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Rejoinder (part 2)

L. Mark Berliner

So far as the laws of mathematics refer to reality, they are
not certain. And so far as they are certain, they do not refer
to reality.

Albert Einstein (1921)

I am grateful to all the discussants for their
interesting and thought-provoking comments. I am
gratified that Professors Cutler, Geweke, Griffeath,
Smith and Tsay generally agree with the proposi-
tions that the ideas assoicated with chaos should be
of interest to statisticians, and that statisticians
can make valuable contributions to this area.
Cutler and Smith presented valuable expansions,
particularly in the context of the estimation and
interpretation of “dimension,” on some topics for
which my review is only cursory. I strongly agree
with Professor Griffeath’s view that the real issues
discussed in various literatures and under various
names really all hinge on “complexity.” I also ap-
preciate his discussion of random number genera-
tion and cellular automata. Indeed, since I agree
with so much of what the discussants said, I will
only comment on remaining points of contention or
additional suggestions.

RESPONSE TO GEWEKE

I enjoyed Geweke’s suggested Bayesian analysis
of chaotic models, based on symbolic dynamic data,
in the presence no traditional randomness. The
analysis is exactly the sort of thing I believe statis-
ticians can contribute to problems of chaotic data
analysis. I wish to raise a point involving the spe-
cific computational algorithm he used, as outlined
in the second paragraph of his Section 4. Specifi-
cally, for a fixed parameter value a, he suggested
that the twentieth literates of many, equally spaced
values may yield an approximation to the natural
(Bowen-Ruelle) ergodic distribution for that a. This
is not necessarily true. In doing a similar analysis,
Steve MacEachern and I noticed that this is not
true for a corresponding to an attracting periodic
attractor. For finite attractor, the invariant distri-
bution must assign equal probabilities on the at-
tractor. However, uniformly spaced points are not
attracted to the limit points uniformly. For exam-
ple, I ran 5000 equally spaced points in the interval
(0, 0.5) for 500 iterates each using the logistic map
with a = 3.4. This a corresponds to a period 2
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attractor, consisting of roughly 0.452 and 0.842.
Only 44% of the 5000 points were at 0.842, whereas
the remaining 56% were at 0.452. Simply stated,
Geweke’s original suggestion only guarantees, up
to numerical complications, that we approx-
imate the support of the desired ergodic distribu-
tion. Therefore, he is right in his concern about the
validity of the approximation in the periodic case,
although I suspect the problem diminishes as the
number of periods increases. For a yielding a con-
tinuous ergodic distribution, statistical regularity
suggests that Geweke’s method would indeed yield
a good, again up to numerical complications, ap-
proximation.

I think these points are crucial to our interpreta-
tion of ergodic probabilities. In the period
2 attractor case above, it is true that almost all
(Lebesgue measure) points in the unit interval yield
paths which, after a transience period, spend 50%
of the time near each of the limit points. However,
if the initial condition is randomly and uniformly
generated from the unit interval, it is clearly not
reasonable to claim that, for every very large N,
xy is equally likely to be near each of the limit
points. Further, note that statistical regularity
generally requires continuous ergodic distribu-
tions. In the case of a finite attractor, if the initial
condition is generated according to a distribution
that assigns all its mass to the limit points, but not
with equal probabilities, the initial distibution
never washes out.

RESPONSE TO GRIFFEATH

* I have lingering doubts concerning the special
role Griffeath appears to ascribe to “truly random”
processes. He alludes to the powerful tools of proba-
bility theory, namely, the central limit theroem
and the law of the iterated logarithm. I suggest
that the ergodic theorem may well be included in
such a list, and that the relationship between er-
godic processes and stationary stochastic processes
can be viewed as establishing a link between “truly
random” and other complex processes.

