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Small Area Estimation:

An Appraisal

M. Ghosh and J.‘ N. K. Rao

Abstract. Small area estimation is becoming important in survey sam-
pling due to a growing demand for reliable small area statistics from
both public and private sectors. It is now widely recognized that direct
survey estimates for small areas are likely to yield unacceptably large
standard errors due to the smallness of sample sizes in the areas. This
makes it necessary to “borrow strength” from related areas to find more
accurate estimates for a given area or, simultaneously, for several areas.
This has led to the development of alternative methods such as syn-
thetic, sample size dependent, empirical best linear unbiased prediction,
empirical Bayes and hierarchical Bayes estimation. The present article
is largely an appraisal of some of these methods. The performance of
these methods is also evaluated using some synthetic data resembling a
business population. Empirical best linear unbiased prediction as well
as empirical and hierarchical Bayes, for most purposes, seem to have a
distinct advantage over other methods.
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empirical Bayes, empirical best linear unbiased prediction, hierarchical
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1. INTRODUCTION

The terms “small area” and “local area” are com-
monly used to denote a small geographical area,
such as a county, a municipality or a census divi-
sion. They may also describe a “small domain,” i.e.,
a small subpopulation such as a specific age-sex-race
group of people within a large geographical area. In
this paper, we use these terms interchangeably.

The use of small area statistics originated several
centuries ago. Brackstone (1987) mentions the exis-
tence of such statistics in 11th century England and
17th century Canada. Many other countries may
well have similar early histories. However, these
early small area statistics were all based either on a
census or on administrative records aiming at com-

’ plete enumeration.

For the past few decades, sample surveys, for
most purposes, have taken the place of complete
enumeration or census as a more cost-effective
means of obtaining information on wide-ranging
topics of interest at frequent intervals over time.
Sample survey data certainly can be used to derive
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reliable estimators of totals and means for large ar-
eas or domains. However, the usual direct survey
estimators for a small area, based on data only from
the sample units in the area, are likely to yield un-
acceptably large standard errors due to the unduly
small size of the sample in the area. Sample sizes
for small areas are typically small because the over-
all sample size in a survey is usually determined to
provide specific accuracy at a much higher level of
aggregation than that of small areas. Thus, until re-
cently, the use of survey data in developing reliable
small area statistics, possibly in conjunction with
the census and administrative data, has received
very little attention.

Things have changed significantly during the last
few years, largely due to a growing demand for re-
liable small area statistics from both the public and
private sectors. These days, in many countries in-
cluding the United States and Canada, there is “in-
creasing government concern with issues of distri-
bution, equity and disparity” (Brackstone, 1987).
For example, there may exist geographical sub-
groups within a given population that are far below
the average in certain respects, and need definite
upgrading. Before taking remedial action, there is
a need to identify such regions, and accordingly, one
must have statistical data at the relevant geograph-
ical levels. Small area statistics are also needed
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in the apportionment of government funds, and in
regional and city planning. In addition, there are
demands from the private sector since the policy-
making of many businesses and industries relies on
local socio-economic conditions. Thus, the need for
small area statistics can arise from diverse sources.

Demands of the type described above could not
have been met without significant advances in sta-
tistical data processing. Fortunately, with the ad-
vent of high-speed computers, fast processing of
large data sets made feasible the provision of timely
data for small areas. In addition, several power-
ful statistical methods with sound theoretical foun-
dation have emerged for the analysis of local area
data. Such methods “borrow strength” from related
or similar small areas through explicit or implicit
models that connect the small areas via supplemen-
tary data (e.g., census and administrative records).
However, these methods are not readily available
in a package to the user, and a unified presentation
which compares and contrasts the competing meth-
ods has not been attempted before.

Earlier reviews on the topic of small area esti-
mation focussed on demographic methods for pop-
ulation estimation in post-censual years. Morri-
son (1971) covers the pre-1970 period very well, in-
cluding a bibliography. National Research Coun-
cil (1980) provides detailed information as well as
a critical evaluation of the Census Bureau’s proce-
dures for making post-censual estimates of the pop-
ulation and per capita income for local areas. Their
document was the report of a panel on small-area es-
timates of population and income set up by the Com-
mittee on National Statistics at the request of the
Census Bureau and the Office of Revenue Sharing
of the U.S. Department of Treasury. This document
also assessed the “levels of accuracy of current esti-
mates in light of the uses made of them and of the
effect of potential errors on these uses.” Purcell and
Kish (1979) review demographic methods as well as
statistical methods of estimation for small domains.
An excellent review provided by Zidek (1982) in-

. troduces a criterion that can be used to evaluate
the relative performance of different methods for
estimating the populations of local areas. McCul-
lagh and Zidek (1987) elaborate this criterion more
fully. Statistics Canada (1987) provides an overview
and evaluation of the population estimation meth-
ods used in Canada.

