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. INTRODUCTION

Abstract. Before the beginning of this century, statistics meant ob-
served data and descriptive summary figures, such as means, variances,
indices, etc., computed from data. With the introduction of the x? test
for goodness of fit (specification) by Karl Pearson (1900) and the ¢ test
by - Gosset (Student, 1908) for drawing inference on the mean of a
normal population, statistics started acquiring new meaning as a method
of processing data to determine the amount of uncertainty in various
generalizations we may make from observed data (sample) to the source
of the data (population).

The major steps that led to the establishment and recognition of
statistics as a separate scientific discipline and an inevitable tool in
improving natural knowledge were made by R. A. Fisher during the
decade 1915-1925. Most of the concepts and methods introduced by
Fisher are fundamental and continue to provide the framework for the
discussion of statistical theory. Fisher’s work is monumental, both in
richness and variety of ideas, and provided the inspiration for phenome-
nal developments in statistical methodology for applications in all areas
of human endeavor during the last 75 years.

Some of Fisher’s pioneering works have raised bitter controversies
that still continue. These controversies have indeed helped in highlight-
ing the intrinsic difficulties in inductive reasoning and seeking refine-
ments in statistical methodology.

Key words and phrases: Ancillary statistics, Bayes theorem, confound-
ing, consistency, efficiency, F-test, factorial experiments, fiducial proba-
bility, Fisher information, Fisher optimal scores, likelihood, local
control, maximum likelihood, nonparametric tests, randomization,
regression, replication, roots of determinantal equation, sufficiency.

In his stimulating address to the members of the
Institute of Mathematical Statistics, the American
Statistical Association and the Biometric Society,
entitled Rereading of R. A. Fisher, the late L. J.
Savage (1981, pages 678-720) expressed his admi-
ration at the deep and diverse nature of Fisher’s
contributions and the richness of his ideas, but he
was critical of some of the claims made by Fisher as
lacking in mathematical rigor and/or logical con-
tent. He concluded:

Fisher is at once very near and very far from
modern statistical thought generally.

C. Radhakrishna Rao is Eberly Professor of Statis-
tics and Director of the Center for Multivariate
Analysis at Pennsylvania State University, 123 Pond
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Savage referred to the bitter controversies on some
of Fisher’s contributions and said:

Of course, Fisher was by no means without
friends and admirers too. Indeed, we are all his
admirers. Yet he has a few articulate partisans
in his controversies on the foundations of sta-
tistical inference, the closest, perhaps being
Barnard (e.g., 1963) and Rao (e.g., 1961).

I must emphasize what Savage did not record
was that whatever Fisher did was strongly moti-
vated by practical applications. Fisher’s research
papers look quite different from those we find in
current statistical journals. Fisher started off with
a description of some live data presented to him for
analysis, formulated the questions to be answered
and developed the appropriate statistical methodol-
ogy for the analysis of data. His style of writing
was aphoristic and cryptic; often, intermediate
mathematical steps are skipped, which may be
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annoying to the reader. This way, he introduced
new ideas and expanded the scope of statistical
methodology instead of dissipating his energy and
talents in pursuing narrow theoretical concepts.
Commenting on Fisher’s contributions, Neyman
(1951) says:

A very able mathematician, Fisher enjoys a
real mastery in evaluating multiple integrals.
In addition, he has remarkable talent in the
most difficult field of approaching problems of
empirical research.

I have been associated with Fisher from 1940
until his death in 1962. I was one of the very few
students (perhaps the only student) who did Ph.D.
work in statistics under his guidance. I tried to
understand his contributions by reading and
rereading his writings, and writings on his writ-
ings, and above all by numerous personal dis-
cussions with him. My own research work is
influenced largely by Fisher’s ideas. I shall try to
comment on different aspects of Fisher’s work in
the following sections.

We are indebted to Savage for his critical reread-
ing of Fisher. It is important for us to know that
some of Fisher’s results specially in estimation are
not valid in the wide generality claimed by him,
some of his conjectures need slight modifications
for their validity, and there are minor slips here
and there in the mathematical treatment of some of
the problems. These are matters of details that
need to be examined and the findings put on record.
But Savage’s criticism does not detract Fisher’s
pioneering contributions from their usefulness and
the motivation they provided for research in statis-
tical theory and applications. They only highlight,
what we are aware of today, that there are diffi-
culties in building up a coherent structure for sta-
tistical inference, and the search for a monolithic
structure for extracting information from data is
bound to fail. Fisher himself expressed this view in
his last book on Statistical Methods and Scientific
Inference, a view also held by Savage (1981, page
734):

The foundations of statistics are shifting, not
only in the sense that they have been, and will
continue to be changing, but also in the id-
iomatic sense that no known system is quite
solid.

Section 2 gives a broad survey of Fisher’s contri-
butions toward the development of statistics over a
period of 50 years, starting from 1912, which may
be called the Fisherian era of statistics. Some com-
ments on Fisher’s book on Statistical Methods for
Research Workers are given in Section 3.

In the remainder of the paper, references to
Fisher’s papers will be indicated by the year of
publication followed by the volume and paper num-
ber, and sometimes the page number in the col-
lected papers edited by J. H. Bennett and published
by The University of Adelaide. The titles of books,
Statistical Methods for Research Workers, Statisti-
cal Methods and Scientific Inference and Calcutta
University Lectures will be abbreviated as SMRW,
SMSI and CUL, respectively.

2. FISHERIAN ERA OF STATISTICS: 1912 - 1962

The earliest contribution to statistics by Fisher
was (1912, 1-1), where the method of maximum
likelihood was first used to estimate the unknown
parameters. This was followed by a series of papers
in the next 12 years, which laid the foundations of
statistics as a separate, full-fledged scientific disci-
pline with a great potential for applications in all
sciences. He pointed out that a distinction should
be drawn between a sample and the population
that gave rise to the sample and defined statistics
as inductive reasoning of generalizing from a sam-
ple to the population. Inductive reasoning has baf-
fled philosophers for a long time, and although its
codification started with the writings of Fisher,
controversies are bound to raise and continue. It is
now generally recognized that there is no mono-
lithic structure for statistical inference, and Fisher’s
contributions have been of great help in our search
for refinements and in introducing new ideas on
the subject. In order to understand and evaluate
Fisher’s work, let us look at the status of statistics
before 1912.

2.1 Statistics before 1912

Descriptive statistics. There was what is now de-
scribed as descriptive statistics dealing with pre-

. sentation of data through histograms, bar charts

etc., and computation of measures of location, dis-
persion and association (such as correlation, partial
correlation and regression in the case of continuous
variables and coefficient of contingency in the case
of discrete variables). No distinction was drawn
between a sample and the population, and what
was calculated from the sample was attributed to
the population.

