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in contemporary statistics is not the only way to
achieve simplicity. The main lesson that I took away
from Wermuth’s doctoral research (cf. Dempster,
Schatzoff and Wermuth, 1977) is that smooth systems
of declining parameter values are usually a more effi-
cient way to simplify statistical complexity than sharp
cutoffs that set most parameter values to zero. Compu-
tational strategies of choice then become radically
different. Classical estimation techniques that are ade-
quate with relatively few parameters must be replaced
with Bayesian or similar methods that reflect prior
assessments of patterns of smooth decline. Donoho et
al. (1992) illustrate a notable non-Bayesian approach.
My own preference is for Bayesian models with many
more hidden variables and many more dependence pa-
rameters than SDLC allow, to have a reasonable possi-
bility of capturing actual mechanisms. I believe that
rapidly developing computing power and algorithms
that sample posteriors should be used to implement
and test more complex Bayesian models.

Beyond the elicitation of priors and beyond the prob-
lem of simplifying the complex structures of highly
multivariate and selectively filtered populations en-
countered in real practice, there remains a gray area
that SDLC address briefly in two sentences as situa-
tions where “the number of assessments made is in-
sufficient to specify a joint distribution uniquely.” The
use of maximum entropy or other arbitrary prior gener-
ation principles typically leads to exactly the unrealis-
tic procedures that the smoothing of large parameter
sets is designed to avoid. SDLC fail to mention the
belief function approach (Shafer, 1976) that Dempster

and Kong (1988) show fits naturally into network mod-
elling built on decompositions of evidence into indepen-
dent sources similar in spirit to the “graphical modelling”
approach of SDLC. It is my view as a coinventor of
the BEL theory that it is a near cousin of the Bayesian
strategy that descends directly from classical subjec-
tive probability and is not a foreign interloper from
distant tribes of semicoherent formal systems. Unlike
the naive upper and lower probability models that have
been studied by Good, Walley and others, the BEL
system constructs models from judgmentally indepen-
dent assessments on knowledge spaces and combines
the components by a simple precise rule that reduces
to the Bayesian rule for combining likelihood and prior
in the special Bayesian case. The chief hindrance to
developing and testing BEL models for probabilistic
expert systems has been computational difficulties.
Shafer, Kong and others showed in the mid-1980s how
to decompose BEL computations coincidentally with the
parallel demonstrations of Lauritzen and Spiegelhalter
(1988) that SDLC feature. But these clever algorithms
only stave off computational complexity temporarily.
The future of both Bayesian and BEL approaches de-
pends on the revolution that has been gathering speed
for the past five years on Monte Carlo posterior sam-
pling.
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Comment: Conditional Independence

and Causal Inference

Clark Glymour and Peter Spirtes

Fourteen years ago, in an essay on conditional inde-
pendence as a unifying theme in statistics, Philip
Dawid wrote that “Causal inference is one of the most
important, most subtle, and most neglected of all the
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problems of Statistics” (Dawid, 1979a). Only shortly
later, several statisticians (Wermuth and Lauritzen,
1983; Kiiveri and Speed, 1982) introduced frameworks
that connect conditional independence, directed acyclic
graphs (hereafter DAGs) and causal hypotheses. In
these models the vertices of a DAG G represent vari-
ables, and a directed edge X — Y expresses the proposi-
tion that some change in variable X will produce a
change in Y even if all other variables represented
in G are prevented from changing. The power and
generality of DAG models derive from their dual role
in representing both causal or structural claims and
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also patterns of independence and conditional inde-
pendence constraints on distributions. The paper by
Spiegelhalter, Dawid, Lauritzen and Cowell (SDLC)
provides a valuable review of the current state of the
art in using and constructing statistical and causal
hypotheses represented by DAGs. The paper by Cox
and Wermuth (CW) lays out interesting problems con-
cerning how to generalize DAG models. Our remarks
concern four issues raised — explicitly or implicitly — by
these papers:

1. Do other graphical objects with a plausible causal
or structural interpretation represent sets of con-
ditional independence relations that cannot be
represented by DAGs? We will briefly describe
generalizations of DAG models representing mar-
ginals of distributions with latent variables and
generalizations representing feedback; graphical
chain models do not represent such processes.

2. Are classifications or diagnoses using Bayesian
networks or DAG models more reliable than
those made by other existing classification tech-
niques? We believe the question is unsettled.