Prompted by the growing demand for reliable
small area statistics, several symposia and work-
shops were also organized in recent years, and some
of the proceedings have also been published: Na-
tional Institute on Drug Abuse, Princeton Confer-
ence (see National Institute on Drug Abuse, 1979),
International Symposium on Small Area Statistics,

Ottawa [see Platek et al. (1987) for the invited
papers and Platek and Singh (1986) for the con-
tributed papers presented at the symposium]; Inter-
national Symposium on Small Area Statistics, New
Orleans, 1988, organized by the National Center
for Health Statistics; Workshop on Small Area Es-
timates for Military Personnel Planning, Washing-
ton, D.C., 1989, organized by the Committee on Na-
tional Statistics; International Scientific Conference
on Small Area Statistics and Survey Designs, War-
saw, Poland, 1992, (see Kalton, Kordos and Platek,
1993). The published proceedings listed above pro-
vide an excellent collection of both theoretical and
application papers.

Reviews by Rao (1986) and Chaudhuri (1992)
cover more recent techniques as well as traditional
methods of small area estimation. Schaible (1992)
provides an excellent account of small area estima-
tors used in U.S. Federal programs (see NTIS, 1993,
for a full report prepared by the Subcommittee on
Small Area Estimation of the Federal Committee on
Statistical Methodology, Office of Management and
Budget).

The present article considerably updates earlier
reviews by introducing several recent techniques
and evaluating them in the light of practical consid-
erations. Particularly noteworthy among the newer
methods are the empirical Bayes (EB), hierarchical
Bayes (HB) and empirical best linear unbiased pre-
diction (EBLUP) procedures which have made sig-
nificant impact on small area estimation during the
past decade. Before discussing these methods in the
sequel, it might be useful to mention a few impor-
tant applications of small area estimation methods
as motivating examples.

As our first example, we cite the Federal-State
Cooperative Program (FSCP) initiated by the U.S.
Bureau of the Census in 1967 (see National Re-
search Council, 1980). A basic goal of this pro-
gram was to provide high-quality, consistent series
of county population estimates with comparability
from area to area. Forty-nine states (with the ex-
ception of Massachusetts) currently participate in
this program, and their designated agencies work
together with the Census Bureau under this pro-
gram. In addition to county estimates, several mem-
bers of the FSCP now produce subcounty estimates
as well. The FSCP plays a key role in the Cen-
sus Bureau’s post censual estimation program as the
FSCP contacts provide the bureau a variety of data
that can be used in making post censual population
estimates. Considerable methodological research on
small area population estimation is being conducted
in the Census Bureau.

Our second example is taken from Fay and Her-
riot (1979) whose objective was to estimate the per
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capita income (PCI) for several small places. The
U.S. Census Bureau was required to provide the
Treasury Department with the PCI estimates and
other statistics for state and local governments re-
ceiving funds under the General Revenue Sharing
Program. These statistics were then used by the
Treasury Department to determine allocations to
the local governments within the different states
by dividing the corresponding state allocations. Ini-
tially, the Census Bureau determined the current
estimates of PCI by multiplying the 1970 census
estimates of PCI in 1969 (based on a 20 percent
sample) by ratios of an administrative estimate of
PCI in the current year and a similarly derived es-
timate for 1969. The bureau then confronted the
problem that among the approximately 39,000 lo-
cal government units about 15,000 were for places
having fewer than 500 persons in 1970. The sam-
pling errors in the PCI estimates for such small
places were large: for a place of 500 persons the
coefficient of variation was about 13 percent while
it increased to about 30 percent for a place of 100
persons. Consequently, the Bureau initially decided
to set aside the census estimates for these small
areas and use the corresponding county PCI esti-
mates in their place. This solution proved unsat-
‘isfactory, however, in that the census estimates of
PCI for a large number of small places differed sig-
nificantly from the corresponding county estimates,
after taking account of the sampling errors. Fay
and Herriot (1979) suggest better estimates based
on the EB method and present empirical evidence
that these have average error smaller than either
the census sample estimates or the county aver-
ages. The proposed estimate for a small place is
a weighted average of the census sample estimate
and a “synthetic” estimate obtained by fitting a lin-
ear regression equation to the sample estimates of
PCI using as independent variables the correspond-
ing county averages, tax-return data for 1969 and
data on housing from the 1970 census. The Fay-
Herriot method was adopted by the Census Bureau
in 1974 to form updated estimates of PCI for small
places. Section 4 discusses the Fay-Herriot model
and similar models for other purposes, all involving
linear regression models with random small area ef-
fects.

