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Comment: Relation Between Statistics

and Chaos

Richard L. Smith

The involvement of statisticians in the field of
chaos is relatively recent, but rapidly growing.
Howell Tong’s book (Tong, 1990) did much to make
statisticians aware of the field. The Royal Statisti-
cal Society has hosted discussion papers by Bartlett
(1990), and papers from a recent one-day meeting
will appear in a special issue of the Journal of the
Royal Statistical Society, Series B in 1992. I am
delighted to see that Statistical Science is also
taking a lead in developing this fertile source of
statistical problems.

Both of the articles under discussion, Berliner
(1992) and Chatterjee and Yilmaz (1992), are essen-
tially expository, outlining the theory of chaos in a
manner that is oriented toward statistical applica-
tion. Berliner’s article in particular shows how no-
tions of ergodic theory, which tends to be regarded
as being “‘at the hard end” of deterministic dynam-
ical systems theory, have simple probabilistic
interpretations that make the theory appealing to
statisticians, even though it is essentially describ-
ing deterministic systems.

In developing some more specific themes on which
I can comment in some detail, I would like to
concentrate particularly on the contribution that
statisticians can make to the interpretation of data
from dynamical systems.

There is an extensive literature on the mathe-
matical properties of systems, such as the logistic
map or Lorenz’s system of differential equations,
and there are also physical systems such as
Taylor-Couette flow where the underlying dynam-
ics of the system is sufficiently well understood for
a direct association to be made between mathemati-
cal theory and experimental observation. But in
areas such as ecology or economics, it is impossible
to know the detailed mathematical equations gov-
erning the system, and the whole of the evidence
for “chaos,” if indeed there is any evidence at all,
comes from the interpretation of experimental data.
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Ruelle (1990) gave a particularly witty demonstra-
tion of how easy it is to misinterpret such data.

I will focus on just one of the numerous tech-
niques proposed, namely the estimation of correla-
tion dimension. Suppose we have a univariate time
series {X,}, and form d-dimensional embedded
vectors Y, = (X,_4+1 Xp_g42>...»X,) Or more

generally Y, = (X,_a_1)rs Xn—(@-2yrr - - - » Xn)
where 7 is a lag parameter. Define
N i
Cxl(r) = disa 21 I("Yi -Yl < ")
N N(N - 1)/2
where N is the number of observations, I denotes
the indicator function and | - || is a norm. The limit

C(r) = lim Cy(r)

is called the correlation integral. The correlation
dimension, when it is defined, is given by

(1) log C(r) .

log r

In the context of fractals, these formulas give a
relatively straightforward way of determining a
dimension of a fractal. In the context of chaotic
time series, if it is possible to estimate a correlation
dimension, which for large enough embedding di-
mension d is independent of d within the limits of
statistical error, then this is often taken as an
indicator of deterministic chaos as opposed to ran-

v = lim

- domness.

Most current algorithms for calculating » from
experimental or observational data essentially con-
sist of regressing log Cy(r) on log r over a suitable
range of r. An alternative technique is the follow-
ing. First, we strengthen (1) to

2) C(r) ~ ar” asrl0.
This gives an asymptotic power-law tail for the
distribution of distance between two arbitrarily

chosen points of the attractor. In practice, we may
choose to simplify this even further to

(3)

for some threshold ¢, which will be considered
further below. A second assumption is that the

C(r)=ar’ forr<e
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N(N - 1)/2 interpoint distances formed from N Y
vectors are in fact independent random variables.
This assumption, which at first sight appears
ridiculous, in fact has a lot to support it when
considering the lower tail of the distribution.
Theiler (1990) made an extensive study of this
phenomenon, which he called the independent
distance hypothesis or IDH. In the probability
literature, such ideas are implicit in a number of
approximate techniques; for example, the work of
Silverman and Brown (1978) on nearest-neighbor
distances in spatial patterns, which Barbour and
Eagleson (1984) showed could be handled more ele-
gantly by means of what is now called the
Stein-Chen (or Chen-Stein) method of Poisson ap-
proximation (see Arratia, Goldstein and Gordon,
1990).