3. Besides classification, what other uses do DAG
models have? We think the essential use of such
models is in predicting the effects of interven-
tions —experiments, policies, etc.—that change
the joint distribution of variables in a population,
and this use connects these models with analyses
by Rubin (1974, 1977) and others of the invari-
ance of conditional probabilities under interven-
tions and with a wealth of issues in experimental
design.

4. What is the state of the art of automatic tech-
niques for constructing DAG models? We will
briefly note properties of several procedures that
appear to be more generally applicable than the
automated search illustrated in the SDLC review.

1. DIRECTED ACYCLIC GRAPHS
AND GENERALIZATIONS

After introducing a variety of graphical structures
to represent patterns of conditional independence rela-
tions not represented by any DAG —“nondecompos-
able” sets of conditional independence relations—and
illustrating these patterns in empirical examples, CW
say: “Our examples illustrate that such nondecompos-
able structures arise in different contexts. There is
need to identify them and to find explanations of how
they could have been generated.” This question, as we
understand it, asks what sorts of causal processes
might lead to nondecomposable patterns of conditional
independence relations; that the issue is posed near
the end of their paper suggests that when nondecom-
posable patterns are found, the various graphical repre-
sentations CW consider have no clear interpretation

as causal hypotheses. To address their question, we
first briefly consider the connection between causal
structure and conditional independence in DAG mod-
els, then in graphical chain models and finally in alter-
native generalizations of DAG models.

In various frameworks, each DAG can be paired
with any member of families of probability distribu-
tions over variables represented by vertices in the
graph. The frameworks differ in their selection of re-
strictions on graph/distribution pairs, (G, P). Common
restrictions include: (1) the Markov condition (Kiiveri
and Speed, 1982): for admissible (G, P) X is indepen-
dent of its nondescendants in G given its parents in
G, (2) the “recursive diagram” or “directed independence
graph” condition (Wermuth and Lauritzen, 1983): for
admissible (G, P) and a given ordering of variables,
X — Yisin G if and only if Y is after X in the ordering,
and Y is dependent on X conditional on the set U of
all vertices (excluding X) that precede Y in the order-
ing; (3) the Minimality condition (Pearl, 1988): for
(@, P) satisfying the Markov condition, if H is a proper
subgraph of G then (H, P) does not satisfy the Markov
condition; (4) positivity of distributions; (5) the DAG
isomorph or Faithfulness condition (Pearl, 1988): for
admissable (G, P), vertices X, Y are independent con-
ditional on set U of vertices only if the Markov condi-
tion applied to G entails that conditional independence.
The restrictions on graph/distribution pairs are related.
Directed independence graphs + positivity is equiva-
lent to Markov + Minimality + positivity. Markov +
Faithfulness + positivity entails the other conditions
but is strictly stronger than Markov + the other condi-
tions.

The Markov condition, the directed independence
graph condition and the Minimality condition are di-
rectly motivated by intuitions about causality reflected
in statistical practice throughout the century and in
philosophy of science for almost half a century. [A few
examples: a special case of the Markov condition is
essential to Fisher’s (1951) arguments in The Design

. of Experiments and throughout subsequent work on

experimental design; the Markov condition is the guid-
ing idea of latent variable models, as Bartholomew’s
(1987) recent review notes (without mentioning di-
rected graphs explicitly); the Markov and Faithfulness
conditions are tacitly assumed in the arguments about
model selection developed by Simon (1954) and by
Blalock (1961) early in the 1960s. In philosophy of
science, aspects of the directed independence graph
condition, for example, were given in a condition for
“probabilistic causality” proposed by Suppes (1970) and
aspects of the Markov condition were given by Rei-
chenbach (1956).] ,

The Faithfulness condition can be viewed as requir-
ing stability of conditional independence over small
variations in parameters in models; in other terms,
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conditional independence facts are to be explained by
structure alone. Under a natural parameterization of
linear normal models satisfying the Markov condition
for a DAG, G, the set of unfaithful distributions has
zero Lebesgue measure (Spirtes, Glymour and Scheines,
1998). The Markov and Faithfulness conditions are
realized — sometimes without explicit graphical repre-
sentations—in a wide array of models with causal inter-
pretations in the social sciences, epidemiology and
elsewhere and in the design of experiments and deriva-
tion of null hypotheses.