Our third example refers to the highly debated
and controversial issue of adjusting for population
undercount in the 1980 U.S. Census. Every tenth
year since 1790 a census has been taken to count
the U.S. population. The census provides the pop-
ulation count for the whole country as well as for
each of the 50 states, 3000 counties and 39,000 civil
divisions. These counts are used by the Congress
for apportioning funds, amounting to about 100 bil-

lion dollars a year during the early 1980s, to the
different state and local governments.

It is now widely recognized that complete cover-
age is impossible. In 1980, vast sums of money and
intellectual resources were expended by the U.S.
Census Bureau on the reduction of non-coverage.
Despite this, there were complaints of undercounts
by several major cities and states for their respec-
tive areas, and indeed New York State filed a law-
suit against the Census Bureau in 1980 demanding
the Bureau to revise its count for that state.

An undercount is the difference between omis-
sions and erroneous inclusions in the census, and
it is typically positive. In New York State’s law
suit against the Census Bureau, E.P. Ericksen and
J.B. Kadane, among other statisticians, appeared as
the plaintiff’s expert witnesses. They proposed us-
ing weighted averages of sample estimates and syn-
thetic regression estimates of the 1980 Census un-
dercount, similar to those of Fay and Herriot (1979)
for PCI, to arrive at the adjusted population counts
of the 50 states and the 16 large cities, including the
State of New York and New York City. The sam-
ple estimates are obtained from a Post Enumera-
tion Survey. Their general philosophy on the role of
adjustment as well as the explicit regression mod-
els used for obtaining the regression estimates are
documented in Ericksen and Kadane (1985) and Er-
icksen, Kadane and Tukey (1989). These authors
also suggest using the regression equation for areas
where no sample data are available. As a histori-
cal aside, we may point out here that the regression
method for improving local area estimates was first
used by Hansen, Hurwitz and Madow (1953, pages
483-486), but its recent popularity owes much to
Ericksen (1974).

While the Ericksen-Kadane proposal was ap-
plauded by many as the first serious attempt to-
wards adjustment of Census undercount, it has also
been vigorously criticized by others (see, e.g., the
discussion of Ericksen and Kadane, 1985). In par-
ticular, Freedman and Navidi (1986, 1992) criticized
them for not validating their model and for not mak-
ing their assumptions explicit. They also raise sev-
eral other technical issues, including the effect of
large biases and large sampling errors in the sam-
ple estimates. Ericksen and Kadane (1987, 1992),
Cressie (1989, 1992), Isaki et al. (1987) and oth-
ers address these difficulties, but clearly further re-
search is needed. Researchers within and outside
the U.S. Census Bureau are currently studying var-
ious models for census undercount and the proper-
ties of the resulting estimators and associated mea-
sures of uncertainty using the EBLUP, EB, HB and
related approaches.

Our fourth example, taken from Battese, Harter
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and Fuller (1988), concerns the estimation of areas
under corn and soybeans for each of 12 counties
in North-Central Iowa using farm-interview data
in conjunction with LANDSAT satellite data. Each
county was divided into area segments, and the ar-
eas under corn and soybeans were ascertained for a
sample of segments by interviewing farm operators;
the number of sample segments in a county ranged
from 1 to 6. Auxiliary data in the form of num-
bers of pixels (a term used for “picture elements”
of about 0.45 hectares) classified as corn and soy-
beans were also obtained for all the area segments,
including the sample segments, in each county us-
ing the LANDSAT satellite readings. Battese, Har-
ter and Fuller (1988) employ a “nested error regres-
sion” model involving random small area effects and
the segment-level data and then obtain the EBLUP
estimates of county areas under corn and soybeans
using the classical components of variance approach
(see Section 5). They also obtain estimates of mean
squared error (MSE) of their estimates by taking
into account the uncertainty involved in estimating
the variance components. Datta and Ghosh (1991)
apply the HB approach to these data and show that
the two approaches give similar results.

Our final example concerns the estimation of
mean wages and salaries of units in a given in-
dustry for each census division in a province using
gross business income as the only auxiliary vari-
able with known population means (see Sdrndal and
Hidiroglou, 1989). This example will be used in Sec-
tion 6 to compare and evaluate, under simple ran-
dom sampling, several competing small area esti-
mators discussed in this paper, treating the census
divisions as small areas. We were able to compare
the actual errors of the different small area estima-
tors since the true mean wages and salaries for each
small area are known.