Under these two assumptions—power-law tail
and IDH—the estimation of the constants a and »,
based on all distances less than some threshold e,
becomes a simple problem of maximum likelihood
estimation, with a dimension estimate

M
b= M/Z log(c/d,),
j=1

where M is the number of interpoint distances less
than ¢ and d,..., d, are those distances. The
earliest reference to this, for estimating the tail of
a distribution, is Hill (1975), but it has several
times been rediscovered in the chaos literature
(Takens, 1984; Ellner, 1988; Broomhead and Jones,
1989).

A key parameter in all of this is the threshold .
In practice, this is not well defined but must be
chosen through some form of bias-variance trade-off.
In Smith (1991), I adapted known results in ex-
treme value theory, especially Hall (1982), to do
this. My calculations assumed the IDH, but used
the correct correlation integral C(r) based on a
continuous distribution of data in d-dimensional
space (for which » = d). In other words, my calcula-
tions were for the null hypothesis of no chaos. The
results lead to some interesting comparisons on
the growth in required sample size as d increases.
For example, suppose the true distribution of the
Y vectors is independent standard normal in d-
dimensional space. To achieve a root mean squared
error (in #) of 0.1 requires approximate sample
sizes (based on an asymptotic calculation) of 5.1 X
103, 3.2 x 10%, 2.5 x 10° and 2.6 x 102, when the
true values are » = 5, 10, 15 and 20. Clearly, this is
a very rapid exponential growth in sample size
with true dimension, and strengthens results of
Smith (1988) and Ruelle (1990) who have drawn
similar conclusions from somewhat cruder argu-

ments. However, if we relax the requirement a
little, say to root mean squared error of 1 instead of
0.1, the required approximate sample sizes become
more reasonable—30, 1000, 4500 and 2.6 x 10° for
the four values of » quoted above. The conclusion
appears to be that it is possible to estimate moder-
ate values of v based on sample sizes of a few
thousand observations, but only if we are not too
stringent about the accuracy of the estimates.
These results at least provide a start in obtaining
some rigorous statistical theory for the detection of
chaos in real-time series. I think they also have a
philosophical interpretation for the deterministic
chaos versus randomness debate. It has been ar-
gued that the majority of “real” systems corre-
spond to deterministic systems in which our notion
of randomness arises primarily as an expression of
ignorance about the exact state of this system.
(Exceptions to this point of view include quantum
mechanics and Mendelian genetics.) However, few
real systems could be described by low-dimensional
dynamics, even if we did assume the system to be
essentially deterministic. We would not expect to
describe a complicated real system by a correlation
dimension of less than 20, say. Calculations such as
those above show that the sample sizes needed to
estimate such dimensions accurately are enormous,
and lend support to the notion that, in practice,
such high-dimensional systems are indistinguish-
able from random ones. This may be a way of
quantifying Berliner’s (Section 5.2) notional of an
operational distinction between chaos and random-
ness: the distinction is only meaningful if we can
measure it, which we cannot if » is too large.
Returning to the technical issues, there are many
features that the above calculations ignore. Per-
haps the most important is that these calculations
are essentially only for the null hypothesis of con-
tinuously distributed data, and so do not describe
the state of affairs when there is a truly chaotic
system. Here, we immediately run into a problem,
because it is known that even equation (2) may not
hold for a fractal. In general, the constant a must
be replaced by an oscillating function (Theiler,
1988). So, we need a more general estimation
method straight away. Cutler and Dawson (1989,
1990) are among only very few authors to have
provided rigorous results for estimation in the case
of genuinely fractal systems. Other issues include
the question of whether the IDH is valid; the quite
separate issue of how to handle time series correla-
tions in the original X series (Theiler, 1986, ar-
gued that this could be an important issue, one to
which I return below in the discussion of fractional
Brownian motion), whether the lag parameter 7
should be taken as 1 or some number bigger than 1,
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and whether correlation dimension is in fact the
most appropriate of the various fractal dimensions
to consider. Broomhead and Jones (1989) proposed
estimation procedures for the class of generalized
Renyi dimensions (Section 3.1.2. of Berliner’s pa-
per) in which, in particular, the cases ¢ = 2 and
q = 1 correspond, respectively, to the correlation
dimension and the information dimension. Argu-
ments presented by Cutler (1991) seem to me to be
making the case that these should not be consid-
ered equivalent concepts and there are, in fact,
grounds for regarding information dimension as
the right one to try to estimate.