Curve fitting. Adolph Quetelet popularized the
normal curve of error introduced by Gauss and
Laplace by fitting normal curves to all sorts of
biological data. Karl Pearson introduced a system
of frequency curves to accommodate curves differ-
ing in shape from the normal in symmetry and
kurtosis. He developed a method of choosing an
appropriate curve for given data and also subject-
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ing the choice to an objective test. This test, called
the x?2 test, is the forerunner of all methods of
statistical inference and has been rightly hailed as
one of the top 20 discoveries of this century, consid-
ering all fields of science and technology.

Testing of hypotheses. There have been a few
attempts at testing of hypotheses, but a major
breakthrough was the introduction of the ¢ test,
with an exact distribution in finite samples, by
Gosset in 1908.

Estimation. The method of least squares due to
Gauss and the method of least absolute deviations
due to Laplace were generally used to estimate
parameters in a linear model. Later, Karl Pearson
introduced the method of moments to estimate pa-
rameters of frequency curves. There was also the
concept of standard error (asymptotic standard de-
viation) to express the precision of an estimate.

Bayes’ theorem. This was the first major attempt
to quantify uncertainty based on observed data.
Bayes recommended the use of a uniform prior
distribution for the unknown parameters in the
absence of any other knowledge and expressing the
conclusions in the form of a posterior distribution.
Bayes’ theorem had engaged the attention of math-
ematicians like Boole, Venn, Chrystal, Laplace and
Poisson, but was not actively pursued.

2.2 Fisher’s Contributions: 1912 - 1962

Exact sampling distributions. In the words of
Savage (1981, page 686), “In the art of calculating
explicit sampling distributions, Fisher led statistics
out of its infancy, and he may never have been
excelled in this skill.” Fisher obtained the exact
null and nonnull distributions of the correlation
(1915, 1-4), partial correlation (1924, 1-35) and
multiple correlation (1928, 2-61) coefficients, and
the F statistic (z statistic) that arises in tests of
hypotheses in regression theory (1922, 1-20; 1924,
1-36).

Correct use of x2. Although Karl Pearson (1900)
introduced the x? statistic and found its asymptotic
distribution when the parameters are known, he
thought that the same distribution will hold when
estimates are substituted for the unknown parame-
ters in computing x2. Fisher (1922, 1-19) intro-
duced the concept of degrees of freedom, which
depends on the number of unknown parameters
estimated and specifies the appropriate asymptotic
distribution to be used. He showed that, for the
validity of the x2 distribution, the parameters may
have to be estimated by a more efficient method
than that of moments, like maximum likelihood.
He also pointed out the modification needed when
an observed frequency in any cell is small or even
Zero.

Estimation. Fisher made a major contribution to
theoretical statistics in (1922, 1-18), where he con-
sidered estimation as a method of reduction of data.
He discussed the associated problems of specifica-
tion (mathematical form of the population involv-
ing unknown parameters), estimation (of unknown
parameters) and distribution of statistics (esti-
mates) computed from the sample. He recom-
mended maximum likelihood as a general method
of estimation, which he used earlier in (1912, 1-1).

Regression. Fisher (1922, 1-20) developed the
statistical methodology for testing goodness of fit of
a regression function and for testing the signifi-
cance of the individual coefficients. He also consid-
ered the problem of selection of variables (1938,
4-157) based on tests of significance on individual
coefficients. Unfortunately, this procedure does not
seem to be satisfactory (see Rao, 1984). In SMRW
(7th edition, page 305), Fisher recommended the
regression method in disaggregation of data:

It often happens that the statistician is pro-
vided with data on aggregates which it is re-
quired to allocate to different items. Thus, we
may have data on the total consumption of
different households, without knowing how this
consumption is allocated between a man and
his wife, or among children of different ages. If
the composition of each household is known,
the relative importance of each class of con-
sumer may be obtained by minimizing the de-
viation between the consumption recorded, and
that expected, on assigned scores, from the
composition of the family.

Fisher’s suggestion was tried on different sets of
data, but the results were very discouraging (like a
negative score for the consumption of rice by the
housewife in a Calcutta study). The flaw appears to
be in the assumption that the scores for children,

. wife and husband remain the same for all composi-

tions of households.

Design of experiments. Fisher introduced a whole
new area of research, the design of experiments
with a wealth of new ideas on scientific experimen-
tation, analysis and interpretation of data. Design
of experiments also gave a new impetus for re-
search in combinatorial mathematics. Some funda-
mental contributions to combinatorics were made
in searching for combinatorial arrangements for
design of experiments. [See, e.g., the contributions
of Bose and Shrikhande (1959, disproof of Euler’s
conjecture) and Rao (1949, orthogonal arrays).]

Discriminant function. In my paper (Rao, 1964)
on R. A. Fisher—“The Architect of Multivariate
Analysis,” I have described in some detail Fisher’s
contributions to multivariate analysis, of which
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special mention may be made of discriminant func-
tions. The linear discriminant function for the
classification of an individual into one of two alter-
native populations proposed by Fisher (Martin,
1936) has become an important tool in numerical
taxonomy and medical diagnosis. The discriminant
function for genetic selection suggested by Fisher
(Fairfield Smith, 1936) is an important tool in the
selection of plants and animals for genetic improve-
ment. This is, perhaps, the first attempt at using
an empirical Bayes method, placing a prior distri-
bution on the genetic parameters to be
estimated simultaneously for several individuals.
This is also an early example where Stein-type
shrinkage estimates emerge when several parame-
ters to be estimated are considered as a random
sample from a population of parameters (see Rao,
1953). However, the Stein phenomenon of reduc-
tion in compound mean square loss for fixed values
of the parameters was not noticed.

Roots of determinantal equation. Generalizing
ANOVA techniques to multiple variables, Fisher
(1939, 4-163) introduced nonlinear statistics ob-
tained as roots of a determinantal equation of the
type |W— NT'| =0, where W and T are positive
definite random matrices. Originally intended to
study the dimensionality of the configuration of a
set of points in a high-dimensional space, the distri-
bution of the roots has received new applications in
solving problems in physics (Mehta, 1967), signal
detection, etc.

Dispersion on a sphere. Fisher (1953, 5-249) ini-
tiated a new area of research when observations
are in the form of direction cosines specifying the
orientation of an object, such as the direction of
remnant magentism in the lava flows. Fisher con-
sidered the direction cosines in three dimensions as
points on a sphere and suggested the density func-
tion of the form, exp(k cosf), where k is positive
and @ is the angular displacement from the true
position, 6§ = 0, at which the density is a maximum.
k is a measure of precision; a large value k implies
a high concentration of points around a central
point and a small value of k, implies wide disper-
sion of points on the sphere. Fisher showed how to
estimate the mean direction and the parameter &
by the method of maximum likelihood. He also
worked out the sampling distributions of the esti-
mates. There is now a considerable body of litera-
ture on the statistical analysis of directional data
(see Mardia, 1972).

Fisher (1953, 5-249) used his model to estimate
the true direction (#) of remnant rock magnetism in
lava flow.assuming that the observations collected
over a geographical area are independent. He did
not consider the possibility of spatial correlations

which may have some effect on estimation as shown
in Rao (1975).

