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fact that only finite observations are available. The
class of models I have in mind includes various
mixtures of deterministic and stochastic models.
An example of such mixtures is the one mentioned
by Berliner and studied in Chatterjee and Yilmaz
(1991) in which a deterministic system serves as an
input to a second system. I also like to mention
that, similar to other statistical problems, there are
cases in which statistics alone cannot determine
the most appropriate model. In these cases, subject
matters of the problem under study, such as the
implications of a model, should play a more impor-
tant role in the analysis. All of the above discus-
sions are familiar to statisticians and show that
important problems in chaos are no different from
those in statistics. The only difference between
chaos and statistics is that traditional statistics
begins with linearity, whereas chaos is necessarily
nonlinear.

In sum, chaos is fascinating because of its mathe-
matical simplicity. It is important, especially to
statisticians, because of its nonlinear nature. The-

Rejoinder (part 1)

Sangit Chatterjee and Mustafa R. Yilmaz

We are indebted to all six researchers for their
stimulating and thoughtful comments on the two
surveys. They make it abundantly clear that the
theory of nonlinear deterministic chaos is still in
its formative stage, and its relationship with statis-
tics is just beginning to be explored by statisti-
cians. We are especially pleased that each comment
provides a somewhat different perspective con-
cerning the emerging theory. Collectively, these
comments help clarify and sharpen the important
issues that will keep researchers busy for a long
time to come. B

The main motivation for our survey was our
belief that the theory of nonlinear deterministic
systems provides a different and potentially useful
perspective from which statisticians can look at
complex processes. We are pleased to observe that
this opinion is shared by all but one of the commen-
tators. The basic reason for the recent explosion of
interest in this perspective is valid if not yet real: it
may enable us to understand and explain the
sources of randomness in some processes. No statis-
tician can be indifferent to the exploration of this
possibility, no matter how far from reality it might
seem presently.

ory of chaos and analysis of chaotic data are parts
of statistical theory and modeling. Statisticians
should be interested in chaos and can make signifi-
cant contributions in chaos because it is statistics,
although not in the traditional and linear sense.

Finally, I like to list some areas in chaos that
statisticians and probabilists are well equipped to
make significant contributions:

1. Ergodicity conditions of nonlinear dynamical
systems, deterministic as well as stochastic.

2. The invariant density of a given dynamical
system.

3. Methods (statistical and graphical) for uncov-
ering lower dimensional systems based on
noisy data.

4. Nonparametric statistical methods for dynam-
ical system analysis, both for prediction and
for structure recovery.

5. Complexity measures of a nonlinear dynami-
cal system based on finite and noisy realiza-
tions.

Within the confines of a rejoinder, it is neither
possible nor appropriate for us to respond to all
comments. With a conscious effort to avoid repeti-
tion, we shall briefly touch on some of the issues
and points raised, especially in those cases where
there is an apparent conflict in viewpoints, a contri-
bution to be recognized or an error to be corrected.
For this purpose, we have divided our comments
into three sections. First, we briefly respond to
each author in alphabetical order, next we provide
a brief update of the literature and then conclude
with some final thoughts and comments.

DISCUSSION ON COMMENTS

Professor Cutler provides expert discussions
of singular and absolutely continuous probability
distributions on attractors and their implications
for dimension estimation [also see Hunt and Miller
(1990) in this context]. Her discussion goes far
beyond our review, but contrary to her statement,
we do briefly mention lacunarity and nonuniform-
ity in Section 1.2. Professor Cutler also discusses,
as does Professor Smith, two basic ways noise enter
a dynamic system. First, the errors can be
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observational or measurement errors. Here, the ob-
servation is simply corrupted by an additive ran-
dom term as given by Cutler’s (7). In the classical
time series literature, such errors are discussed
under the umbrella of outlier analysis. Time series
analysts will immediately recognize (7) as an addi-
tive (type I) outlier model (Pefia, 1990). The second
type of noise in a chaotic system is ‘“when the
system under evolution undergoes perturbations or
changes.” In the time series literature, this type of
outlier is called an innovational (type II) outlier,
and it is distinguished from an additive outlier in
that the innovational outlier continues to influence
the time series indefinitely for future observations.
As Professor Cutler elaborates, both these situa-
tions present considerable difficulty, although dif-
ferent in nature, in parameter estimation as well
as the interpretations of results.