A quite separate class of procedures to distin-
guish chaos from noise is concerned essentially with
direct reconstruction of the map that generates the
process. The basic model for a deterministic nonlin-
ear series may be written in the form

(4) Xn=F(Xn—d’ Xn_d+1a**"Xn—1)

for some nonlinear function F.

In practice, we will want to permit some form of
noise in (4), since even deterministic systems will
be affected by measurement error to some extent.
This suggests at once two different models: one in

-which the series { X,} is generated as in (4), but we
observe

(5) W, =X, +¢,,

{e,, n = 1} being a stationary noise process which,
in its simplest form, we may assume to consist of
independent random variables. I call this the obser-
vational noise model. A second class of models is
the system noise model, in which (4) is replaced by
the system

(6) Wn= F(Wn—d’ Wn—d+1,"'aWn—1) +€n’

in which the errors {¢,, n = 1} propagate through
the system. In the current literature, even assum-
ing the need for a noise term has been accepted, the
distinction between (5) and (6) is often not made
clear. However, returning to the theme of dimen-
sion estimation for a moment, in Smith (1991) I
have shown that the two models behave in quite a
different way in their effect on a dimension esti-
mate. In more general terms, the distinction be-
tween different kinds of noise may be expected to
be important for a variety of estimation procedures.

Statistical problems abound. At one level, there
is the direct problem of how well F can be esti-
mated, which is essentially a problem in nonlinear
regression. Sugihara and May (1990) presented a
simple prediction procedure based on this, which
was refined by Casdagli (1992). The essence of
Casdagli’s proposal is as follows. Suppose we want

to predict X, from { X;, i < n}, for a given fore-
casting step T. He performs linear regression of
X,y on X; i, 1<i=<d, as j ranges over a
suitable set of indices for which the vectors
(X;_(a-1yr Xj_(a-2yr - - -» X;) are suitably close to

X, -1 Xn_(@-2m--+» X,). Specifically, Cas-
dagli uses the k nearest neighbors among the data
in d-dimensional space. Here, d and  are, respec-
tively, the embedding dimension and the lag
parameter, and k is an arbitrary choice that effec-
tively controls the amount of smoothing. Sugihara
and May (1990) only considered the case that k
takes its minimum possible value d + 1.

This procedure is consistent with modern ideas in
nonparametric regression (Fan, 1990). However,
there are problems in applying them to large em-
bedding dimensions, because of the well-known
“curse of dimensionality.” Perhaps this is the coun-
terpart, for function reconstruction algorithms, of
the restriction to relatively small embedding
dimensions referred to above in the context of di-
mension estimation, although here the problems
usually occur at around d = 5. The most complete
discussion of these problems that I am aware of is
the work by Nychka, Ellner, McCaffrey and Gal-
lant (1992), who used spline and neural net tech-
niques for function reconstruction.

The main focus of the paper by Nychka, Ellner,
McCaffrey and Gallant (1992) is in the estimation
of the largest Lyapunov exponent, for which they

_state a number of rigorous results and conjectures.

Both of the papers under discussion mention Lya-
punov exponents, and their estimation does indeed
seem to be one of the major issues of the statistical
approach to chaos. However, the problem is tough;
there being few rigorous results even about the
consistency of estimators, and hardly any about
their asymptotic distributions. Wolff (1992) has
made some progress in the case of one-dimensional
maps, but there is much more to do. The extension
of the problem from estimating the largest Lya-
punov exponent to estimating the entire Lyapunov
spectrum is another matter again.

