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different model. I think that intrinsic noise with
02 > 0 leads us immediately to a stochastic world,
and if ¢2 = 0 but ¢ #°0 and not small, as is often
the case in economics, distinguishing between iid
and low-dimensional white chaos will be extremely
difficult.

This leads to the question of whether the real
world, such as an actual economy, contains chaos.
Chatterjee and Yilmaz take the position that it is
ubiquitous, finding examples in ‘“such diverse fields
as physiology, geology,..., economics...” and
“theoretical models of population biology.” There
are also theoretical models in economics that pro-
duce chaos, but that does not imply that it occurs in
practice. I would prefer to suggest the opposite
view that there is no evidence of chaos outside of
laboratories. My reason is that there exists no sta-
tistical test, that I know of, that has chaos as its
null hypothesis. There are plenty of tests that have
as a null Hy:iid (or linear) and are designed to have
power against chaos. However, as is well known by
all statisticians, if one rejects the null a specific
alternative hypothesis cannot be accepted. If a null
of linearity or iid is rejected, one cannot accept
(white) chaos, as nonlinear stochastic models are
also appropriate. For example, the test (based on
the correlation dimension) by Brock, Dechert and
Scheinkman (1987) (the BDS test) that was applied
in Brock and Sayers (1988) often finds evidence of

S. CHATTERJEE, M. R. YILMAZ AND L. M. BERLINER

nonlinearity but not of chaos. Until a property P
can be found that holds only for chaos and not for
stochastic series, and a test is based on P with
chaos as the null, can there be a suggestion that
chaos is found in the real world.

Finally, I would suggest that bifurcation and
fractional integrated models are irrelevant for the
main topic discussed in the articles, but space limi-
tations prevent me from expanding on this point.

In conclusion, I think that scientists working on
the area of chaos are doing a disservice to this
important area of research by overselling its rele-
vance, by trying to equate it with randomness and
by using concepts (such as probability) that are
unnecessary and only lead to confusion. The tech-
niques being developed for analysis of chaotic pro-
cesses, such as the BDS test or estimates of the
Lyapunov exponent, or methods of forecasting us-
ing o2 = 0, are potentially powerful and useful
when applied to truly stochastic, real-world series.
There is a need for statistical methods to investi-
gate the properties of these techniques in this case,
and this, in my opinion, is the natural link between
chaos and statistics.
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Comment: Randomness in Complex Systems

David Griffeath

1. WHAT IS RANDOM?

Professors Berliner, Chatterjee and Yilmaz are to
be commended for their thoughtful overviews of the
recent explosion in experimental and theoretical
research on chaos. They identify a host of challeng-
ing statistical questions fundamental to the subject
and make timely appeals for the readership of Sta-
tistical Science to join the fray. Over the past
decade, I have tried to track the major currents of
chaos, studying many of the articles and books
mentioned in the authors’ fine reference list. I
strongly urge others to peruse those sources and
seek out a few.

David Griﬁ"eath is Professor of Mathematics, Uni-
versity of Wisconsin, Madison, Wisconsin 53706.

Berliner and Chatterjee and Yilmaz note that the
term “chaos” is not used in a consistent manner by
the scientific community; for example, there is no

‘universally accepted mathematical definition. In

my experience, the word means so many different
things to different people that it threatens to be-
come scientifically dangerous. Apparently,
Bernoulli shift, the most basic stochastic process, is
deemed chaotic. But how is it distinguished from
those strange attractors, delicately perched on the
boundary between order and randomness, that have
dramatically captured the imagination of both sci-
entists and the general public? The phenomenology
of chaos is leaving its mark across a broad spec-
trum of contemporary culture: from physics to phi-
losophy to recreational computing to textile design.
At the hairdresser, I discovered an article in a
summer issue of Gentleman’s Quarterly linking
mathematical chaos, Silicon Valley nerds and late-
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60’s psychedelia. (I resist including the precise cita-
tion among my references, but curious readers can
certainly track it down.) As one colleague recently
remarked, ‘“Before long, the Mandelbrot Set will be
showing up on toilet paper.”