Professor Granger is the only discussant who
does not see much value in the study of determinis-
tic models of chaos. His clear preference for
stochastic models is apparent in his willingness to
assume that truly stochastic processes exists in
reality, while he believes that the existence of chaos
remains to be established outside computer simula-
tions or laboratory experiments. Surely, to assume
that truly stochastic processes exist in reality is
tantamount to assuming that abstract mathemati-
cal notions of probability and randomness actually
exist in reality. It seems fair to ask him if and
when these conclusions have been established as
facts. What happened to the subjective versus fre-
quentist controversy concerning probability in the
real world? We certainly believe that abstraction is
a useful tool for studying real processes, but how
can one justify the assumption that abstract is
real?

One way Professor Granger distinguishes white
chaos from an iid series is that white chaos is
“singular,” whereas an iid series is not. He defines
singularity to mean that there is a function g such
that prob(x,,,; — g(x,) = 0) = 1. Professor Granger
fails to observe that such a function g can exist for
an iid series also; it certainly does for a series of
finite length. Thus, his notion of singularity (which,
incidentally, is quite different than that used by
Professor Cutler) is not a valid way of distinguish-
ing between chaotic and iid series.

Professor Granger then introduces measurement
noise and discusses the problems of forecastability
in presence of white chaos. In the end, he seems to
dismiss chaotic models and opts for a classical para-
metric model of the type y, = f(x,) + ¢,, with iid e,
and nonlinear f, and advocates methods based on
nonlinear time series models. We have no disagree-
ment with the classical approach, but it cannot be

used to dismiss deterministic models in all cases.
Using his own reasoning, one should not conclude
that chaos does not exist if its existence has not yet
been fully demonstrated. Chaotic models and self-
similarity could indeed be ubiquitous, and no
branch of science can be regarded as fully investi-
gated until these concepts are explored. One of the
surprising consequences of the modern version of
Darwinian theory is that apparently tiny influ-
ences on the gene pool can have a major impact on
evolution. Schroeder (1990) gives many practical
(and not laboratory produced) examples of fractals
and chaos in the universe. The criteria for the
choice of a model should be its ability to describe
and predict a complex process. We maintain that
chaotic models are intrinsically appealing in this
regard, even though identification may remain to
be a serious problem.

Finally, in spite of Professor Granger’s insistence
of predictability of a chaotic series and the lack
thereof of iid series, we remain unconvinced that
such a distinction can be made. We refer to Casti
(1990, 1991) for two excellent discussions on
randomness, chaos, predictability and their rela-
tionships to universal computer, Turing-Church
hypothesis and Gé6del undecidability. For a more
technical discussion along these lines, including
references to Martinl6f, Kolmogorov, vonMisses,
Chaitin, Solomonoff and Solovay and others, see
Uspenski, Semenov and Shen (1990).

Professor Griffeath contributes insightful discus-
sions of random number generation, cellular au-
tomata and complexity that he prefers as a more
general term than chaos. His call for researchers to
focus on connecting the statistics of trajectories of
nonlinear dynamics and the statistics of sample
paths is well-taken. This also applies to his sugges-
tion for a hybrid area of deterministic dynamics
from random initial states. Professor Geweke ap-
parently feels the same way, for he discusses this

" idea at much greater length.

We appreciate Professor Griffeath’s reminder
concerning commonly used congruential random
number generators and the pathological perfor-
mance of some of them. Of course, the history of
such algorithms go back to the pioneering work of
Von Neumann. We apologize for this oversight on
our part, but we did briefly refer to random number
generation in Section 4.6. In his discussion, Profes-
sor Griffeath asks the provocative question, “What
if all the Monte Carlo simulations during the next
century are based on (2) and then someone uncov-
ers a flaw?” A response to such a query may go like
this: the results of a simulation have to agree with
theory, if there is one, or with intuition. At the
very minimum, the results of a simulation must
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make sense in some space, be it a picture or a
numerical output. If such checks do not detect any
flaw in the random number generating algorithm,
then either there is nothing seriously wrong with
the algorithm or real (?) randomness is not a pre-
requisite for the verification of the theory or the
law under consideration.