Griffeath, in the role of purist, suggests that he
debunks my probability statement given in Section
2. Perhaps my Bayesian tint is too strong to appre-
ciate the impact of his argument. In particular, I
readily model my uncertainty via probability state-
ments. To clarify, consider the following two points.
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First, regarding my original claim in Section 2, I
offer Professor Griffeath the following bet. We agree
to set x, equal a reasonably precise computer rep-
resentation of 7~! and run the logistic map with
a = 4.0 for a very large number of iterates on a
computer in double precision. (The exact number of
iterations N + 1 will be determined by a neutral
party, perhaps the Editor, and announced before
Griffeath must decide on the bet.) If x5 = 0.5 and
Xy4+1 < 0.5, I pay Griffeath $100. If not, Griffeath
pays me $29. Notice that I ask for only $29, rather
than $33 as suggested by a fair bet according to my
probability statement. This is because my utility
function accounts for the fact that I “win” if he
even accepts the bet. It is interesting to ask whether
or not my probably statement is Bayesian state-
ment. In some sense the answer is no in that a
rigorous application of Bayes’ Theorem should re-
quire that once I know N and x,, my posterior on
x5 and x,,,; should be degenerated on the points
N(x,) and fN*1(x,). Thus, I am behaving incoher-
ently in a rigorous sense. On the other hand, if x,
is gerenated by any random mechanism that is
absolutely continuous with respect to Lebesque
measure, my probability statement is correct for
very large N by statistical regularity. The key to
my statement is that I would not change my state-
ment after learning the value of the generated x;
indeed, I would maintain the probability statement
for any transcendental x,. The only way to imple-
ment Bayes’ Theorem for such x, is to find v
there is no shortcut. The complexity implicit in
chaotic systems suggests that we may ask, “What
does it mean to ‘know’ fV?” As a related note, this
is essentially the same question asked by Diaconis
(1988) in his article on Bayesian numerical analy-
sis.

Second, a “purist’s” view of random variables is
that they are simply deterministic, measurable
functions defined on some probability space. Imag-
ine an experiment in which the height, X, of a
randomly chosen male listed in the Columbus White
Pages 1990-91 Phone Directory is to be observed.
A purist is happy to discuss the induced probability
distribution for X. Suppose I now tell you that the
name selected is on page 314, and indeed the se-
lected person’s name is P. Freidli. If we ignore
measurement error for the sake of argument, are
all traces of purist randomness gone? (A common
view of measurement error in the physical sciences
is something like, “We can actually learn the height
up to the nearest unit of measurement.”) Regard-
less of pure frequentist position, I still think of X
as a random variable. (Actually, I did not even pick
this person “at random’”—314 are the first three

digits of 7.) The point is that the knowledge of the
person may be uniformative, at least to most of us.
(Some readers might actually know Mr. Freidli, or
at least something about heights associated with
his name. However, this should simply change the
distribution for X, although not to a degenerate
one.) This parallels the argument in the context of
chaos (with continuous ergodic distributions) and
the uninformative nature, from a practical view-
point, of initial conditions, and also suggests that
the basic issue of relaxing the notion of true ran-
domness may be quite pervasive in the application
of statistical reasoning.

RESPONSE TO GRANGER

While I agree with the skepticism he alludes to
concerning the presentation of chaos as the great-
est thing since sliced bread, I find little else in this
discussion with which to agree. The only exception
is Granger’s questioning of the value of some of the
advertised “tests for chaos.” Most of Granger’s
lessons in logic and the removal of confusion were
too subtle for me. His closing paragraph left me
bewildered.

Professor Granger’s view of the implications of
statistical hypothesis testing is so remote from my
own, I fear he and I do not have sufficient common
ground from which I can proceed in an expeditious
fashion. His attempts at teaching me the logic of
statistical hypothesis testing, although he may be
surprised to know that I have heard it before,
failed. The trouble stems from the fact that before
studying testing, I learned in probability theory
that P(A| B) is, alas, not the same as P(B| A).
Putting debates over the philosophy of statistics
aside, I think Granger believes that mathematical
models, whether deterministic, random, chaotic or
whatever, are truly either right or wrong, and we
are able to learn which. I think mathematical mod-
els, although subject to constant scrutiny and po-

"tential replacement, are simply tools by which we

organize and communicate our thoughts and projec-
tions about how things work. The quote with which
I opened this rejoinder was primarily intended for
him.