For every distribution P over a set of variables V
and every ordering of the variables there exists a DAG
compatible with the ordering such that P satisfies
the Markov and Minimality conditions and a DAG
compatible with the ordering such that P satisfies the
directed independence graph condition. In contrast,
there are many distributions that satisfy both the
Markov and Faithfulness conditions for no DAG what-
soever; even if for some orderings of the variables
there is a DAG for which P satisfies the Markov and
Faithfulness conditions, there may not be such a DAG
for every ordering of the variables. Unlike the other
combinations of assumptions, the Markov and Faith-
fulness conditions jointly enable independencies to give
some information about the directions of edges. The
distributions that CW call “nondecomposable” do not
satisfy the Markov and Faithfulness conditions for
any DAG. Their introduction of other graphical repre-
sentations for nondecomposable distributions there-
fore suggests that CW are implicitly imposing the
Faithfulness condition on the set of distributions repre-
sented by a DAG.

1.1 Graphical Chain"Models

CW describe a number of different kinds of “block”
graphs, some of which represent sets of conditional
independence relations that cannot be represented by
DAGs unless the Faithfulness condition is violated.
Their structures include graphical chain models in the
sense of Lauritzen and Wermuth (1989) (hereafter,
LW), structures also discussed by SDLC. These objects
, contain directed edges, undirected edges and variables
grouped into blocks. The blocks of variables are lin-
early ordered; a directed edge X — Y occurs only if X
is in a block previous to Y; undirected edges can only
join variables in the same block. An edge A - B or
A — B occurs if and only if A and B are dependent
conditional on the set of all variables occurring in the
same block as B or in previous blocks.

The terminology of “explanatory” and “response”
variables, and other remarks in the review papers,
strongly suggest that directed edges in graphical chain
models are given a causal interpretation, but the causal
or structural significance of blocks and undirected
edges is problematic. Wermuth and Lauritzen (1990)

say little more than that variables joined by undirected
edges in the same block are “on an equal footing.”
SDLC suggest undirected edges X — Y represent recip-
rocal causation; in some units of the population X
influences Y and in other units Y influences X. Under
this interpretation, the chain graph represents a mix-
ture of two subpopulations, each represented by a
different DAG. We doubt that such mixtures generally
exhibit the conditional independencies represented by
a graphical chain model with undirected edges, but in
any case the SDLC suggestion remains to be demon-
strated. If feedback processes are represented by di-
rected cyclic graphs, then it follows from LW that
graphical chain models cannot represent them. Neither
do graphical chain models represent the marginal con-
ditional independence relations among observed vari-
ables that follow by the Markov condition from DAG
models with latent variables (although other sorts of
graphs that CW describe, but whose causal interpreta-
tion is not clear, can represent some marginal distribu-
tions of this kind). Graphical chain models could be
used to represent a collection of alternative DAG mod-
els when one is unsure as to which structure is correct
and the structures share certain conditional indepen-
dence properties, but SDLC and CW and the papers
they review do not unequivocally offer this interpreta-
tion.

The question of how the various “nondecomposable”
forms of conditional independence relations described
in CW could have been generated receives a straightfor-
ward answer using different generalizations of DAG
models. Rather than starting with sets of conditional
independence relations, finding a graphical formalism
to represent them and then asking what causal process
could have generated the constraints, we start with
various sorts of causal processes represented by di-
rected graphs and ask what sort of sets of conditional
independence relations or marginal conditional inde-
pendence relations they generate. It is important to be
willing to abandon the idea, characteristic of graphical
chain models, that the absence of an edge between two
variables X and Y (which has a clear causal interpreta-
tion, namely that X does not directly cause Y) must
always represent some conditional independence be-
tween X and Y; otherwise one excludes the natural
representation of feedback processes. Two relevant
generalizations of DAG models have been investigated.

1.2 Feedback and Reciprocal Causation

For many pairs of variables, A influences B and B
influences A, whether directly or through some other
set of variables considered in the system. Feedback
processes can be represented by time series, but for
linear systems they are often represented as well by
finite directed cyclic graphs (DCGs). Methods for calcu-
lating correlations for cyclic systems flow from the
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work of Haavelmo (1943) and Mason (1956). Despite
this pedigree, even in the linear case very little is known
about the connections between DCGs and conditional
independence properties. The various conditions we
have mentioned extend naturally to cyclic graphs, but
the relationships among the conditions are different in
cyclic and acyclic graphs. In the acyclic case, it is
possible to define a graphical condition, d-separation,
(Pearl, 1988) between three disjoint sets of variables
X, Y and Z in a DAG G, such that X is d-separated
from Y given Z if and only if the Markov condition
applied to G entails that X is independent of Y given
Z. In cyclic graphs the natural extension of the Markov
condition does not capture all of the atomic indepen-
dencies entailed by the natural extension of d-separation,
and some formulations of the Markov condition are
uninformative when extended to cyclic graphs (at least
in the linear case).