Professor Griffeath elaborates on the many ad-
vances in the field of cellular automata, including
his specialties, such as interacting particle systems
and coalescing random walks. We are pleased to
read about these advances and look forward to
studying aspects of these works. Recent press re-
ports (Amato, 1991) indicate advancements of cellu-
lar automaton hardware for analog-type simulation
of physical events (such as experiments in wind
tunnels, genetics, polymers and particle physics).
Such computing tools have been called computro-
nium or programmable matter.

Finally, Professor Griffeath reminds us of the
possibility of seeing the Mandelbrot set on toilet
paper. In the same vein, we hope the genetic engi-
neers do not synthesize a tiny Mandelbrot set (bug?)
and release it in the environment with their self-
similarity genes intact!

Professor Geweke addresses the implications of
determinism for the fundamental role that random-
ness plays in statistics. He presents an approach
for inference and prediction using deterministic
models that incorporate uncertainty in a particular
way. Specifically, he assumes that the generating
rule f is known and uncertainty pertains only to
the initial condition x, and a parameter vector 6
(using his notation).- Professor Geweke takes the
Bayesian viewpoint to construct the likelihood and
the predictive probability distribution functions for
the tent and the logistic maps. This contribution
clearly elaborates on Berliner’s work as well as
Professor Griffeath’s suggestion of hybrid deter-
ministic models.

Using prior distributions of the initial condition
and the parameter 60, he illustrates the value of the
Bayesian methodology, even when there is no ran-
domness in the process once it begins. Two obvious
questions come to mind concerning this approach:
first, how practical is it to assume that the deter-
ministic generating function is known (or could be
known)? How robust are these results with regard
to the functional form of f? Second, how practical
is it to assume that priors can be ascertained, and
how sensitive are predictive distributions to the
priors? Undoubtedly, more work needs to be done
before we can expect reasonable answers to these
questions:

Professor Smith expands and elucidates on many
statistical aspects of chaos theory, including dimen-

sion estimation, the impact of measurement error
and Bayesian versus frequentist views of paramet-
ric inference for chaotic systems. On the important
question of operational definitions of chaos and
randomness, he reaches the conclusion that the
distinction is only meaningful if we can measure it,
which we cannot if the correlation dimension is too
large. It appears that most real processes may be
high-dimensional, and the issue of distinction re-
mains unresolved.

Professor Smith further discusses the correlation
dimension and its estimation using the asymptotic
power law. His discussion of the independent dis-
tance hypothesis is illuminating. He provides us
with a maximum likelihood estimate of the correla-
tion dimension, but we are unsure about its proper-
ties. For example (using his notation), 7 is clearly a
function of e, but how are we to decide on it for
actual estimation? Finally, how does 7 behave for
processes of known values for the correlation di-
mension. Professor Smith addresses these two
queries by providing us with sample size calcula-
tions for achieving known bounds of root mean
squared values. His conclusion that 7 cannot be
estimated with precision for reasonable sample size
is disheartening, but this is not sufficient reason
for statistical scientists to give up their search for
relatively simple models for nonlinear systems.

Professor Smith expresses disappointment that
our paper did not go into more details about statis-
tical issues raised by the vast literature. We are
surely guilty of that, but our objective was to re-
view this emerging field as broadly as we could for
the benefit of the statistical science community. So,
perhaps we could be forgiven after all. Professor
Smith comments on our discussion of the relation-
ship between fractional Brownian motion, frac-
tional differencing, chaos and fractals. We did not
imply that chaos is closely connected with frac-

~ tional models, but merely that the latter have some

relevance as modeling tools for fractal generating
processes. We do think that the book is not yet
closed on the extent of their relevance to chaos.
Finally, we admit that our comment about the
importance of chaos and nonlinear science in gen-
eral was meant to be a bit provocative. Niels Bohr
once said that a great truth is a truth whose oppo-
site is also a great truth!