Quantification of categorical variables. In the sev-
enth edition of SMRW (1938, page 299), Fisher
gave an example of 12 samples of human blood
tested with 12 different sera, giving reactions rep-
resented by five symbols, —, ?, w, (+) and +,
indicating different strengths of reactions. The data
were arranged in a 12 X 12 two-way table, with the
observed reaction given in each cell. Fisher showed
how the qualitative reactions can be scored in such
a way that the row and column effects are close to
additivity, and the estimated scores used in a stan-
dard ANOVA of two-way classification to test for
the row and column effects. Gower (1990) points
out that Fisher’s optimal scoring methods come
close to methods of multiple correspondence analy-
sis and related methods developed several years
later by the French school (see Greenacre, 1984).

In a different context of the analysis of contin-
gency tables, Fisher (see Maung, 1941) suggested a
singular value decomposition of the matrix of cell
frequencies, which is the basis of modern correspon-
dence analysis (Greenacre, 1984). The singular vec-
tors corresponding to the largest singular value
provide scores for the row and column categories in
such a way that the product moment correlation is
maximized. Fisher (1940, 4-175) discussed what is
now known as the reciprocal averaging method by
which the scores can be computed. Fisher’s ap-
proach can be extended to the general case of the
construction of test criteria for comparison of treat-
ments, etc., when the response variable is qualita-
tive [see Mathen (1954), where I have suggested
such an approach].

Multiplicative model. Fisher (1923, 1-32) intro-
duced a multiplicative model in a two-way table to
explain the responses of 12 varieties to 6 manures,
as the usual additive model was found to be unsuit-
able. The method of fitting the multiplicative model

" given in the paper is the first attempt to approxi-

mate a given matrix by a matrix of unit rank,
anticipating the matrix-approximation theorem of
Eckart and Young (1936). The paper also provides
an extended use of the ANOVA technique (based
on nonlinear statistics) to test manural and vari-
etal effects and deviations from the product for-
mula. Perhaps, the first example using regular
ANOVA is in 1918 (1-9).

What else did Fisher do? In variety and depth of
scientific contributions, Fisher had no equal. He
touched almost every aspect of current statistical
research. Mention may be made of the transforma-
tion of statistics to stabilize asymptotic variance
and/or to induce a higher rate of approach to
asymptotic normality, as' in the case of inverse
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hyperbolic tangent transformation of the correla-
tion coefficient (1921, 1-14); analysis of residuals
in fitting a regression function (1921, 1-15; 1922,
1-19; 1924, 1-37); distribution of extreme values
(1928, 2-63); branching processes in genetics (1930,
2-87); maximum-likelihood estimation in probit
analysis (1935, 3-126); specification based on
methods of ascertainment of genetic data (1934,
3-113) that led to the investigation of weighted
distributions (Rao, 1965); nonparametric inference,
such as the sign test, run test, use of order statis-
tics, Fisher-Yates normal score test (see Statistical
Tables by Fisher and Yates) and treatment of out-
liers (1922, 1-18); and so on. The list is almost
endless. Amazed at Fisher’s scholarly and massive
achievements, Savage (1981, page 686) says that it
would have been more economical to list a few
statistical topics in which Fisher displayed no in-
terest than those in which he did.

3. STATISTICAL METHODS FOR RESEARCH
WORKERS

This is the first full-length book on statistical
methods; the first edition was published in 1925
and since then it has gone into numerous editions,
with little revision but with some additional mate-
rial or comments in each edition. In her biography
of Fisher, Joan Box says, ‘“The objective of the book
was shaped on the anvil of Fisher’s scientific
thought under the hammer of empirical problems.
He conceived of statistics as a tool for research
workers and shaped it here to their ends.” It is a
guide to data analysis, lively and thought-provok-
ing in its presentation, cautioning against misin-
terpretation of data, questioning the validity of
given data to test specified hypotheses, providing
reasons for the choice of particular statistical
methodology and stressing that the aim of statisti-
cal analysis is not just answering the questions
raised by the client but to extract all the informa-
tion from it to answer possibly a wider set of ques-
tions and to guide future research. The book is
based on his own experience of working with biolo-
gists and with the intimate knowledge of the data
arising in actual research work. The book also
demonstrates the need for an interface between
statistics and other sciences for the development of
meaningful methodology for analysis of data. It is
not a textbook on the mathematical aspects of sta-
tistical theory. It is not statistical theory illus-
trated with made-up examples. It is statistics as it
should be used and developed. Each section starts
with a live data set, takes the reader step-by-step
through various stages of statistical analysis and
gradually introduces modern statistical concepts.

Fisher himself says the following in the introduc-
tory chapter of SMRW:

... many will wish to use the book for labora-
tory reference and not as a connected course of
study. ... The great part of the book is occu-
pied by numerical examples. ... The examples
have rather been chosen to exemplify a partic-
ular process. ... By a study of the processes
exemplified, the student should be able to as-
certain to what questions, in his material, such
processes are able to give a definite answer;
and, equally important, what further observa-
tions would be necessary to settle other out-
standing questions.

It is interesting to note that the SMRW is the
only advanced book in statistics that emphasizes
the importance of graphical techniques in the anal-
ysis of the data. There is a full chapter entitled,
Diagrams, where Fisher says:

The preliminary examination of most data is
facilitated by the use of diagrams. Diagrams
prove nothing, but bring out outstanding fea-
tures readily to the eye; they are therefore no
substitute for such critical tests as may be
applied to the data, but are valuable in sug-
gesting such tests and in explaining the conclu-
sions based on them.

The following complaints about the book are, per-
haps, not without some justification, but appear to
be based on an insufficient appreciation of what it
is meant to convey.

A prerequisite for reading Statistical Methods
for Research Workers is that you must have a

Master’s degree in statistics.
Attributed to M. G. Kendall

In modern mathematical education there is
great repugnance to transmitting a mathemat-
ical fact without its demonstration. ... Fisher
freely pours out mathematical facts in his
didactic works without even a bow in the di-
rection of demonstration. I have encountered
relatively unmathematical scholars of intelli-
gence and perseverance who are able to learn
much from these books, but for most people,
time out for some mathematical demonstration
seems indispensable to mastery.

Savage (1981, page 685)

Fisher is not against the use of mathematics in
teaching statistical methodology. Fisher (1938,
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4-159) says:

I want to insist on the important moral that
the responsibility for the teaching of statistical
methods in our universities must be entrusted,
certainly to highly trained mathematicians, but
only to such mathematicians as have had suf-
ficiently prolonged experience of practical
research and of responsibility for drawing con-
clusions from actual data, upon which prac-
tical action is to be taken. Mathematical
acuteness is not enough.

SMRW was the only text on statistical methodol-
ogy and inference until the Second World War and
has inspired many generations of statisticians, and
there are plenty of new ideas in the book from
which one can still learn.

4. FOUNDATIONS OF THEORETICAL
STATISTICS

Fisher (1922, 1-18), on mathematical founda-
tions of theoretical statistics, is a classic in many
ways. For the first time, a clear distinction is drawn
between a population and a random sample from it,
and the fundamental problems of statistics are
" stated (see page 280):

(i) Specification (population model specified
as a family of probability distributions P,
indexed by a parameter 0).