There is another c-word that I think more ac-
curately expresses a general framework for the
research Berliner and Chatterjee and Yilmaz de-
scribe. That word is complexity. Roughly speaking,
a complex system is an evolution generated by
simple mathematical rules or physical principles
that exhibits complicated, unpredictable behavior.
Because many complex systems are deterministic,
one should add the proviso: unpredictable if one
does not know the transition mechanism. Without
a doubt, the highest profile examples at present are
iterates of nonlinear maps in low-dimensional Eu-
clidean space. Gleick’s bestseller and the admirable
marketing ability of Mandelbrot, Peitgen, Barnsley
and others have secured center stage for this impor-
tant modeling framework. But many modeling
environments are being developed in parallel:
quantum and statistical mechanics, percolation,
neural nets and artificial life, among others. Cross-
fertilization between areas is quite common. To cite
just one important example, universality of the
Feigenbaum constant was anticipated by the cele-
brated renormalization group theory of Kadanoff
and Wilson. A pervasive signature of complexity is
the appearance of phase transitions in parameter-
ized families of models: the system undergoes sud-
den dramatic changes as parameters vary from one
region of the phase diagram to another. Iterates of
maps constitute one small part of this big picture.

What is the connection between chaos and statis-
tics? As Professor Berliner has suggested in his
provocative Section 2.2, it is almost irresistible to
describe the unpredictable trajectories of nonlinear
dynamics—sequences of values without apparent
rhyme or reason—by the word “random.” Indeed,
since the popularization of chaos, scientists and lay
people are using the r-word quite indiscriminately
to describe just about any phenomenon they do not
understand. Another short step leads to a distress-
ing “holistic”’ philosophy of chaos that abandons
quantitative analysis altogether. If a butterfly in
China can really cause a tornado in the Midwest,
maybe we should just let it flow. Life is so compli-
cated!

Trained as a mathematical probabilist, I find this
trend rather disconcerting. It is easy to forget that
probability theory gives mathematically precise
meaning to notions like “a completely random se-
quence of 0’s and 1’s” and a ‘“‘completely random
sequence of reals in [0,11.” Almost every such se-
quence (in the sense of measure theory) matches a

huge dossier of character traits, such as the central
limit theorem and law of the iterated logarithm.
The classical theory of iid sequences can be viewed
as a remarkably successful effort to quantify ideal
randomness. More recently, researchers in stochas-
tic processes have assembled an enormous
menagerie of random evolutions, typically Marko-
vian, incorporating various dependencies and struc-
tural features appropriate to the specific context.
Diffusions, branching and queueing processes, for
example, generalize the notion of randomness. But
these are all precise mathematical models with
exact quantitative properties inherited from the iid
building blocks used in their construction. I think
it is only useful to call chaotic trajectories random,
insofar as precise numerical connections can be
made between the statistics of these trajectories
and the statistics of stochastic sample paths. A
major objective for the next generation of proba-
bilists and statisticians, in my opinion, should be
the discovery and analysis of such connections.

As a purist, the claim at the end of Section 2 in
Berliner makes no sense to me. The law of any
deterministic process concentrates on a single sam-
ple path, so every event has measure 0 or 1. To
debunk the probability statement, one could start
from a “typical” x, and consider the quantity

1)