In the case of linear normal models with unspecified
values of some linear coefficients, there is a clear associ-
ation of families of probability distributions with cyclic
graphs, but we do not know in general how to character-
ize the conditional independence relations a linear nor-
mal cyclic system entails for all values of its free
parameters. There is a purely graphical necessary and
sufficient condition for a cyclic graph to require (for all
linear models associated with it) that pxy.y = 0, where
U is a single variable (Glymour et al., 1987). The condi-
tion is in fact equivalent to a special case of d-sepa-
ration for cyclic graphs. We have examined several
four-variable cyclic graphs, and we find that the van-
ishing partial correlations of second order they require
(again assuming linearity) also agree with the general-
ization of d-separation to cyclic graphs. There is no
established convention for association of probability
distributions with DCGs in the nonlinear case, but the
linear case suggests that given the “right” association
d-separation may correctly characterize the set of con-
ditional independence relations common to all of the
distributions associated with the graph. [Added in
proof: The Markov condition in fact fails for some
linear models (with correlated errors) for DCGs. For
" example, x3s =ax1 + bxs + egand x4 =c x; + d x3
+ &4 does not entail that P2s14 = 0, as required by the
Markov condition for the graph x; = x5 2 x4 < Xxa.
Spirtes has proven that d-separation does characterize
the vanishing partial correlations implied by all linear
models (with corrected errors) associated with any
DCGs. See Directed Cyclic Graphs, Conditional Inde-
pendence, Non-Recursive Linear Structural Equation
Models, Carnegie Mellon Univ. Technical Report Phil-
35, Dept. of Philosophy, 1993.]

1.3 Latent Variables

Consider a DAG G representing a causal process
and any associated probability distribution P, where

(G,P) satisfy Markov condition. Suppose that only a
proper subset O of variables in the graph are measured
or recorded. What conditional independence relation
among variables in O is required by the Markov condi-
tion applied to G? What graphical object represents
those marginal conditional independence relations and
also represents information about G? A nice answer
to both questions is given in Verma and Pearl (1990).
They introduce the notion of the inducing path graph
for G which contains only measured variables in G,
encodes all of the marginal conditional independence
relations G entails (by the Markov condition) and in-
cludes some of the causal information represented in G.

An undirected path U between X and Y is an induc-
ing path over O in G if and only if (i) every member
of O on U except for the endpoints occurs at the
collision of two arrowheads on the path, and (ii) for
every vertex V on U where two arrowheads collide,
there is a directed path from V to X or from V to Y.
There is an inducing path between X and Y in G over
O if and only if X and Y are not independent conditional
on any subset of O\{X,Y}. For variables X, Y in O, in
the inducing path graph H for G over O, X < Yin H
if and only if there is an inducing path between X and
Y over O in G that is directed into X and also directed
into Y; there is an edge X — Y in G if and only if there
is no edge X < Y in H, and there is an inducing path
between X and Y over O in G that is out of X and into
Y. (It is easy to show that there are no inducing paths
connecting X,Y in G over O that are not directed into
X or into Y.) The two kinds of edges in an inducing
path graph H have a straightforward causal interpreta-
tion: A directed edge X — Y occurs in H only if there
is a directed path from X to Y in G, that is, X is a
cause of Y; a double-headed edge X < Y occurs in H
only if there is an unmeasured T and a directed path
from T to X and a directed path from T to Y, the two
paths intersecting only at 7, that is, only if X and Y
have an unmeasured common cause.

Unfortunately, observed conditional independence
relations do not generally determine a unique inducing
path graph, and so both for the purpose of studying
causal inference and for characterizing indistinguish-
ability of latent variable DAG models, another struc-
ture is required. A partially oriented inducing path
graph (or POIPG for brevity) over a subset of variables
O, represents a class of inducing path graphs over O
that share the same adjacencies. A POIPG looks like
an inducing path graph, but with the presence or ab-
sence of some arrowheads left unspecified. A directed
edge in a POIPG indicates that all inducing path
graphs in the class have that edge; a bidirected edge
indicates that all inducing path graphs in the class
have that bidirected edge. POIPGs can have edges
ending in a mark, an “0,” as in X o— Y, allowing some
of the inducing path graphs represented to have X <
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Y and some to have X — Y. Similarly, a POIPG may
contain an edge X o-0 Y. Two edges sharing a vertex,
each with a mark at that vertex, can be underlined, as
in -0 X o-, indicating that the two “0” marks cannot
simultaneously be arrowheads in any inducing path
graph it represents. For some latent variable causal
structures and sets of measured variables, the hypothe-
sis that one measured variable does (or does not) cause
another measured variable, or that two measured vari-
ables are affected by a latent common cause, can be
read from the POIPG constructed from the conditional
independence relations among the measured variables.