(ii) Estimation (choosing a value of 6 or a
member of P, based on the sample, as the
appropriate population distribution).

(iii) Distribution (for expressing the precision
of the estimate of 6 or the uncertainty in
the choice of ).

The formulation of these problems mark the begin-
ning of the development of statistics as a full-fledged
discipline.

Fisher did not give any general discussion of the
problem of specification. He was appreciative of
Karl Pearson’s work on his system of frequency
curves and the x? goodness of fit:

We may instance the development by Pearson
of a very extensive system of skew curves,
... Nor is the introduction of the Pearsonian
system of frequency curves the only contribu-
tion which their author has made to the prob-
lem of specification: of greater importance is
the introduction of an objective criterion of fit.

Fisher (1922, 1-18, page 281)

A great part of Fisher’s paper is devoted to the
introduction of new ideas and concepts to provide a
logical framework for discussing problems of esti-

mation. For the first time, a clear distinction is
made between a parameter and an estimate. Crite-
ria of consistency, efficiency and sufficiency were
introduced to study properties of estimates and to
compare alternative estimates. A measure of infor-
mation on unknown parameters in observed data
from an experiment was introduced. The concept of
ancillary statistic for conditional inference was put
forward. Likelihood, as a function of the parame-
ters given the data, was defined and the method of
maximum likelihood was proposed as a general
method of estimation.

The terminology and the methods introduced by
Fisher form the core of modern estimation theory.
No doubt, certain refinements and modifications
were made, and will continue to be made, to pro-
vide rigor and to meet new situations. We shall
examine some of the concepts, results and conjec-
tures made by Fisher and controversies surround-
ing them, in light of modern developments.

4.1 Consistency

In Fisher (1922, 1-18, page 276), consistency of
an estimate is defined as follows:

A statistic satisfies the criterion of consistency,
if, when it is calculated from the whole popula-
tion, it is equal to the required parameter.

To interpret this definition, we may look at the
example on page 283, where Fisher says that
oy = [n7'S(x; - 3_6)2] i

when calculated from the whole population will
lead to the correct value of the standard deviation
o. Perhaps, the implication is that a statistic T, as
an estimate of a parameter of 6 is defined for all
sample sizes and that as n - o, T, = 0, (true value
of 0) in probability. We call this CP (consistent in
probability). All the editions of SMRW up to the
eleventh (1950, page 11) and papers on estimation
written subsequent to the 1922 paper carry the
above definition of consistency. In a series of lec-
tures delivered at Calcutta University in 1938,
Fisher (CUL, page 42) says:

... if T tends to a limiting value, it is easily
recognized by inserting for the frequencies in
our sample their mathematical expectations.

In the same publication, Fisher also mentions that
an estimate is a function defined on the sample
space (presumably of observed relative frequencies)
and it is consistent if its value at the expected
frequencies is the required parameter. Thus, by
consistency, Fisher had in mind both the proper-
ties: the estimate tending to the true value in
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probability and the estimate, considered as a func-
tion of observed relative frequencies, taking the
true value when the expected values are substi-
tuted for the relative frequencies. [The meaning of
Fisher’s statements is clear when sampling is from
a multinomial distribution where we have observed
and expected relative frequencies and the estimat-
ing function is defined for all vectors (x,,..., x;),
x; 20, 2x; = 1. Fisher regarded a continuous dis-
tribution as an infinite multinomial, and thus in-
cluded the continuous case in his definition.
Kallianpur and Rao (1955) clarified the situation.]

In 1954, I was preparing a paper on asymptotic
efficiency for presentation at the International Sta-
tistical Conference, to be held in Rio de Janeiro. I
wanted to prove Fisher’s bound for the asymptotic
variance of a consistent estimate rigorously using
conditions under which Hodges-Le Cam phe-
nomenon of superefficiency will not hold. Fisher
was visiting Calcutta at that time, and I asked him
what exactly did he mean by consistency. He re-
ferred to the multinomial case, where the expected
cell probabilities are w(0),...,w,(8) which are
functions of, say, a single parameter 6. He said that
an estimate T(p,,..., p;) of 6 based on observed
relative frequencies p,, ..., p, only, is consistent if

(1) T(wy(0),...,m,(0)) =0

and no limiting property is involved.

Choosing (1) as the definition of consistency,
which I termed as Fisher consistency (FC), and
assuming differentiability of T as a function of k
variables and of w,(f) as functions of 6, I gave a
simple proof of Fisher’s inequality in Rao (1955) on
the following lines. Differentiating both sides of (1)
and the relationship 27,(6) = 1, we have

k 3T dm,; dm;
Z YT ) S5 =Y,
( ) i=1 37",' dao do
2
k aT * 9T\ 1 dm,
= \/ — . —t_
= "‘(a ; i‘;"‘awi) . do

Applying the Cauchy-Schwarz inequality to (2)
yields

(3) a2=27r,-(aT) —(Zr-a—:) >%

o, i

where
1 (dx.\2
I= =
2 T ( db )

is the Fisher information. Notice that under
the assumed differentiability condition it is well

known that the asymptotic distribution of
Vn(T(py, ..., pg) — 0)is N(O, a?) where a? is the
desired asymptotic variance. Equation (8) provides
a simple and rigorous demonstration of Fisher’s
inequality. The proof is similar to that of
Cramér-Rao lower bound. In my paper, I have
considered the more general inequalities arising in
the multiparameter case.

In a subsequent paper, in collaboration with
Kallianpur (Kallianpur and Rao, 1955), the concept
of FC was extended to the continuous case by con-
sidering an estimating function defined on the space
of all distribution functions (d.f.’s). If F, is the
empirical d.f. based on a fixed sample size n and
F(0) is the corresponding true d.f., then an esti-
mate T, = T(F,) is FC if T(F(0)) =60. We were
able to establish Fisher’s inequality by considering
Frechet differentiability of T'.

In the 12th edition of SMRW published in 1954,
Fisher, for the first time, added the following para-
graph (page 12), while retaining the earlier defini-
tion:

The foregoing paragraphs specify the notion of
consistency in terms suitable to the theory of
large samples, i.e. by means of the properties
required as the sample is increased without
limit. Logically it is important that consistency
can also be defined strictly for small (i.e. finite)
samples by the stipulation that if for each fre-
quency observed its expectation were substi-
tuted, then consistent statistics would be equal
identically to the parameters of which they are
estimates.

In SMSI (pages 144-146), Fisher says that his
definition of consistency as a limiting property is
unsatisfactory, and the alternative definition appli-
cable to finite samples is the appropriate one. How-
ever, such a definition of consistency may be too

- restrictive for application in many problems.