for n large (but not necessarily as large as 101%),
or perhaps

1 10%4n

Liy_1v. .-
n+1 ,_Tgwo {Y;=1,Y;4,=0}

lIl—l /I Px(Y10100= 1, Y10100+1=O) dx,

where [ is a small interval around x, (but not too
small!). To show that these quantities are close to
0.25, one uses a conjugacy transformation, discov-
ered by Ulam, that maps the a = 4 logistic map to
Bernoulli trials. This connection reveals the invari-
ant arc sine law density mentioned in both Berliner
and Chatterjee and Yilmaz; it is a beautiful exam-
ple of precise quantitative interplay between proba-
bility theory and the iterates of a (very special)
nonlinear map. Motivated by ergodic theory, we
might say that a deterministic dynamical system
matches a stationary stochastic sequence X,, if all
its limits of time averages such as (1) agree with
the corresponding finite dimensional distributions
of the random process. From a practical point of
view, this seems like a reasonable requirement.
But “truly” random sequences like typical
Bernoulli 0’s and 1’s have much more stringent
structure; so, it is tempting to try to exclude all
aberrations from the ideal. Such attempts lead to
the beautiful but decidedly esoteric subject of algo-
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rithmic complexity discussed briefly in Chatterjee
and Yilmaz. See Cover, Gacs and Gray (1989) for a
recent scholarly reference that stresses pioneering
contributions of Kolmogorov. Bennett and Gardner
(1979) give a colorful popular account focusing on
Chaitin’s completely random sequence Q: if only
one knew this remarkable sequence explicitly, then
most of the world’s (mathematical) problems would
be solved and we could all retire early.

2. RANDOM NUMBERS

Coming back down to earth, suppose one wants
to implement Monte Carlo simulation of a specific,
messy stochastic process on a computer. I have
never understood why analog sources of random
noise are seldom used. Maybe it is difficult to de-
sign a real-world noise source that conforms to all
our expectations. If so, maybe that should tell us
something. In any case the usual approach involves
a deterministic digital pseudo-random number al-
gorithm, in essence a chaotic iterated map. Surpris-
ingly, neither survey article mentions these com-
plex dynamics that statisticians have been using
for decades. Most are based on linear congruences.
Moreover they are truly unpredictable because their
code is typically undocumented and buried deep
within a compiler. The staggering range of complex
behaviors now being discovered and classified
should make us more wary then ever about the
ability of chaotic systems to capture ideal statisti-
cal independence. To illustrate this point, let me
describe four specific algorithms for ostensible ran-
domness, two pretty terrible, two not so bad.

First, consider the rule x, = rnd”(x), where rnd
is Microsoft’s random number generator for the
BASIC interpreter that was bundled with the first
generation of IBM PC’s and XT’s in the early 1980s.
If we form the two-dimensional system (x,, y,) =
(rnd2*(x), rnd?"*(x)), scale [0, 1] to fill a 320 x
200 array, and plot the first 10,000 points, the
result is shown in Figure 1. Evidently, this genera-
tor had serious pair correlation problems. It was
bad enough to fail almost any standard statistical
test, but visualization delivers the verdict dramati-
cally. For the record, rnd was upgraded and stripes
disappeared when the IBM AT was released.

Those were the early days of microcomputers,
you say. Consider next the bit generator random(2)
for the current version of Turbo PASCAL, a com-
piler that has sold hundreds of thousands of copies.
Moving across each row, from top to bottom of a
256 x 240 array, color a pixel black whenever a bit
is 1 but leave the pixel white when the bit is 0.
Figure 2 shows the result. The pathology here is
more subtle; I suspect that many simple statistical
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tests might miss the glitches made evident by visu-
alization. In fact, if we change the row size to
anything other than a power of 2, the complex
patterns disappear from view. Presumably, the folks
at Borland are using an algorithm based on arith-
metic mod 27 for some p. This choice is especially
convenient for binary shift operations, but notori-
ously ill-advised.

In light of such horror stories, Park and Miller
(1988) have proposed a so-called minimal standard
32-bit generator x, = f"(x), where

) f(x) = 16807x mod 2147483647.

They urge their colleagues to adopt this algorithm
instead of using those supplied with compilers or
attempting to invent their own. They argue that
(2) has the blessing of D. Knuth, the undisputed
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authority on design of pseudo-random number gen-
erators, and that it is ‘“demonstrably random,”
whatever that means. I have no doubt that their
rule is far superior to the vast majority of genera-
tors in current use. But there is something unset-
tling about the notion of any officially sanctioned
standard. What if all Monte Carlo simulations dur-
ing the next century are based on (2) and then
someone uncovers a terrible flaw?

My favorite candidate for a deterministic random
sequence of 0’s and 1’s is generated by Wolfram’s
rule 30: the one-dimensional cellular automaton
(CA) with update rule

(8) %n+1(8) =x,(i - 1)XOR(x,(i)OR x,(i +1)).

