
proportions. (Yes, this pun intended!) Whether
dealing with the accuracy of various asymptotic
techniques in small sample situations, the diverse
possible factors of correction for continuity, or
the conditional, unconditional and Bayesian al-
ternatives, the ensuing research has definitely
contributed to our increased knowledge of the situ-
ation and has motivated imaginative developments
in computing algorithms. Professor Agresti pre-