The outline of the paper is as follows. Section 2
gives a brief account of classical demographic meth-
ods for local estimation of population and other char-
acteristics of interest in post-censual years. These
methods use current data from administrative reg-
isters in conjunction with related data from the lat-
est census. Section 3 provides a discussion of tra-
ditional synthetic estimation and related methods
under the design-based framework. Two types of
small area models that include random area-specific
effects are introduced in Section 4. In the first
type, only area specific auxiliary data, related to
parameters of interest, are available. In the sec-
ond type of models, element-specific auxiliary data
are available for the population elements; and the
variable of interest is assumed to be related to these
variables through a nested error regression model.
We present the EBLUP, EB and HB approaches to

small area estimation in Section 5 in the context of
basic models given in Section 4. Both point esti-
mation and measurement of uncertainty associated
with the estimators are studied. Section 6 compares
the performances of several competing small area
estimators using sample data drawn from a syn-
thetic population resembling the business popula-
tion studied by Sarndal and Hidiroglou (1989). In
Section 7, we focus on special problems that may be
encountered in implementing model-based methods
for small area estimation. In particular, we give
a brief account of model diagnostics for the basic
models of Section 4 and of constrained estimation.
Various extensions of the basic models are also men-
tioned in this section. Finally, some concluding re-
marks are made in Section 8.

The scope of our paper is limited to methods of
estimation for small areas; but the development
and provision of small area statistics involves many
other issues, including those related to sample de-
sign and data development, organization and dis-
semination. Brackstone (1987) gives an excellent
account of these issues in the context of Statistics
Canada’s Small Area Data Program. Singh, Gam-
bino and Mantel (1992) highlight the need for de-
veloping an overall strategy that includes planning,
designing and estimation stages in the survey pro-
cess.

2. DEMOGRAPHIC METHODS

As pointed out earlier, demographers have long
been using a variety of methods for local estimation
of population and other characteristics of interest
in post-censual years. Purcell and Kish (1980) cat-
egorize these methods under the general heading
of Symptomatic Accounting Techniques (SAT). Such
techniques utilize current data from administrative
registers in conjunction with related data from the
latest census. The diverse registration data used in
the U.S. include “symptomatic” variables, such as
the numbers of births and deaths, of existing and
new housing units and of school enrollments whose
variations are strongly related to changes in popu-
lation totals or in its components. The SAT methods
studied in the literature include the Vital Rates (VR)
method (Bogue, 1950), the composite method (Bogue
and Duncan, 1959), the Census Component Method
II (CM-II) (U.S. Bureau of the Census, 1966), and
the Administrative Records (AR) method (Starsinic,
1974), and the Housing Unit (HU) method (Smith
and Lewis, 1980).

The VR method uses only birth and death data,
and these are used as symptomatic variables rather
than as components of population change. First, in
a given year, say t, the annual number of births,
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b;, and deaths, d;, are determined for a local area.
Next the crude birth and death rates, r1; and ry, for
that local area are estimated by
ri =rioRy/Ri),  ra =r2oRa/Rap),

where rig and ryg respectively denote the crude birth
and death rates for the local area in the latest cen-
sus year (¢t = 0) while Ry;(R2) and R;o(Rg) respec-
tively denote the crude birth (death) rates in the
current and census years for a larger area contain-
ing the local area. The population P; for the local
area at year ¢ is then estimated by

= 3(be/ry +dy/rae).

As pointed out by Marker (1983), the success of the
VR method depends heavily on the validity of the as-
sumption that the ratios ry;/rio and ry; /ry for the lo-
cal area are approximately equal to the correspond-
ing ratios, Ry;/R10 and Ry;/Ry, for the larger area.
Such an assumption is often questionable, however.

The composite method is an extension of the VR
method that sums independently computed age-sex-
race specific estimates based on births, deaths and
school enrollments (see Zidek, 1982, for details).

The CM-II method takes account of net migration
unlike the previous methods. Denoting the net mi-
gration in the local area during the period since the
last census as m;, an estimate of P; is given by

Pt =Po+bt—dt+mt,

where P, is the population of the local area in the
census year ¢t = 0. In the U.S., the net migration is
further subdivided into military and civilian migra-
tion. The former is readily obtainable from admin-
istrative records while the CM-II estimates civilian
migration from school enrollments. The AR method,
on the other hand, estimates the net migration from
records for individuals as opposed to collect units
like schools (see Zidek, 1982, for details).

The HU method expresses P; as

Pt = (Ht)(PPHt) + GQt’

where H; is the number of occupied housing units at
time ¢, PPH; is the average number of persons per
housing unit at time ¢ and G@Q; is the number of per-
sons in group quarters at time ¢. The quantities H;,
PPH; and GQ; all need to be estimated. Smith and
Lewis (1980) report different methods of estimating
these quantities.

As pointed out by Marker (1983), most of the es-
timation methods mentioned above can be identi-
fied as special cases of multiple linear regression.