Spirtes (1992) describes a procedure for construct-
ing a POIPG from conditional independence relations
among observed variables and optional background
knowledge, and Spirtes and Verma (1992) adapt this
result to provide a polynomial time procedure to decide
indistinguishability (by conditional independence) of
any two DAGs with latent variables, assuming the
Markov condition. Three examples of POIPGs are
given in Figure 1 (i), (iii) and (vii).

The DCG models and the POIPGs provide represen-
tations of most of the nondecomposable sets of inde-
pendence hypotheses discussed by CW and explain
how such independence properties could be generated.
Of the five nondecomposable sets of independence
hypotheses CW describe, four can be generated by a
feedback process or a process with unmeasured com-
mon causes and represented by a DCG or POIPG. The
fifth set of nondecomposable independencies can be
generated by a cyclic graph but only with special pa-
rameter values (i.e., unfaithfully). Referring to CW’s
eight cases:

i) YU W(XV)and X 1l V | (Y,W): DCG with
Y > X —- W-— V — Y or all arrows reversed
[represented by the cyclic graph in Figure 1 (i)].

(i) Y Il W|Vand X Il V| W [represented by the
POIPG in Figure 1 (ii)].

(iii) Y 1l WandX |l V:[represented by the POIPG
in Figure 1 (iii)].
(iv) (v) and (vi) are represented by DAGs.

(vii) Y_Il W and X Il V and V 1l W [represented

by the POIPG in Figure 1 (vii)]. The POIPG
in Figure 1 (vii) actually represents these inde-
pendence relations only under the assumption of
composition; that is, that for any four disjoint
sets of random variables, X, Y, Z, W, the rela-
tions X 1l Y|Z and X 1l W | Z entail X ||
(Y,W) | Z. Composition holds for normal distribu-
tions. .

(viii) YL W | (X,V), X 1L V | (Y,W) and V 1l W.
This set of conditional and unconditional indepen-
dence relations is not represented exactly by any
DCG or POIPG unless the Faithfulness condition
is violated.

Yy ——»vV Y <——<v Y «—»V Y «——oV
I l I o I I
X —— W X¢—O W X —> W X +—o W
@) (ii) (iii) (vii)
Fic. 1.

Most of the empirical examples CW give have small
sample sizes, and the independence decisions are infor-
mal. In assessing the value of DCG and POIPG repre-
sentations, it does not therefore seem important to
consider whether feedback or latent variables are in
these particular cases likely to be the correct substan-
tive interpretations of the conditional independence
relations.

2. CLASSIFICATION AND BAYESIAN NETWORKS

The construction of a Bayesian network expert sys-
tem can be expensive and time consuming. Why
bother? One use we can imagine is as a kind of personal
calculator, a device an expert—or anyone who wishes
to defer to and emulate that expert—can use to find
out what her degrees of belief ought to be given various
pieces of evidence. The expert, or expert emulator,
can then use that information however she chooses in
making decisions. In some contexts this seems to us
a perfectly sensible purpose. Another conceivable pur-
pose is to provide a system that combines prediction
with explanations of how and why a prediction was
obtained. Updating a Bayesian network resembles a
course of reasoning, and perhaps some people may
want such accounts of how predictions are obtained.
But these are mostly advantages of computer-side
manner. What advantages do Bayesian networks have
as tools for furthering our knowledge and control of
empirical domains?

Consider predictions (which we will refer to as class-
ifictions) of a variable or variables Y using a set of
variables X as predictors, for new individuals or sam-
ples drawn from a fixed distribution. There are a vari-
ety of automatic classification methods now available:
neural networks, automatically constructed Bayesian
networks, various forms of regression, automatically
constructed decision trees and combinations of these
(Shaffer, 1993). There are also a number of methods
that rely on expert knowledge, such as hand-crafted
decision trees and hand-crafted expert Bayesian net-
works. In such problems, there is a good deal of psycho-
logical evidence that computerized models of experts
make better predictions in many domains than do the
experts themselves, but so also do simple algorithmic
prediction methods—for example, linear or logistic re-
gression—when there is a relevant database. Do expert
system Bayesian networks (or automatically constructed
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Bayesian networks) have any advantages in reliability
or computational ease over these other methods of
classification, and if so, under what conditions?