Yet another aspect, touched upon briefly by
Berliner, is shadowing. The problem is inherent in
equation (6): given a sequence generated by this
equation, with the {¢,} representing either random
or nonrandom (e.g., computer round-off error) noise,
is there a deterministic realization { X,} of (4) that
stays ‘“close” to {W,} in some suitably defined
senses? Affirmative answers were given in the
1960’s by Anosov and Bowen in the case of hyper-
bolic systems, but not all dynamical systems
are hyperbolic, and more recent theory such as
Gregobi, Hammel and Yorke (1987) is needed to
handle nonhyperbolic cases. A very interesting
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paper by Sauer and Yorke (1991) gives what is
claimed to be an explicit method of checking
whether a shadowing orbit exists, which could be
used to check the realism of computer-generated
solutions of chaotic systems. However, statistical
aspects are only beginning to be looked at (Farmer
and Sidorowich, 1990). I mention this area because
it is another obvious area of interaction between
chaos and statistics, where most of the work at the
moment is being done by the dynamical systems
experts. ’

Despite all these high-powered techniques becom-
ing available, a good deal of practical discussion is
still in terms of statistically very simple ideas. A
case in point is the recent paper of Tilman and
Wedin (1991) that was featured in the October 22,
1991 issue of The New York Times. This paper used
annual population totals for 20 samples of grass
over a 6-year period. The fertility of the soil varied
from sample to sample, and it was observed that
the most fertile soils produced the greatest fluctua-
tions in growth, suggestive of chaos. The conjec-
tured mechanism to explain this behavior was that
a very high growth in one year produces a lot of
litter that stifles the next year’s growth. The chal-
lenge for statisticians, I suggest, is to come up with
‘systematic methods for examining hypotheses of
this type.

Some of Berliner’s paper is concerned with the
impact chaos might have on the age-old conflict
between Bayesian and frequentist views of statis-
tics. One example of this is in Section 4.1, where he
discusses parametric inference from a chaotic
model. Apart from the somewhat novel feature that
the starting point of the system may itself be a
parameter to be estimated, the main interest in
this is the highly irregular likelihood functions
produced. I believe one can argue that Bayesian
methods handle such likelihoods better than classi-
cal methods, but this is largely a technical point
and does not influence the more fundamental philo-
sophical issues. The philosophical argument is
given in Section 5.1. I find it interesting that the
only other statistician whom I am aware of com-
menting on this aspect of chaos, Durbin (1987,
1990), reached the diametrically opposite conclu-
sion from the same facts! To quote Durbin (1987),
Section 4.2, “It has been shown using the modern
theory of nonlinear dynamics that deterministic
systems containing only a few elements can exhibit
genuinely stochastic behaviour obeying the laws of
probability. ... If one puts these theories together
with Kolmogorov and Martin-Lof’s theory of ran-
domness it appears that the case for the postula-
tion of objective probability models in physical
situations such as games of chance has been

strengthened.” It seems to me that Berliner’s own
interpretations of ergodic theory in Section 2 are
closer to Durbin’s position than the one in which
Berliner himself subsequently adopts.

Turning now to the paper by Chatterjee and
Yilmaz, this is a broad-ranging review that draws
together a very large number of references to chaos
from all areas of science, although I was disap-
pointed that the authors did not give more analysis
of the statistical issues raised by this vast litera-
ture. I will confine my detailed comment to one
aspect of the paper, the discussion of fractional
Brownian motion and fractional differencing in time
series analysis. Chatterjee and Yilmaz suggest that
there are close connections between these concepts
and chaos and fractals. One connection is undeni-
able: fractional Brownian motions do generate sam-
ple paths that are fractals. However, to connect
this with chaos seems to me to be wrong and the
source of some confusion in the current literature.
Two recent papers have served to clarify these
issues.

In the first, Osborne and Provenzale (1989) ana-
lyzed the behavior of the correlation integral in
stochastic time series models, with a spectrum of
the form f(w) ~w™® for w near 0. Fractional
Brownian motions and fractional ARIMA processes
are examples of such processes. Osborne and
Provenzale showed that such processes can have
estimated correlation dimension converging to
2/(a — 1) for 1 < a < 3, as the length of the time
series tends to infinity. This result appeared to
contradict the notion that finite correlation dimen-
sion corresponds to deterministic chaotic behavior.