Regression-symptomatic procedures also use multi-
ple linear regression for estimating local area popu-
lations utilizing symptomatic variables as indepen-
dent variables in the regression equation. Two such
procedures are the ratio-correlation method and the
difference-correlation method. Briefly, the former
method is as follows: Let 0,1 and #(> 1) denote two
consecutive census years and the current year, re-
spectively. Also, let P;, and S;;, be the population
and the value of the jth symptomatic variable for the
ith local area (i = 1,...,m) in the year a(= 0, 1,¢).
Further, let Pia = ia/ZiPia and Sija = Sija/Z,-S,-ja
be the corresponding proportions, and write R; =
pi1/pio, Ri = pit/pi1, r,{j = Su1/3uo and rij = sut/sul
Using the data (R}, 7}, .. r’p i=1,...,m) and mul-
tiple regression, we first ﬁt

(2.1) Rj=jy+Biriy +.. "'ﬁp ip>

where s are the estimated regression coefficients
that link the change, R;, in the population pro-
portions between the two census years to the cor-
responding changes, ri;, in the proportions for the
symptotmatic varlables Next the changes, R;, in
the post censual period are predicted as

R,’ = B(,) + Biril +...+ B;;rip,

using the known changes, r;;, in the symptomatic
proportions in the post censual period and the es-
timated regression coefficients. Finally, the current
population counts, P;, are estimated as

Py =Ripn (ZR‘t) )

where the total current count, Y;P;, is ascertained
from other sources. In the difference-correlation
method, differences between the proportions at the
two pairs of time points, (0,1) and (1,¢), are used
rather than their ratios.

The regression-symptomatic procedures described
above use the regression coefficients, ﬂ’ in the last
intercensual period, but significant changes in the
statistical relationship can lead to errors in the cur-
rent postcensal estimates. The sample-regression
method (Ericksen, 1974) avoids this problem by us-
ing sample estimates of R; to establish the current
regression equation. Suppose sample estimates of
R; are available for k out of m local areas, say
R Rk Then one fits the regression equation

~

Ri = ,30 +ﬁ1r,-1 +... +ﬂprip
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to the data (ﬁ,-,ril, ...,rjp) from the & sampled ar-
eas, instead of (2.1); and then obtains the sample-
regression estimators, R;(eg), for all the areas using
the known symptomatic ratios r;; i = 1,...,m):

~

Riceg) = Bo + B1riv, +. .. + BpTip.

Using 1970 census data and sample data from the
Current Population Survey (CPS), Ericksen (1974)
has shown that the reduction of mean error is slight
compared to the ratio-correlation method but that
of large errors (10% or greater) is more substantial.
The success of Ericksen’s method depends largely on
the size and quality of the samples, the dynamics of
the regression relationships and the nature of the
variables.

3. SYNTHETIC AND RELATED ESTIMATORS

Gonzalez (1973) describes synthetic estimates as
follows: “An unbiased estimate is obtained from
a sample survey for a large area; when this esti-
mate is used to derive estimates for subareas un-
der the assumption that the small areas have the
same characteristics as the large area, we iden-
. tify these estimates as synthetic estimates.” The
National Center for Health Statistics (1968) first
used synthetic estimation to calculate state esti-
mates of long and short term physical disabilities
from the National Health Interview Survey data.
This method is traditionally used for small area es-
timation, mainly because of its simplicity, applica-
bility to general sampling designs and potential of
increased accuracy in estimation by borrowing in-
formation from similar small areas. We now give
a brief account of synthetic estimation and related
methods, under the design-based framework.

3.1 Synthetic Estimation

Suppose the population is partitioned into large
domains g for which reliable direct estimators, Y,
of the totals, Yz, can be calculated from the survey
data; the small areas, i, may cut across g so that
Y, = %Y, where Y, is the total for cell (i,g). We
assume that auxiliary information in the form of
totals, Xj,, is also available. A synthetic estimator
of small area total Y; = ¥,Y}, is then given by

(3.1) Y8 =S (Xip/X Y,
4

where X, = Y;X;; (Purcell and Linacre, 1976;
Ghangurde and Singh, 1977). The estimator (3.1)
has the desirable consistency property that Eif’f
equals the reliable direct estimator ¥’ = Zgl?,’g of

the population total Y, unlike the original estimator
proposed by the National Center for Health Statis-
tics (1968) which uses the ratio Xj;/3,X|, instead of
Xig/X,. R

The direct estimator Y, used in (3.1) is typically
a ratio estimator of the form

(z wm) / ( ) ngg)} Xy = (/% pXy,

Les.g Les.g

>
7, =

where s, denotes the sample in the large domain g
and w, is the sampling weight attached to the /th
element. For this choice, the synthetic estimator
(3.1) reduces to YS = £,X,,(Y ./ X ).