4.2 Maximum Likelihood

Early references to the method of maximum like-
lihood (m.l.) for estimation can be found in the
works of Gauss, Laplace and Edgeworth, but it was
Fisher who saw its great potential for universal use
and started studying the properties of m.l. esti-
mates (m.l.e.’s). Encouraged by the nice properties
of the m.l.e.’s, judged by criteria such as consis-
tency, efficiency and sufficiency, in the numerous
examples he examined, Fisher suggested the m.l.
method for universal use. He proved some proposi-
tions claiming optimum properties for the m.l.e.’s,
which we now know are not universally true. [See
the counter examples by Bahadur (1958), Basu
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(1988) and Savage (1981).] Most of the results can,
however, be established rigorously under certain
conditions. Fisher was aware of the shortcomings
in his mathematical proofs. He suggested the m.l.
method only as a “formal solution of problems of
estimation” with the following note:

For my own part I should gladly have withheld
publication until a rigorously complete proof
could have been formulated; but the number
and variety of the new results which the method
discloses press for publication.

Fisher (1922, 1-18, page 290)

Fisher has been accused of priesthood in advocat-
ing the m.l. method, because it fails to give accept-
able estimates in certain situations. Of course, there
is no known method in statistics which is univer-
sally optimal, and different methods may have to
be used for different purposes and in different situ-
ations. The m.l. method is no exception, but it
remains as the main stay, which everyone tries
when confronted with a new situation. When the
m.l. method fails to give acceptable estimates, other
methods are sought for.

What can be said in support of m.l. estimates?
Under some smoothness conditions, the following
are true:

(i) They are Fisher efficient in the sense of
having minimum asymptotic variance.

(ii) They are second-order efficient in a deci-
sion theoretic sense of having a minimum
value for the terms up to the order (1/n?)
in the expansion of expected loss under a
bowl-shaped loss function (Rao 1961b,
1963; Ghosh and Subramaniam, 1974,
Efron, 1975; and Akahira and Takeuchi,
1981).

(iii) Suppose that the unknown density func-
tion g does not lie in a specified paramet-
ric family f(6) and an m.]. estimate 8 of 6
is obtained under the wrong assumption
that it does. In such a case, § estimates 0 P
defined by

1(g; £(6,)) = min 1(g; £(6))
where
1(g: £(0)) = | &(x)log{e(x)/f(x10)} d

is the Kullback-Liebler information num-
ber. Or, in other words, the m.l. estimate
provides a close approximation to the true
density (see Foutz and Srivastava, 1977;
White, 1982; and Nishi, 1988).

Can m.l. be used for model selection? Suppose
that the class of possible regressions in a given
problem is the set

{Bo; 60 + ﬂlx,BO + le + ﬂzxz}

of zero-, first- and second-degree polynomials. Then,
the m.l. method will always choose the second-
degree polynomial. Fisher did not consider model
selections as a problem of estimation, but, perhaps,
as a problem in testing of hypothesis. In recent
work, the m.1. principle is extended to cover model
selection by using m.l. with an appropriate penalty
function depending on the number of parameters
(see Akaike, 1973; Rissanen, 1978; Schwarz, 1978;
Zhao, Krishnaiah and Bai, 1986; Nishi, 1988; and
Rao and Wu, 1989.)

Fisher’s work on estimation is of a pioneering
nature. The basic concepts and the terminology
introduced by him are now routinely used in dis-
cussing problems of estimation. Some propositions
in estimation proved by Fisher may lack in rigor,
but this does not detract their value in their logical
content. As stated earlier, Fisher himself was aware
of the imperfections in his mathematical treat-
ment. Commenting on the early work of Fisher,
Mahalanobis (1938) says:

Mechanical drill in the technique of rigorous
statement was abhorrent to him, partly for its
pedantry, and partly as an inhibition to the
active use of the mind. He felt it was more
important to think actively, even at the ex-
pense of occasional errors from which an alert
intelligence would soon recover, than to pro-
ceed with perfect safety at a snail’s pace along
well-known paths with the aid of the most
perfectly designed mechanical crutches.
... Fisher himself thinks that he was merely a
very willful and impatient young man. This is
no doubt true, but he was impatient not be-
cause he was young but because he was a
creative genius.

4.3 Estimation as Reduction of Data

Fisher viewed the problem of estimation as that
of reduction of data. If

2= (x1,...,%,)

constitutes the data, the problem may be posed as
that of finding a k-vector statistic, with 2 < n,

T=(Ty(2),--., Tu(x))

such that “T contains as much as possible, ideally
the whole, of the relevant information” (1922, 1-18,
page 278). Reduction of data (‘“which is usually by
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its bulk is incapable of entering the mind”) in the
form of summary figures may offer some conve-
nience in understanding the data and drawing in-
ferences, in addition to the economy in recording
only the summary figures for future use, instead of
preserving the entire mass of data, much of which
may be irrelevant. These considerations are impor-
tant, especially in scientific research. If, therefore,
we define the purpose of estimation as condensa-
tion of data, what are the appropriate criteria for
choosing the statistic T' to replace the whole sam-
ple x? These criteria are developed in Rao (1961a),
of which a brief outline is given below. Under these
wider criteria, the m.l. estimates seem to provide a
good summary of given data provided some regular-
ity conditions hold.
The log-likelihood ratios

1(61,05| x) = log L(6, | x) — log L(9, | z)
= 16,1 x) - 1(62] %)

play an important role in statistical inference,
whether it is Bayesian or frequentist. If there ex-
ists T' such that

l(01»02 | 2“) = l(ol,oz |.T)a

then no information is lost, in which case T is said
to be sufficient. If no such T exists, then we need
some criteria for choosing T'.

(i) Wider consistency: In general, as n — o, I(0,,
0, | x) > o or —oo according as 6, or 8, is the true
value so that complete discrimination is possible in
large samples between any two alternative parame-
ter values 6, and 0, If the same holds when x is
replaced by T, i.e.,

1(01,6,1T) o or —»

then T is said to be consistent in the wider sense.

(ii) First-order efficiency: Let us consider discrim-
ination between two close alternatives 6 and 6 + 66.
Then expanding I(0 + 80,0 | x), we have up to the
first-order term

L(o] x)

1(0 +0,0|x) = 061 2)

50 = S,(6)56

Similar expansion with T gives

Le|r)

10 +66,0|T) = 7 0va)

——=—00 = ST(0)60

where S,(6) and ST(O) are the score functions based
on x and T respectively. If S,(0) and Sr(0) are
equlvalent in some sense, then T is a good sum-
mary of x. Let U=S £0) - ST(O) We define T
to be first-order efficient if n~/2U — 0 in probabil-

ity or in terms of the variance of n=1/2U

- I;r(o)) -

as n — oo, where I () is Fisher information based

on the whole sample and I,(9), that based on T.

Equation (4) means that the information per obser-

vation tends to be the same for x and T as n — o.
(iii) Second-order efficiency: Let us consider

(5) V(U) = L(0) - I7(6).

Generally, both the terms on the right-hand side
diverge, but the difference may tend to a constant
as n — o. The limiting constant is defined as sec-
ond-order efficiency and T for which this constant
is a minimum has the maximum second-order effi-
ciency.