RESPONSE TO SMITH

As in the case of Professor Cutler, Professor Smith
presents an excellent and valuable commentary on
recent work in statistics and chaos, as well as some
thoughts on the future role of statisticians. The
only portion I will respond to is his remarks, to-
ward the end of his discussion, concerning my view
of chaos and ergodic theory with regard to philoso-
phy. I do not believe my views are ‘“‘diametrically
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opposite” to those of J. Durbin, as quoted by Smith.
Indeed, Smith is right in suggesting that my inter-
pretations of the impact of ergodic theory, as dis-
cussed in my Section 2, are quite close to those of
Durbin. However, my final opinions, as presented
in Section 5, involve the claim that ergodic theory
still does not fully specify appropriate distibutions
in all problems. For example, Durbin’s claim,
“...the postulation of objective probability models
in physical situations such as games of chance has
been strengthened” is certainly reasonable, but does
not mean the case has been closed. Ergodic theory
generally suggests a natural starting point for
analysis. Before I apply ergodic theory and the
laws of physics, I must subjectively assess the de-
gree to which my models capture the important
aspects of the situation at hand; in the context of
games of chance, I must also assess the likelihood
of cheating. Furthermore, real problems in which
parameters of models are unknown, such as alluded
to in my Section 4 and Geweke’s comments, are not
fully solved by ergodic theory. Even if all pertinent
ergodic distributions are completely known, I still
need a distribution on the parameters in order to
make probabilistic predictions. Similarly, by defini-
tion, ergodic theory does not typically provide suffi-
cient information to enable analysts to incorporate
observational information in the calculation of
short-term predictions of dynamical systems. [I
know of, but cannot reference, actual, moderately
successful attempts by enterprising applied chaolo-
gists to (covertly) electronically monitor spins of
roulette wheels to use trial dependent information
to decide, just before the croupier closes betting, on
bets with improved odds.] To conclude, I find no
contradiction in claiming to be a Bayesian, philo-
sophically, who enthusiastically uses scientific
reasoning (physics, ergodic theory, etc.) in the
construction of models. Indeed, when faced with
outrageous computational difficulties such as in the
bet I offered to Griffeath, I am ready to abandon
fully Bayesian caculations in favor of a readily
available, mathematially justifiable solution. I am
happy to suggest appropriate ergodic distributions
as “objective Bayesian” models. (With no small
trepidation, I even suggest that a philosophy based
on the sole reliance on ergodic distributions may
encompass and lend further credibility to some por-
tions of the maximum entropy school of objective
Bayesian statistics.)

REMARKS

Despite the emphasis of this rejoinder and por-
tions of my article, I hope that the discussions here
" do not suggest that chaos is just another arena for
debate between classical and Bayesian statisti-

cians. While these issues first attracted me to this
topic and I believe philosophy is both interesting
and important, chaos/complexity offers opportuni-
ties for contributions from statisticians of all
philosophies. Indeed, chaos may suggest the blend-
ing of philosophies: to the classical statistician, the
notion of ‘“uncertainty modeling via probability”
should be strengthened, while the meaning of “truly
random” is blurred. On the other hand, ergodic
theory suggests that the notion of “true” or “cor-
rect” priors deserves more credibility from subjec-
tive Bayesians. I think the following advice from
Ruelle (1991, page 13) is pertinent: “Don’t embark
in general abstract discussions as to whether
physics is deterministic, or probabilistic, . . . ,and so
on. The answer depends on the physical theory
considered, and how determinism, or chance,...,is
introduced in this theory.”

As to whether chaos is as important an idea as
relativity and quantum mechanics, I will not specu-
late. Except for those statisticians and probabilists
who, up to now, exclusively work on problems re-
lated either to relativity and/or quantum mechan-
ics, the question does not seem to me to be terribly
relevant to our community. It is relevant that chaos
offers fascinating and challenging problems for
which probabilistic and statistical solutions would
be of interest to the larger scientific community.
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