If f"g is approximately design-unbiased, the
design-bias of 17;9 is given by

EYS)-Yi2 Y Xi(Ve/Xg — Yig/Xip),
g

which is not zero unless Y;; /X, =Y /X, forallg. In
the special case where the auxiliary information X,
equals the population count Nig, the latter condition
is equivalent to assuming that the small area means
Yi; in each group g equal the overall group mean,
Y ;. Such an assumption is quite strong, and in fact
synthetic estimators for some of the areas can be
heavily biased in the design-based framework. R

It follows from (3.1) that the design-variance of Y
will be small since it depends only on the variances
and covariances of the reliable estimators Y’,. The
variance of 17;9 is readily estimated, but it is more
difficult to estimate the MSE of l?'ls . Under the as-
sumption cov(l?,-,f’f) = 0, where Y; is a direct, un-
biased estimator of Y;, an approximately unbiased
estimator of MSE is given by

3.2) mse(Y?) = (¥F - ¥)? — v(¥)).

Here v(f:i) is a design-unbiased estimator of vari-
ance of Y;. The estimators (3.2), however, are very
unstable. Consequently, it is customary to average
these estimators over i to get a stable estimator of
MSE (Gonzalez, 1973), but such a global measure
of uncertainty can be misleading. Note that the as-
sumption cov(Y;, YiS ) = 0 may be realistic in practice
since 17';9 is much less variable than ¥;.

Nichol (1977) proposes to add the synthetic esti-
mate, Yis, as an additional independent variable in
the sample-regression method. This method, called
the combined synthetic-regression method, showed
improvement, in empirical studies, over both the
synthetic and sample-regression estimates.
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Chambers and Feeney (1977) and Purcell and
Kish (1980) propose structure preserving estimation
(SPREE) as a generalization of synthetic estimation
in the sense it makes a fuller use of reliable direct
estimates. SPREE uses the well-known method of
iterative proportional fitting of margins in a multi-
way table, where the margins are direct estimates.

3.2 Composite Estimation

A natural way to balance the potential bias of a
synthetic estimator against the instability of a di-
rect estimator is to take a weighted average of the
two estimators. Such composite estimators may be
written as

3.3) ?,C = w; ¥y + (1 — w)¥s,

where 171,- is a direct estimator, f'm is an indirect es-
timator and w; is a suitably chosen welght O<w; <
1). For example, the unbiased estimator Y may | be
chosen as Yl,, and the synthetic estimator YS as Yz,
Many of the estimators proposed in the hterature,
both design-based and model-based, have the form
(3.3). Section 5 gives such estimators under realis-
tic small area models that account for area-specific
effects. In this subsection, we mainly focus on the
determination of weights, w;, in the design-based
framework using Yl, Y and Y2, Y .

Optimal weights, w;(opt), may be obtained by
minimising the MSE of YC with respect to w; as-

suming cov(Y;, YL )=

(3.4) w;(opt) = MSE (¥5)/[MSE (Y5) + V(Y))1.

The optimal weight (3.4) may be estimated by sub-
stituting the estimator mse (Y;S) given in (3.2) for
the numerator and (17;9 — Y,? for the denomina-
tor, but the resulting weights can be very unsta-
ble. Schaible (1978) proposes an “average” weight-
ing scheme based on several variables to overcome
this difficulty, noting that the composite estimator
is quite robust to deviations from w;(opt). Another
approach (Purcell and Kish, 1979) uses a common
weight, w, and tlzgn minimizes the average MSE,
ie.,, m~1X; MSE (YiC), with respect to w. This leads
to estimated weight of the form

3.5)  @lopt)=1- > v(¥) /Z(?,-s A

If the variances of f’i’s are approximately equal,
then we can replace v(Y;) by the average o =

Eiv(l?i)/m in which case (3.5) reduces to James-
Stein type weight:

wlopt) =1~ mz‘z/ Z(IA/,S V2

The choice of a common weight, howevgr, is not rea-
sonable if the individual variances, V(Y;), vary con-
siderably. Also, the James-Stein estimator can be
less efficient than the direct estimator, Y;, for some
individual areas if the small areas that are pooled
are not “similar” (C.R. Rao and Shinozaki, 1978).

Simple weights, w;, that depend only on the do-
main counts or the domain totals of a covariate x
have also been proposed in the literature. For ex-
ample, Drew, Singh and Choudhry (1982) propose
the sample size dependent estimator which uses the
weight

1, if N; > 6N,
3.6) w;(D) = { .

N;/(6N;), otherwise,
where N; is the direct, unbiased estimator of the
known domain population size N; and § is subjec-
tively chosen to control the contribution of the syn-
thetic estimator. This estimator with § = 2/3 and
a generalized regression synthetic estimator replac-
ing the ratio synthetic estimator YiS is currently be-
ing used in the Canadian Labour Force Survey to
produce domain estimates. Sidrndal and Hidiroglou
(1989) propose an alternative estimator which uses
the weight

1, if N; > N;
3.7 w;(S) = .