We see that Fisher information comes in a natu-
ral way as a criterion for distinguishing between
estimates.

Fisher (1925, 2-42) found a general expression
for the limit of (5) as n — . However, the proof is
not rigorous. Rao (1961b) and Efron (1975) have
given a different interpretation of Fisher’s expres-
sion.

@ V()= S (1,0)

5. CONDITIONAL INFERENCE

Fisher maintained that statistical methodology
developed for data analysis in one area may not be
directly applicable in another, since the objectives
in different areas may be different. For a business
concern, profit or loss in the long run, aggregated
over all of its diversified activities, is relevant. In
such a case, it is appropriate that decisions taken
over a period of time and activities are such that
the expected compound loss is minimized. In this
process, it may happen that losses in some activi-
ties are heavy, but are compensated by larger gain

_ in others. But the situation is different in scientific

research. The concept of aggregate loss over a num-
ber of different scientific projects or loss in the long
run in taking scientific decisions is not meaningful.
The data arising from each experiment to estimate
an unknown parameter or to test a hypothesis have
to be considered separately, and the amount of
uncertainty in the best possible decision taken on
each has to be specified. Further, in each case, we
need a summary of the data to communicate to
others or to place on record for future use.

For statistical analysis of sample data, we need
to know how the data are generated, which is
specified by a model (%, 4, ©), with % as the space
of all samples, # as Borel sets and © as identifying
the family of probability distributions indexed by a
parameter §#€©. In the terminology of Dawid



R. A. FISHER: THE FOUNDER OF MODERN STATISTICS 43

(1991), this is called the production model. In the
Bayesian set-up, a hypothetical probability model,
called the prior, is imposed on the space © in the
form (O, #* p), where p is a known probability
measure, in which case, statistical analysis can be
done in the standard Bayesian way. No other com-
plications arise, except for the pertinent question,
what p? [Bayesians may not agree, but I believe,
that Bayesian decision theory is essentially based
on minimizing loss in the long run (expected) with
respect to a chosen prior distribution.]

In the frequentist approach, some new method-
ological problems arise. Suppose that a certain pa-
rameter 6 is estimated by T(X) when Xe Z is
observed. In the frequentist approach, the distribu-
tion of T(X) is used for drawing inference on 6.
Fisher suggested that the distribution of T(X)
should be obtained not with respect to the produc-
tion model, but with reference to a restricted model
(%4, %4, ©) where

Z,={XeZ: A(X) = A(x)}

and x is the observed value of X, and A(X) is an
ancillary statistic (i.e., whose distribution is inde-
pendent of 0). Fisher considered a number of exam-
ples using particular ancillary statistics but did not
lay down rules for choosing them.

There has been considerable debate on condi-
tional inference of the type previously described.
There are examples like mixtures of experiments
(Cox, 1958) and simple random sampling with re-
placement (Basu, 1988), where there is broad
agreement on the need and choice of an ancillary
for conditioning. But the general recommendation
of Fisher, which is logically of the same status as in
the previously described problems, has run into
some difficulties, mainly because there can be many
choices of an ancillary statistic, each leading to a

different kind of inference (Basu, 1988). Some fur-

ther research appears to be necessary on the choice
of an ancillary.

I shall give some examples to show how condi-
tioning on certain features of the observed data can
be of help in refining statistical inference.

ExampLE 1. The first is a finite sample version of
Fisher’s example (1925, 2-42, page 26). Suppose
that we have two independent samples X and Y,
giving information on the same parameter 6, from
which the estimates T,(X) and T,(Y') obtained are
such that

6 E[T(X)] - E[T(Y)] -6,
(7) V[Tl(x)] = Uy, V[T2(Y)] = Vg,

where v; and v, are independent of 6. Further,
suppose that there exist statistics A;(X) and
A,(Y) such that

E[T,| A\(X) = Ay(%)] =,
E[T2| Ay(Y) = A2(y)] =0,
VT,] A,(X) = 4,(x)] = n(=),
V[Tz | Ax(Y) = A2(y)] =v5(¥)s

where x and y are observed values of X and Y,
respectively, and »,(x) and »,(y) are independent
of 6. Then, we might consider the conditional dis-
tributions of T, and T, given A; and A, at the
observed values and report the variances of T, and
T, as v,(x) and »,(y), respectively, as an alterna-
tive to (7). What is the right thing to do?

Now, consider the problem of combining the esti-
mates T, and T, using the reciprocals of v,, v, and
v1(x), v5(y) as alternative sets of weights:

(10) t1=(§1+§2—)/

@ o= (15 )/ |t )

It is easy to see that the unconditional variances of
t, and t, satisfy the relation

(12) V(t)) = V(ty)

so that ¢, is inadmissible. Does this not mean that
v,(x) and »,(y) are more appropriate measures of
precision than v, and v, of T, and T,?

Note that in the previous example, A; and A,
need not be strictly ancillaries. We need only the
conditions in equations (6) to (9) to be satisfied.

®

(©)]

1 1
J— + JR—
V1 Vg

)

ExampPLE 2. Suppose that a random sample of
size 3 has been taken from a row of plants to
estimate their average height, and we observe:

height hy h, hg
position of the plant 10 30 31.

We note that in the observed sample, two values
are from two contiguous plants, and there is likely
to be a high correlation between the heights of
successive plants. In such a case, we could refer the
observed sample to the set of samples, where two
units out of the three chosen are contiguous and
estimate the average height as

2 Y hy + hy) + by
2
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which is better than the traditional estimate

3

if, in fact, there is high correlation between con-
tiguous plants.

ExaMpLE 3. Even after a half century of debate,
there still seems to be no consensus on when to
treat the margins of a 2 X 2 contingency table as
fixed when conducting a significance test. In a
recent article, Greenland (1991) provides a logical
justification of conditional tests without appealing
to ancillarity, conditionality or marginal informa-
tion.

ExampPLE 4. Suppose that we want to estimate
the population of the state of West Bengal (India)
by random sampling from the complete list of N
towns and cities, on which we do not have any prior
information on the relative sizes. Theory says that
if x,,..., x, are the population sizes of k observed
units, then an estimate of the population of West
Bengal is Nx. Rao (1971) argued that if, among the
observed x,,..., x;, there is one value say, x;
(perhaps the population of Calcutta), which is much
larger than the rest, then a better estimate would
be x5 + (N — 1)’ where X’ is the average exclud-
ing x5;. Here, the sample is referred to the set
where x4 is observed.

These examples show that the configuration of
the observed sample provides some information on
appropriate analysis of the data. We owe it to
Fisher for introducing this useful concept and the
few examples I have given show the need for fur-
ther discussion and research on conditional infer-
ence or choice of a frame of reference. It appears
that different samples of the same size from the
same population have different information on the
unknown parameters, depending on the configura-
tion of the observations in the sample.

6. DESIGN OF EXPERIMENTS

In their biographical account of Fisher, Yates
and Mather (1963) say the following about Fisher’s
contributions to design of experiments:

... the new ideas of experimental design and
analysis soon came to be accepted by research
workers. . .. The recent spectacular advances
in agricultural production owe much to their
consistent use. They certainly rank as one of
Fisher’s greatest contributions to practical
statistics.