Starting from a doubly infinite (symmetric)
Bernoulli sequence x,(i); i € Z, one can prove that
the “time slice at the origin” (x,(0); n = 0) is also
iid. This is a special property enjoyed by a very few
CA rules. Its proof relies on a clever application of
XOR to both sides of (8), a trick that Wolfram
(1986) attributes to Milnor. Of course, the “PAS-
CAL’s triangle mode 2” CA

(4)  x,,.1() ==x,(-1)XOR x,(i + 1),

which is linear, satisfies the same property; at first
glance, it seems that one is merely trading a
random source for random output. The ergodic
theorem implies that both rules should generate
random time slices starting from almost every x,.
The difference between (3) and (4), due to the non-
linear OR operation in rule 30, is that finite config-
urations of 1’s appear to behave typically in the
former case, whereas they certainly do not in the
latter. Starting from a single 1 at the origin, linear
rule (4) generates all 0’s at the origin. One checker-
board subgraph has all 0’s, while the other makes a
Sierpinski lattice, the discrete version of a fractal
known as Sierpinski’s gasket. In contrast, rule 30
started from a single 1 generates a stream of bits at
0, that performs quite well on all the standard
statistical tests for randomness. Details and lots of
pictures appear in Wolfram (1986). Even though
the problems posed there seem beyond the reach of
rigorous analysis for the time being, I think Wol-
fram’s paper is one of the best examples of experi-
mental mathematics in recent years.

3. A FEW WORDS ABOUT RANDOM
CELLULAR AUTOMATA

Professors Chatterjee -and Yilmaz have alluded
briefly to cellular automata, an area that shares
many themes and objectives with chaotic iterates of
maps. Since that is my field of expertise, I would

like to make some remarks about recent exciting
developments, both theoretical and experimental.

My current work with complex systems focuses
on the ability of CA dynamics to self-organize out of
random initial conditions (“primordial soup’’), an
interest that evolved from more than a decade of
research in the area of probability known as inter-
acting particle systems (IPS). These are Markov
processes, typically in continuous time, the states
of which are lattice-valued configurations. For ex-
ample, consider an infinite collection of continuous
time random walks moving independently around
the d-dimensional integer lattice, except for the
times when a particle tries to jump to a site already
occupied by another. If the two particles merge at
such jump times, we have coalescing random walks;
if such jumps are suppressed, we get simple exclu-
sion. Originally motivated by statistical physics,
IPS has been one of the most vital areas of proba-
bility over the past 25 years. There is now a rich
collection of rigorous results for additive and can-
cellative particle systems, such as coalescing ran-
dom walks and simple exclusion, the stochastic
analogs of (4). This family of systems amenable to
theorems and proofs also includes Harris’ contact
process, an important spatial contagion dynamic
that exhibits phase transition, and the voter model,
a selectively neutral competition process that clus-
ters for d = 1, 2, but has stable equilibria for d = 3.
Authoritative references are Liggett (1985) and
Durrett (1991).

About 5 years ago, together with my colleague
Bob Fisch, I discovered a self-organized equilibrium
of random spirals in a simple two-dimensional
multi-type IPS called the cyclic particle system
(CPS). Its dynamics, revealed by the Cellular Au-
tomaton Machine (CAM) of Toffoli and Margolus
(1987), are reminiscent of the B-Z reaction men-
tioned in the introduction of Chatterjee and Yil-
maz. Unfortunately, we were able to prove very

‘little about the CPS due to its nonlinear transition

mechanism. However, CAM visualization sug-
gested a near determinism to its periodic waves, as
if the Markov process were a small perturbation of
a CA. Conventional wisdom maintains that
stochastic processes are easier to analyze than de-
terministic ones, because randomness erases mem-
ory and induces smoother, averaged behavior. In
some highly degenerate instances, though, nonlin-
ear dynamics are stable with respect to noise, and
the random component only muddies the water.
Our CPS is a case in point. There is a correspond-
ing cyclic cellular automaton (CCA) with very
similar qualitative features starting from random
initial states. It is actually easier to analyze
rigorously, because one can use logic to trace back
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its trajectories to the random initial state at time 0,
about which one knows a great deal from classic
probability and percolation theory. In other words,
there is a hybrid area of dynamical systems called
deterministic dynamics from random initial states.
Because the process starts randomly, it is random
at all times, (i.e., a stochastic process that avoids
the sticky issue of identifying “typical” x,). Once
the process gets going, there is nothing truly unpre-
dictable about its evolution.