(N;/N;»~1, otherwise,
where £ is subjectively chosen. They, however, sug-
gest i = 2 as a general-purpose value. Note that the
weights (3.6) and (3.7) are identical if one chooses
é6=1and h =2.

To study the nature of the weights w;(D) or w;(S),
let us consider the special case of simple random
sampling of n elements from a population of N ele-
ments. In this case, N; = N(n; /n), where the random
variable n; is the sample size in ith domain. Taking
6 = 1 in (3.6), it now follows that w;(D) = w;(S) =1
if n; is at least as large as the expected sample size
E(n;) = n(N;/N), that is, the sample size dependent
estimators can fail to borrow strength from related
domains even when E(n;) is not large enough to
make the direct estimator Y; reliable. On the other
hand, when N; < N; the weight w;(D), which equals
w;(S) when h = 2, decreases as n; decreases. As a
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result, more weight is given to the synthetic compo-
nent as n; decreases. Thus, the weights behave well
unlike in the case N; > N;. Another disadvantage is
that the weights do not take account of the size of
between area variation relative to within area vari-
ation for the characteristic of interest, that is, all
characteristics get the same weight irrespective of
their differences with respect to between area ho-
mogeneity.

Holt, Smith and Tomberlin (1979) obtain a best
linear unbiased prediction (BLUP) estimator of Y;
under the following model for the finite population:

Yige = Kg + €ige,

(3.8)
g=1""7G; i=1,...,m

£=1,...,N,~g;

where Yige is the y-value of the /th unit in the cell
(2,8), pg's are fixed effects and the errors ;g are un-
correlated with zero means and variances o2. Fur-
ther, N, denotes the number of population elements
in the large domain g that belong to the small area
i. Suppose n;, elements in a sample of size n fall
in cell (i,g), and let ;; and ¥, denote the sample
means for (i,g) and g, respectively.

The best linear unbiased estimator of ;, under
(3.8) is fiy = ¥z which in turn leads to the BLUP
estimator of Y; given by

=T

where YC is a composite estimator of the total Y,
giving the weight w;; = n;;/Nj; to the direct esti-
mator Y, = Nig¥ig, and the weight 1 — w;; to the

synthetic estimator Yi = Nigyig. It therefore fol-
lows that the BLUP estimator of Y, tends to the

synthetic estimator YS = $,N,;j, if the sampling
g = 2glVighg

fraction n;; /Ny, is negligible for all g, irrespective of

the size of between area variation relative to within
area variation. This limitation of model (3.8) can be
- avoided by using more realistic models that include
random area-specific effects. We consider such mod-
els in Section 4, and we obtain small area estimators
under these models in Section 5 using a general EB
or a variance components approach as well as a HB
procedure.

4. SMALL AREA MODELS

We now consider small area models that include
random, area-specific effects. Two types of mod-
els have been proposed in the literature. In the
first type, only area-specific auxiliary data x; =

(i1, ... ,xip)T are available and the parameters of in-
terest, 0;, are assumed to be related to x;. In partic-
ular, we assume that
4.1) 0; =xiT,3+v,'zi, i=1,...,m,
where the z;’s are known positive constants, 3 is the
vector of regression parameters and the v;’s are in-
dependent and identically distributed (iid) random
variables with

E@;) =0, V(;) = 2.
In addition, normality of the random effects v; is of-
ten assumed. In the second type of models, element-
specific auxiliary data x;; = (1, .. .,%;)7 are avail-
able for the population elements, and the variable of

interest, y;;, is assumed to be related to x;; through
a nested error regression model:

T
Yij = X;8 +v; +eyj,

4.2)
Jj=1,...,N;; i=1,...,m.
Here e;; = é;jk;; and the é;;’s are iid random variables,
independent of the v;’s, with
E@;) =0 Ve = o?,

the k;’s being known constants and N; the number
of elements in the ith area. In addition, normality
of the v;’s and &;’s is often assumed. The parameters
of inferential interest here are the small area totals
Y; or the means ¥; = Y;/N;.