We are heartened that Professor Tsay agrees
with us regarding the importance of the study of
chaos and nonlinear dynamical systems, particu-
larly as an area for statisticians to be involved in.
We agree with his view that, at a conceptual level,
the dichotomy of deterministic and stochastic mod-
els is arbitrary. The real aim of study is to look for
appropriate models that are also parsimonious.
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Professor Tsay emphasizes the need to keep the
objectives of the analysis and the constraints of the
environment in mind. We are happy to see that
Professor Tsay recommends a deeper study of a
mixed strategy approach, where the system is mod-
eled by a mixture of a deterministic and a stochas-
tic component. He states that the basic difference
between chaos and statistics is that traditional
statistics begins with linearity, whereas chaos is
necessarily nonlinear. As a point of emphasis, we
tend to agree.

Finally, Professor Tsay presents us with a list of
areas in which statisticians can make significant
contributions. Some of these areas were also men-
tioned in our paper. If we could add one more item
of general nature to this list it would be this: in
traditional statistics, we have a hierarchy of mod-
els beginning with a simple linear model and
Gaussian iid for the error distribution and proceed-
ing to generalized linear model GLIM, with an
error distribution from the exponential family (Mc-
Cullagh and Nelder, 1986). The study of nonlinear
dynamical systems would be facilitated if we could
develop a similar structure where the models and
estimation techniques span the simple as well as
the complex.

A BRIEF UPDATE ON THE LITERATURE

Since our survey was done, a number of papers
have come to our attention, including many of the
additional references provided by the commenta-
tors. We mention a few others below that span
theory as well as applications. This is not an at-
tempt to ensure completeness of the literature re-
view, which would be futile, but to avoid obvious
omissions.

Ornstein and Weiss (1991) give a mathematical
review of statistical properties of various dynami-
cal systems. Their review is broad and gives a
historical development of ergodic theory, its inter-
actions with other fields of mathematics over time
and an up-to-date mathematical synthesis of chaotic
systems. Lalley (1989, 1991) provides discussions of
counting problems of the orbit of a point under the
action of a discrete group and of orbits of hyperbolic
flows and various renewal theorems. Lalley (1988,
1990) also analyzes various topics in operations
research dealing with traveling salesmen problems
with a self-similar route, packing and set covering
functions of self-similar fractals. Finally, a new

volume from the Santa Fe Institute, edited by Zurek
(1991) has many interesting and revealing discus-
sions of complexity, entropy and Bayesian estima-
tion of nonlinear dynamical systems.

In the discussion of long-range memory and
long-range correlations, we failed to mention the
work of Graf (1983) and Hampel (1987). These
authors provide useful information for analyzing
data with possible long-term memory. In the more
applied domain, Wolff (1991) studies correlation
integrals in the presence of autoregressive and
moving average processes. In the biomedical area,
Bassingthwaighte, King and Roger (1989), Van
Beek, Roger and Bassingthwaighte (1989), and
King, Weissman and Bassingthwaighte (1990) pro-
vide fractal descriptions of spatial statistics with
regard to myocardial blood flow. In particular, these
authors use fractal dimension as a description of
heterogeneity in two-dimensional space, a measure
of space fillingness. Fractal models of vascular net-
works are used to study the distribution of blood
flow and to derive scale-independent measures of
variance. Finally, to show the chaos-mania is even
sweeping the popular press in the financial world,
we cite the writings of Crowell and Peters (1991),
Laing (1991) and Peters (1991). These essays dis-
cuss the implications of nonlinear systems on the
Efficient Market Hypothesis and the Capital Asset
Pricing Model as workable theories of portfolio
management.

CONCLUSIONS

We believe that future years will witness a great
deal of activity in researching the many issues
raised in these discussions. It is clear that the
theory of chaos is capable of significantly changing
the way statisticians think about time series and
dynamical systems in general. It is in this sense
that the emerging theory is of potential impor-
tance, and ultimately, we can expect a richer set of
modeling tools to be available to statisticians. We
can only hope that these surveys and discussions
will have made a contribution toward those goals.
With no intention of hyping or overselling it, we
conclude with an ode to chaos from Nietzche:
“_..One must still have chaos in oneself to be able
to give birth to a dancing star. I say unto you: you
still have chaos in yourselves.”

[See “Rejoinder (part 2)” for additional references.]