The subject of experimental designs was developed
by Fisher during the years 1991-1923, while he
was working at the Rothamsted Experimental Sta-
tion. He saw the need to collect data in such a way
that differences between effects of treatments (or
yields of varieties) can be estimated unbiasedly and
in the most efficient way under the given con-
straints on resources. He laid down three funda-
mental principles, randomization, replication and
local control to be followed in designing an experi-
ment to ensure validity of statistical analysis, to
provide an estimate of error for estimated treat-
ment comparisons and to minimize the variance of
estimates. Fisher (1931) expressed the roles played
by these principles in the form of a diagram (see
Figure 1). Describing the importance of experimen-
tal design in the collection of data, Fisher (1938,
4-159, page 163) said:

A competent overhauling of the process of col-
lection, or of experimental design may often
increase the yield (precision of results) ten or
twelve fold, for the same cost in time and
labour. To consult a statistician after an exper-
iment is finished is often merely to ask him to
conduct a post-mortem examination. He can
perhaps say what the experiment died of.

Fisher introduced the concept of factorial designs
where each treatment is formed by combining a
number of factors at different levels. The aim of an
experiment is such a case is to study the effects of
individual factors and the interactions which would
be of help in determining the optimum mix of
factors. Such designs are now routinely used in
agriculture and industrial experimentation.

Design of experiments is the most outstanding
contribution of Fisher to statistics. G. E. P. Box
says, “It is, perhaps, the only tool in statistics
which had the greatest impact on analytic and

investigative studies in all scientific disciplines

and given a status to the statistician as a valued

1
REPLICATION

11 1

RANDOM LOCAL
DISTRIBUTION CONTROL

'DIMINUTION
OF ERROR

VALIDITY
OF ERROR

Fic. 1. Fisher’s diagram: “ Principles of Field Experiments.”
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member of a scientific team.” It should also be
mentioned that Fisher’s ideas of incomplete block
designs, confounding and the single replicate facto-
rial designs have inspired a considerable volume of
research in combinatorial mathematics. As exam-
ples, reference may be made to contributions by the
Indian School of Statisticians led by R. C. Bose on
finite geometries and mutually orthogonal latin
squares, partially balanced and intra- and inter-
group balanced incomplete block designs, disproof
of Euler’s conjecture on the nonexistence of orthog-
onal latin squares of the order 4n + 2 (Bose and
Shrikande, 1959), coding theory, Kirkman’s school
girl problem, orthogonal arrays (Rao, 1949), etc.
The importance of replication and local control is
well understood, but the principle of randomization
and its role in providing valid tests of significance
and estimates of error have been questioned from
time to time and the controversy still continues. At
one end, we have outright rejection of the random-
ization principle by Basu (1988), and on the other
the contributions by Neyman (1935), Rao (1959,
1960), Yates (1964), Youden (1972), Preece (1990),
Bailey and Rowley (1987), Bailey (1991) and others
who see the need for randomization and examine
its role with reference to ‘“validity of the estimation
of error.” Fisher did not elaborate on the question
of validity, but from his writings and comments on
papers by others, it is clear, that by “no treatment
difference” (null hypothesis), he meant that “each
treatment has the same effect on each experimen-
tal unit” and by ‘“validity,” that “under the null
hypothesis, the expected mean square for treat-
ments is equal to that for error” in the appropriate
analysis of variance table. A randomization scheme
that achieves Fisher’s requirement is called weakly
valid. For instance, it is known (Rao, 1959) that in
the case of incomplete block designs such as BIBD,
linked block designs and special cases of PBIBD,
weak validity is achieved by the randomization

rules:

. (R;) The subsets of treatments are assigned to
~ blocks at random.
(R,) Within each block, the varieties of a sub-
set are assigned to the plots at random.

‘It is also true that, under the nonnull hypothesis,
the expected mean square for treatments (say M,)
exceeds that for the error (say M,) if an additive
model holds (i.e., when an observed yield can be
expressed as the sum of treatment effect and plot
effect). But, under a nonadditive model, M, can be
less than M, under the nonnull hypothesis and
also under the wider null hypothesis that on the
total, over all the experimental units, there are no
treatment differences (Neyman, 1935; Rao, 1959).

Weak validity does not ensure the more desirable
property that the expected mean square for testing
a null hypothesis on subsets of treatments or sub-
sets of contrasts is equal to that for the error. A
randomization that ensures this is said to be
strongly valid, a concept introduced by Grundy and
Healy (1950). In some cases, the further randomiza-
tion rule:

(R3) Label the treatments randomly

may introduce strong validity. For a general dis-
cussion on randomization schemes for strong valid-
ity and recent developments, the reader is referred
to Bailey and Rowley (1987) and Bailey (1991).

One of the early arguments against randomiza-
tion is that an experimenter who knew his material
could choose arrangements that were more accu-
rate than some of the arrangements that would be
arrived at by random chance. Fisher thought that
the experimenter’s knowledge could be better uti-
lized in stratifying the material into homogeneous
clusters that could be used as blocks, but the act of
randomization is necessary at some stage to pro-
duce a valid estimate of error which is of great
importance, and worth a small reduction in accu-
racy.

However, a few points remain to be resolved in
the practice and theory of randomization. What
should one do if a design arrived at by random
choice exhibits systematic features? Should one re-
ject this and make another random choice? Any
design of experiment must specify the set of designs
from which one may be chosen at random. The only
condition the set has to satisfy is that the act
of randomization provides unbiased estimates
of treatment comparisons and valid estimates of
error. If there is more than one set with these
properties, what further criteria should be used in
choosing an appropriate set? To what extent ran-

. domization can be sacrificed when some random

assignments of treatments to experimental units
are difficult to implement in practice as in the case
of Youden’s (1972) example? Some discussion clari-
fying these issues will be useful.

7. FORMS OF QUANTITATIVE INFERENCE

In Chapter 3 of his book, SMSI, Fisher describes
at some length different forms of making inference
from observational data. He thinks that a mono-
lithic structure of statistical inference, requiring
statements of probability about alternative hy-
potheses given the observed data, may not always
be possible or necessary in taking decisions in ex-
perimental sciences. He discusses different types of
inference depending on the nature of problems and
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available data. Rereading this book, one gets the
impression that Fisher was reviewing his own work,
modifying some statements he had made earlier,
answering the criticisms leveled against his contri-
butions and introducing some new ideas. We shall
briefly review the contents of this chapter and com-
ment on some of Fisher’s statements.