Research has just begun on these questions, and
the jury is still out on whether a Bayesian network
constructed by consulting an expert makes superior
classifications. SDLC note that all versions of the
CHILD network with graphical structure extracted
from an expert do less well at diagnostic prediction
than does a “simple algorithmic” method (a hand-
crafted decision tree). Moreover, SDLC compare the
predictive accuracy of the network with fixed parame-
ters estimated by the expert and with parameters
changed by conditioning on data from new cases—
unsurprisingly, the latter is superior—but they give
no comparison with the predictive accuracy of the
network when the parameters are estimated as much
as possible entirely from the data. We wonder whether
the model using parameter estimates based as much
as possible on frequencies would (at least for some
sample sizes) in this case do better than either of the
methods of estimating parameters which they com-
pare. The application of a Bayesian network con-
structed by consultation with an expert appears even
more dubious in domains, such as psychology and
sociology, in which rather less is known about causal
mechanisms.

The graphical structure of Bayesian networks typi-
cally entails constraints on the joint distribution of
measured variables. We expect a predictor that entails
conditional independence constraints satisfied by the
population distribution to have a smaller expected
squared error than a predictor that does not, but the
value of this advantage depends on our capacity to
identify those constraints correctly: a predictor entail-
ing a constraint false in the population will be biased.
It seems to us a dicey question whether reductions in
the variance of estimates are worth the risks of bias
occasioned by assuming special conditional indepen-
dence constraints on a distribution. Whatever the final

result, it appears to us that while the method of con- -

structing Bayesian networks with the aid of experts
, shows promise and is certainly worthy of further re-
search, no decisive case has yet been made for the
value of building Bayesian networks or causal models
for the purpose of predicting within samples from a
fixed distribution.

3. OTHER USES OF BAYESIAN NETWORKS
AND CAUSAL MODELS

In the preceding section we used the qualifier “within
a fixed distribution” because we believe the special
value of DAG causal models is in predicting the results
of interventions that change the distribution of vari-
able values in a population. Predictions of this sort are

not considered in the SDLC paper, but they are often
the very point of causal models in studies that aim to
influence policy. Such predictions can be made if one
knows the causal structure of the systems in the popu-
lation and understands the direct effects of the inter-
vention. Unlike prediction within a fixed distribution,
predictions of the outcomes of interventions absolutely
require the use of the causal relations represented in
the directed graph. Regression or other methods which
take no account of causal structure will not suffice.
In a Bayesian network, given values for X on a new
unit, we estimate the value of Y by computing the
conditional probability of ¥ given X and doing what-
ever with the result. For a trivial example, suppose
the network is Figure 2 (i) with binary variables, value
1 indicating the condition and 0 indicating its absence.
The parameters of the network are P(Smoking), P(Yel-
low fingers | Smoking) and P(Cancer | Smoking). If some-
one presents without yellow fingers we can compute
P(Cancer | Yellow fingers = 0); much of the SDLC re-
view is devoted to how to perform such calculations
in more complex cases. But what if, after constructing
the network, we were to adopt a policy that prevents
yellow fingers? Suppose we make everyone wash their
hands twice a day and wear gloves in between, conve-
nient gloves that do not make smoking more difficult
and that are not carcinogenic. Assume our Bayesian
network correctly describes the distribution of yellow
fingers, smoking and cancer in the population before
the new policy. Can the network be used to predict the
probability of cancer in someone without yellow fingers
after the policy is effected? Not by computing P(Can-
cer | Yellow fingers = 0) as we did before. Instead we
compute Pyew(Cancer | Yellow fingers = 0) = Pyey(Can-
cer) = P(Cancer | Smoking)P(Smoking) (assuming after
the policy is adopted no one has yellow fingers.) This
is exactly the computation appropriate for the different
network shown in Figure 2 (ii) with parameters Ppeyw(Yel-
low fingers), P(Smoking), P(Cancer | Smoking). The new
network is obtained from the old by removing the
directed edge from Smoking into Yellow fingers, giving
Yellow fingers a new exogenous distribution and leav-
ing the other parameters unchanged. The relation be-
tween the new network describing the distribution
after the intervention and the original network describ-
ing the distribution before the intervention perfectly
reflects the hypothetical facts: with the policy in place,