A reply has been given by Theiler (1991), how-
ever. The essence of his reply is that, in processes
with such long-range time-series correlations, the
effect of such correlations on estimators of correla-
tion dimension is to induce a serious bias. (The
terminology is unfortunate here; ‘“correlation di-
mension” has nothing to do with correlations in the
usual time series sense.) There are many other
issues raised by Theiler’s paper, but the end result
is the claim that the phenomenon observed by Os-
borne and Provenzale would not occur with a “good”
dimension algorithm. This seems to show that
chaotic behavior on the one hand, and long-range
dependence and self-similarity of the other, are
essentially different phenomena and should not be
confused.

Chatterjee and Yilmaz end with the challenging
claim that the theory of chaos may turn out to be as
important as relativity and the uncertainty princi-
ple of quantum mechanics. I think one is bound to
react to such a statement with a lot of scepticism!
Nevertheless, it is clear that an awareness of chaotic
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phenomena can substantially change our way of
thinking about time series and systems in general,
and the authors of these two papers are to be
congratulated for their clear exposition of these
issues.
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Comment: Simplicity and Nonlinearity

Ruey S. Tsay

Chaos is indeed a fascinating subject. It certainly
will have some important impact on statistics both
in theory and. in application. Further, statisticians
and probabilists can definitely make significant
contributions in chaos. Therefore, I congratulate
Professors Chatterjee, Yilmaz and Berliner on their
nice and lucid introductions of chaos to the general
statistical audience.

I agree with Professor Berliner that chaos is not
distinct from mainstream statistics, especially re-
garding to stochastic processes and time series
analysis. The argument between ‘“deterministic”
and “stochastic”’ is misleading. It results from our
propensity to dichotomize events surrounding us.
From a dynamical system point of view, a “stochas-
tic system’ is merely a ‘“deterministic one” with
infinite dimension. The difference, if any, is our
inability to understand the complexity of a nonlin-
ear system and our preference, justifiably so, to use
simple linear models.

Furthermore, there is a close theoretical relation
between the stability of a deterministic system and
the ergodicity of a stochastic system. For instance,
consider the simple deterministic system,

ay,_y, ify,_4=<0,
@) YT b if 0
s Ye-1, W Y, qg>0,
and the stochastic model,
ax, ; +e,, ifx, ;=<0,

.

where a and b are real numbers, d is a positive
integer, {e, ,} and {e,,} are independent sequences
of independently and identically distributed ran-
dom variates satisfying E|e;,| < o. Chen and
Tsay (1991) show that the necessary and sufficient

bx, ;+ey,, ifx, 4>0,
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condition of geometrical ergodicity of x, in (2) is

(3) a<l, b<l1, ab<1,
@ DpsD <1, g DprD < 1,

where r(d) and s(d) are nonnegative integers, de-
pending on d such that r(d) and s(d) are odd and
even numbers, respectively. It was shown in Lim
(1992) that the condition in (3) is also the stability
condition of y, in (1).

Turning to the impact of chaos on statistics, I
believe that the impact is far beyond those dis-
cussed by the authors. For example, chaos is an
“eye-opener” for statisticians and probabilists. It
points out loudly and clearly the need to explore
nonlinearity and to develop statistical methods
and tools that can adequately analyze nonlinear
models. The linear world is very limited. That a
“tent-map” can generate a realization with auto-
correlations the same as those of a particular first-
order autoregressive time series illustrates this
point clearly. Linear models will undoubtedly con-
tinue to play an important role in statistical analy-
sis, but the time has come for statisticians to see
the nonlinear planet.

It is natural to ask the question, can we observe
attractors in practice, as raised by Professors Chat-
terjee and Yilmaz and by many people in studying

" chaos. However, this is a simple-minded question.

It falls again into the dichotomous world I alluded
to before. Moreover, that no one has yet observed
an attractor does not prove the nonexistence of
attractors in practice. The important question is
that, given a finite realization, possibly noisy, and
some specific objectives of analysis, can we de-
termine the most “appropriate model,” within a
reasonable class, for the data? This is a pressing
problem in chaos. More importantly, it is a
typical problem in statistics, and the statistician’s
job is to provide sound methods and proper tools for
answering such a question. Here, I like to empha-
size the objectives of the intended analysis, which
were not emphasized in the two papers, and the