I believe that deterministic dynamics from ran-
dom initial states have much to contribute to the
theory of chaos and complex systems. For iterates
of maps, the monograph by Lasota and Mackey
(1985) is a beginning. For cellular automata, we
have now identified a three-parameter universe of
CCA rules, and a corresponding universe of Green-
berg-Hastings (GH) rules, that each exhibit an
elaborate phase diagram featuring several vari-
eties of rather spectacular self-organization, all
starting from complete randomness. Experimental
findings are reported in Fisch, Gravner and Grif-
feath, (1991); companion freeware (Fisch and Grif-
feath) for IBM compatibles with VGA graphics is
available by E-mail request to griffeath@
math.wisc.edu. Most gratifying is the fact that such
CA models for excitable media also succumb to
rigorous mathematical analysis. When these com-
plex systems are subjected to a suitable scaling
limit, several numerical cutoffs can be calculated
either precisely or with surprising numerical accu-
racy, and certain geometrical features (such as the
asymptotic shape of spiral wave fronts) can also be
computed exactly. For a popular account of the
very latest developments, see Durrett (1988).

Let me conclude my discussion with some com-
ments about CA experimentation and visualiza-
tion. There is a widespread distrust of CA modeling
that rivals the skepticism about chaos in general.
To some extent, this is a reaction to all the pop-cul-
ture hype, but it is also rooted in the historical
dominance of continuous mathematics. Computers
are changing tradition very rapidly as the world
converts to digital. Parallel processing is still in its
infancy; basic research on CA dynamics will help
identify organizational principles of digital dynam-
ics, programming and control. There will always be
a role for the venerable and powerful methodology
of partial differential equations; but now that we
have the appropriate tools to study them, CA rules
should begin to enjoy a comparable status. Natu-
rally, hybrids will evolve as they prove useful or

illuminating. Already there is substantial experi-
mental work on coupled lattice maps, an amalgam
of iterates of maps and cellular automata.

Dynamic visualization is an invaluable tool for
the study of complexity. Observation of a complex
system can tell you the answer to a basic question
like, “What does this rule do?”’ At the very least,
you avoid wasting time and energy because you
have the wrong movie in your head. Not infre-
quently, by watching an evolution—especially in
real-time—one identifies key structural properties
of the model. On a very good day that experience
might even lead to a proof of something interest-
ing. For readers who would like to experiment with
CA visualization, the best way to start is with
Rudy Rucker’s CA Lab (1989). His software is ac-
companied by a delightful and well-written 264-
page book on the history, philosophy, theory and
use of cellular automata.

When experimentalists want to incorporate ran-
domness into a CA rule, say either on the CAM or
in CA Lab, they cannot waste time flipping coins or
even using the minimal standard (2). Instead, they
tap an invisible background plane of lattice gas
(i.e., billiard ball) particles or some nonlinear
chaotic CA that looks like a TV set tuned to a
nonexistent channel. Our vision is remarkably good
at finding patterns in dynamic noise; so, if the
noise source passes the eyeball test, it is good
enough. They find that complex systems comprised
of many locally interacting components are re-
markably robust with respect to random input;
basic features are typically impervious to fine sta-
tistical details. For those of us raised on the
ideology that chaotic deterministic maps are a
bastardization of ideal randomness, for use in
Monte Carlo simulation only when all else fails,
witnessing this systemic insensitivity can be quite
enlightening. Perhaps independent trials are
merely the probabilist’s fantasy, a mathematically
‘tractable prototype that captures the essential as-
pects of a vast domain of complex deterministic
dynamics. Ultimately, I feel that this perspective
lends greater significance to probability and statis-
tics as a whole.
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