Gloves = Gloves =

off on
Yellow <@—Smoking —@» Lung Yellow Smoking —p» Lung
fingers cancer fingers cancer

@ (i)
P(SYLIG=off)= P(YIS)P(LIS)P(S) P(S.Y.LIG=on)= P(Y|G =on)PLISP(S)

Fic. 2.
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smoking no longer causes yellow fingers; the policy
changes the probability of yellow fingers (to 0, or pretty
close), but because yellow fingers do not cause either
smoking or cancer, the new policy does not alter the
joint distribution of these two variables.

Interventions to exogenously determine the distribu-
tion of values of a variable X, and that affect other
variables only through X, break whatever edges into
X originally obtained in the graph or graphs describing
the causal structure(s) in the population and reparame-
terize the joint distribution accordingly. (Other kinds
of interventions, which we do not consider here, may
introduce as well as break edges.) We say X is “directly
manipulated” by the intervention. The analysis is not
ad hoc. When an intervention variable is introduced
(Gloves, in the example) and the original distribution
is understood to be conditional on a particular value
of the intervention variables (e.g., Gloves = 0), the
rule just illustrated follows from the Markov condition.
A general proof is given in Spirtes, Glymour and
Scheines, (1993).

This simple principle is at the center of experimental
design. In graphical terms, Fisher wanted to randomize
because he believed determining treatment by random-
ization guarantees that the structures describing the
experiment will then contain no edges from causes
of the outcome variable into the treatment variable.
Rubin’s proposals for causal inference in experimental
designs (Rubin, 1974, 1977) and their extension by Pratt
and Schlaifer (1988), are all consequences of the Mar-
kov condition for the special cases in which the in-
tervention entirely determines the distribution of the
variable or variables directly manipulated. The princi-
ple also explains features of distributions assumed in
Bayesian discussions of-experimental design (Kadane
and Seidenfeld, 1992).

So it is easy in principle to determine the effects
of a policy intervention provided one has a correct
description of causal structure and a parameterization
of the population distribution, and one knows the dis-
tribution of the directly manipulated variables that
will result from the policy. Prediction of the outcomes
of interventions is not so obvious if only a POIPG is
available —and a POIPG is the best way we know of to
charaecterize causal structure (without feedback) from
observed conditional independence relations. There is,
however, an algorithm that, given a POIPG and a set
of measured variables to be directly manipulated, gives
sufficient conditions and necessary conditions under
which other variables can be predicted, and computes
the new distribution (of a predictable variable) given
the original joint distribution and the postpolicy distri-
bution of the directly manipulated variables. (Spirtes
and Glymour, 1993; Spirtes, Glymour and Scheines,
1993).

4. MODEL DISCOVERY

Extracting causal and probability information from
experts can be time consuming and difficult even when
the experts have real knowledge. Worse, in many prob-
lems the real knowledge of experts is quite limited, and
according to a considerable psychological literature
experts in many subjects know substantially less than
they think they do. So we should be interested in fast,
reliable procedures that can combine fragmentary prior
knowledge with data to specify or partially specify
causal or structural models. Few topics are more con-
troversial in statistics, or, in our experience, more apt
to draw scorn rather than research, although explicit
arguments against the very idea (as opposed to argu-
ments against particular procedures that have been
proposed) tend to be feeble. For example, that “any
data can be fit by several alternative models” (Rodgers
and Maranto, 1989), or that there is no mechanical
way to tell whether statistical dependencies are gener-
ated by an unknown causal process or by chance. Were
the first objection sound a parallel would apply to all of
statistical estimation. The second objection overlooks
that humans can have some conviction that statistical
dependencies are due to some causal process without
knowing what that process is, and that even absent
experimental manipulations, the very existence of a
sensible model that explains puzzling features of a
sample, may reasonably increase our conviction that
the data are not a chance artifact.

Especially when it can be assumed that there are no
latent factors at work, in our view directed graphical
model specification is essentially a form of set valued
estimation involving unfamiliar parameters, but sub-
ject to the same concerns for asymptotic reliability,
error probabilities, variation of estimates and so on,
as is ordinary parameter estimation. In the absence of
strong prior information, model estimates should be
set valued exactly because of indistinguishability clas-
sifications noted by SDLC. A classical version of the
estimation theory should provide computable, consis-
tent estimators; a Bayesian version should show how
to compute at least the posterior mode and show that in
the large sample limit the procedure yields the correct
model —or class of models—almost surely.