7.1 Tests of Significance

In his early writings (SMRW and DOE), Fisher
laid great emphasis on tests of significance. Given
a null hypothesis, H,, a test statistic is chosen and
its 95% or 99% percentile point is computed. If the
observed. value of the test statistic exceeds this
value, the H,, is rejected. The decision is based on
the logical disjunction: Either an intrinsically im-
probable event has occurred, or the offered hypothe-
sis is not correct. “The level of significance in such
a case fulfills the conditions of a measure of the
rational grounds for the disbelief it engenders”
(SMSI, second edition, page 43). Such a prescrip-
tion was, perhaps, necessary at a time when statis-
tical concepts were not fully understood and the
exact level of significance attained by a test statis-
tic could not be calculated due to lack of computa-
tional power. Fisher clarified his views in SMSI
both in respect to the level of significance to be
used and the situations in which a test of signifi-
cance is relevant and useful:

... for in fact no scientific worker has a fixed
level of significance at which from year to year, -
and in all circumstances, he rejects hypotheses;
he rather gives his mind to each particular
case in the light of his evidence and his
ideas. . .. Further, the calculation is based
solely on a hypothesis, which, in the light of
the evidence, if often not believed to be true at
all, so that the actual probability of erroneous
decision, supposing such a phrase to have any
meaning, may be much less than the frequency
specifying the level of significance.... It (the
level of significance) is more primitive or ele-
mental than, and does not justify, any exact
probability statement about the proposition.
(SMSI, 2nd edition, pages 42-43)

Fisher thinks that tests of significance have a
role to play in scientific research, although they
result in a weak form of inference. Thus, when one
wants to know whether a normal distribution fits a
given data, a general test like the x2 goodness of fit
is appropriate. If the hypothesis is rejected, an
alternative model is sought. The test, by itself, does
not indicate what the alternative is. However, once
the specification such as the normal family is ac-
cepted, then the problem is that of discriminating

between alternative values of the parameters of a
normal distribution, which falls within the realm of
estimation.

It appears from reading SMSI that Fisher gives a
limited role to tests of significance in statistical
inference, only useful in situations where alter-
native hypotheses are not specified. He does not
recommend any fixed level of significance, but
suggests that the observed level of significance
has to be used with other evidence that the experi-
menter may have in making a decision.

However, Fisher’s emphasis on testing of null
hypotheses in his earlier writings has probably
misled the statistical practitioners in the interpre-
tation of significance tests in research work and
motivated much theoretical research and publica-
tion of text books on a statistical methodology of
“limited utility and applicability.” [See Wolfowitz
(1967) for further remarks.]

7.2 Mathematical Likelihood

In the beginning, Fisher introduced likelihood as
a quantity “to designate the state of our informa-
tion with respect to the parameters of the hypothet-
ical population” (Fisher 1922, 1-18, page 334), and
more specifically as “measuring our order of prefer-
ence among different possible populations” (SMRW,
12th edition, page 30). He used these concepts to
introduce the m.l. estimation, but found the need to
derive the distribution of the m.l. estimates, some-
times together with some ancillary statistics, for
making inferential statements. He did not state the
pure likelihood principle as later discussed by
Barnard and Birnbaum. However, in SMSI, he re-
ferred to likelihood as a “measure of rational belief”
in some well-defined sense and proceeded to make
inferential statements based on the likelihood func-
tion only, keeping the observations fixed. He meas-
ured the plausibility of a given value of the

. parameter by the ratio of its likelihood to the m.l.

It is not clear how such a measure can be of help in
guiding research investigations, apart from the fact
that the likelihood function cannot always be de-
fined, and there are certain other difficulties in
dealing with m.l. estimates when there are nui-
sance parameters (see Cox, 1978).

7.3 Fiducial Distribution and Bayes Theorem

This was an attempt by Fisher to make probabil-
ity statements about the unknown parameters of
the Bayesian type without using a prior distribu-
tion. In the words of L. J. Savage (1981):

Fisher’s fiducial argument is a gallant but un-
successful attempt to make the Bayesian om-
lette without breaking the Bayesian egg.
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Fisher was aware of the usefulness of prior proba-
bilities in statistical inference, only when they are
inherent and can be ascertained by prior knowl-
edge or introduced through a random mechanism
for the choice of a population to be sampled, or
estimable from data (empirical Bayes). In fact he
uses these concepts in genetic work, as in the con-
struction of discriminant function for genetic selec-
tion (Fairfield Smith, 1936; Rao, 1953). But he
thought that, in some situations, prior probabilities
do not exist (e.g., when the atomic weight of a
chemical has to be determined). He describes the
axiomatic and personalistic approaches to choose a
prior distribution as “bogus” (see 1959, 5-273, for
further discussion). However, Fisher’s approach for
making probability statements about unknown pa-
rameters by using the information provided by piv-
otal statistics is strewn with logical difficulties.

7.4 The Final Thought

In a series of lectures given at the Indian Statis-
tical Institute in 1954-1955, Fisher wrote on the
blackboard different forms of quantitative infer-
ence in the form of an incomplete list (the explana-
tion within parenthesis is mine)

1. Tests of significance (logical disjunction)

2. Mathematical likelihood (measure of ratio-
nal belief)

3. Fiducial probability (inversion of a pivotal
quantity)

4. Bayes theorem (when there is an inherent
prior)

5.

6.

When I asked him what he meant by 5 and 6, he
said, these represent other ways which have yet to
be discovered, and it is up to the younger genera-
tion like you to think about it.

8. CONCLUDING REMARKS

Fisher is the author of about 300 research publi-
cations (reproduced in 5 volumes of his collected
papers) and six books, of which four are on statis-
tics and two on genetics. The originality of his
papers, their thought-provoking contents, and many
suggestions for further development should, in spite
of the lack of mathematical rigor of some of his
contributions, provide a stimulus and challenge to
research workers for many years to come.

The recognition of statistics as a separate scien-
tific discipline came only after the theoretical foun-
dations of the subject were laid and its applications
to scientific research was demonstrated by Fisher.

The basis of statistics is inductive logic, which
remained uncodified until the beginning of the
present century because of inherent difficulties in
generalizing from the particular. Attempts at quan-
tifying uncertainty in hypothesis testing through
levels of significance provided the initial break-
through, but there are bound to be controversies in
the development of the subject. Fisher may have
been wrong in some of the statistical methods he
advocated. I say, “may,” because there are inher-
ent difficulties in judging the merits of any rule of
procedure in inductive logic. Some of Fisher’s ideas
are still being debated. But, undoubtedly, Fisher
was the founder of modern statistical theory and an
innovator of various topics that are in the main
stream of current research.

I would like to point out that, in the ultimate
analysis, statistics as practiced by Fisher and some
of his predecessors (see 1947, 4-214, 1938, 4-159;
1953, 5-251) is a way of thinking. Statisti-
cal methodology is a process by which we analyze
data to provide insight into the phenomenon under
investigation rather than a prescription for final
decision. There is no fixed rule for answering all
questions. Search for new methods will continue. I
recall what Fisher said in his preface to his 1950
volume of papers, Contributions to Mathematical
Statistics:

In each of these fields there is still much to be
done. I am still too often confronted by prob-
lems, even in my own research, to which I
cannot confidently offer a solution, even to be
tempted to imply that finality has been reached
(or to take very seriously this claim when made
by others)!
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