A rudimentary theory of this kind already exists.
SDLC note the results of Cooper and Herskovits
(1992), which, given a linear ordering of discrete valued
variables, for Dirichlet priors find the DAG compatible
with the ordering and distribution that is the posterior
mode on the sample evidence. Substituting a heuristic
greedy search algorithm for the correct procedure,
which is computationally intractable, their K2 algo-
rithm is fast even for quite large numbers of variables
and performs extremely well on simulated large sam-
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ples. A non-Bayesian procedure, the PC algorithm,
provably generates the set of all DAGs that represent
(according to the Markov and Faithfulness conditions)
a set of conditional independence facts in a distribution
(assuming such a DAG exists). Prior ordering or partial
ordering is optional, and the output may direct some
or even all edges, depending on the structure of the
correct DAG, even if no ordering information is input.
The procedure minimizes the number of conditional
independence tests required and the size of the set of
variables conditioned on in each required test. PC has
been implemented for multinormal and for multinomial
variates in the TETRAD II program (Spirtes et al.,
forthcoming). The computational demands of the proce-
dure depend on the sparseness of G. For fixed maximal
degree, computation increases in the worst case as a
polynomial function of the number of vertices. The
procedure can be readily integrated with prior knowl-
edge restricting G, and its error probabilities, as func-
tions of sample size and average degree, have been
investigated in extensive simulation studies with ran-
dom graphs and randomly generated multinormal dis-
tributions. Wedelin (1993) has recently reported a
procedure, so far implemented only for binary vari-
ables, that uses a parametrization related to the Fourier
transform and an iterative algorithm for approximate
maximum likelihood estimation of DAG models. The
estimation is interleaved with an algorithm using Mini-
mum Description Length criteria to construct a DAG,
or an indistinguishability class of DAGs, from the
data. The procedure is asymptotically correct for
DAGs paired with faithful multinomial distributions.
It does not require prior information about the ordering
of the variables and has produced excellent results on
simulated data with large numbers of variables.
SDLC briefly discuss the BIFROST program which
generates chain graphs, described in more detail by
Lauritzen, Thiesson and Spiegelhalter, (1992) (LTS)
and illustrated again with data for the CHILD net-
work. The program requires as input a partial ordering
of the variables by blocks. It is not clear from this
description whether the algorithm is practical for large
numbers of variables, whether it is asymptotically cor-
rect, and to what extent the correct output depends

on correctly specifying the block structure. We would
like to know how the procedure performs on larger
problems such as the ALARM network (Beinlich et
al., 1989) for emergency medicine, which contains 37
variables, and has been used in tests of the reliability
of the three procedures previously mentioned.

All of the algorithms so far described assume there
are no latent common causes of measured variables.
In real problems we often do not know at the outset
whether statistical dependencies may be due to un-
measured factors affecting two or more measured vari-
ables. Absent some bound on the number of variables,
there is an infinity of alternative DAGs that may
accord with a set of observed conditional independence
facts assuming the Markov and Faithfulness condi-
tions, and there is no possibility of estimating a finite
indistinguishability class of DAGs. What might be
wanted instead are inference procedures that will de-
scribe features common to all DAGs admitting distri-
butions yielding features of the observed marginal
distribution, that is, POIPGs. It is often suggested
that absent experimental interventions these kinds of
inference cannot be correctly made even in principle,
but with reasonable background assumptions that is
not true. A correct algorithm for inferring POIPGs
from conditional independence relations among ob-
served variables is the FCI procedure given in Spirtes
(1992), whose output is a POIPG. The procedure has
been implemented for multinomial and multinormal
distributions. The Spirtes and Verma algorithm, noted
earlier, for deciding indistinguishability( by conditional
independence) of DAGs with unobserved variables de-
pends on the fact that POIPGs obtained by the FCI
algorithm completely characterize the observed mar-
ginal conditional independence constraints entailed for
the subset of observed variables by a DAG with latent
variables. The procedure recovers each of the POIPGS
(i), (iii) and (vii) in Figure 1 from the corresponding
conditional independence relations CW provide and
also the undirected version of the cyclic graph in (i)

" (although we have no general proof that the algorithm

correctly recovers cyclic graphs), as well as much more
complicated structures in other cases.