For making inferences about the 6,’s under model
(4.1), we assume that direct estimators, 0;, are avail-
able and that
(4.3) 0i=6;+e;, i=1,...,m
where the e;’s are sampling errors, E(e;|6;) = 0 and
V(e;|6;) = v, that is, the estimators 6; are design-
unbiased. It is also customary to assume that the
sampling variances, 1);, are known. These assump-
tions may be quite restrictive in some applications.
For example, in the case of adjustment for census
underenumeration, the estimates §; obtained from
a post-enumeration survey (PES) could be seriously
biased, as noted by Freedman and Navidi (1986).
Simlarly, if 6; is a nonlinear function of the small
area total Y; and the sample size, n; is small, then
6; may be seriously biased even if the direct estima-
tor of Y; is unbiased. We also assume normality of
the 6;’s, but this may not be as restrictive as the nor-
mality of the random effects v;, due to the central
limit theorem’s effect on the 6;’s.
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Combining (4.3) and (4.1), we obtain the model
4.4) éi = x,Tﬁ + U,'Ziﬂ+ e;, i= 1, I (4

which is a special case of the general mixed linear
model. Note that (4.4) involves design-induced ran-
dom variables, e;, as well as model-based random
variables v;.

Turning to the nested error regression model (4.2),
we assume that a sample of size n; is taken from the
ith area and that selection bias is absent; that is, the
sample values also obey the assumed model. The
latter is satisfied under simple random sampling. It
may also be noted that model (4.2) may not be appro-
priate under more complex sampling designs, such
as stratified multistage sampling, since the design
features are not incorporated. However, it is possi-
ble to extend this model to account for such features
(see Section 7).

Writing model (4.2) in matrix form as

(4.5) yP =XPB+v, ¥ +ef,

whereXflsN x p, y',el and I are N; x 1 and
¥=(1,...,1)7, we can partition (4.5) as

wo =[] [z]oeulx] (3]

where the superscript * denotes the nonsampled el-
ements. Now, writing the mean Y; as

4.7 Y; =fy: + (1 - )37,

with f; = n;/N; and 3;, ¥; denoting the means for
sampled and nonsampled elements respectively, we
may view estimation of Y; as equivalent to predic-
tion of 7} given the data {y;} and {X;}.

Various extensions of models (4.4) and (4.6), as
well as models for binary and Poisson data, have
been proposed in the literature. Some of these ex-
tensions will be briefly discussed in Section 7.

In the examples given in the Introduction, the
models considered are special cases of (4.4) or (4.6).
In Example 3, Ericksen and Kadane (1985, 1987)
use model (4.4) with z; = 1 and assume o2 to be
known. Here 6; is a PES estimate of census under-
count §; = {(T; — C)/T; }100 where T; is the true
(unknown) count and C; is the census count in the
ith area. Cressie (1992) uses (4.4) with z; = C; Y 2
where 6; is a PES estimate of the adjustment factor
¢; = T;/Ci. In Example 2, Fay and Herriot (1979)
use (4.4) with z; = 1, where §; is a direct estimator
of §; = log P; and P; is the average percapita income
(PCI) in the ith area. Further, x! 3 = f + f1x; with
x; denoting the associated county value of log (PCI)

from the 1970 census. In Example 4, Battese, Har-
ter and Fuller (1988) use model (4.6) with k;; = 1
and x[8 = (o + Bixy; + Poxzj, where y;,x1; and xg;
respectlvely denote the number of hectares of corn
(or soybeans), the number of pixels classified as corn
and the number of pixels classified as soybeans in
the jth area segment of the ith county. A suitable
model for our final example is also a special case
of (4.6) with x73 = By + Byx; and k;; = xt/ 2 where
y; and x;; respectively denote the total wages and
salaries and gross business income for the jth firm
in the ith area (census division).

5. EBLUP, EB AND HB APPROACHES

We now present the EBLUP, EB and HB ap-
proaches to small area estimation in the context of
models (4.4) and (4.6). Both point estimation and
measurement of uncertainty associated with the es-
timators will be studied.

5.1 EBLUP (Variance Components) Approach

As noted in Section 4, most small area models
are special cases of a general mixed linear model
involving fixed and random effects, and small area
parameters can be expressed as linear combinations
of these effects. Henderson (1950) derives BLUP
estimators of such parameters in the classical fre-
quentist framework. These estimators minimize the
mean squared error among the class of linear un-
biased estimators and do not depend on normal-
ity, similar to the best linear unbiased estimators
(BLUES) of fixed parameters. Robinson (1991) gives
an excellent account of BLUP theory and examples
of its application.

Under model (4.4), the BLUP estimator of 6; =
xg'ﬁ + v;2; simplifies to a weighted average of the
direct estimator §; and the regression-synthetic es-
timator x! 3:

(5.1) 0 = 70, + 1 — %7 B,

where the superscript H stands for Henderson,

-1
B- [z xix (o222 +¢,->]
: [Z X0,/ (052} + "J’i)]
i=1

(5.2)

is the BLUE estimator of 8 and

v = 0222 /(0222 + ).
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The weight ; measures the uncertainty in mod-
elling the 0;s, namely, a,,z relative to the total vari-
ance 02z2 + ¢;. Thus, the BLUP estimator takes
proper account of between area variation relative
to the precision of the direct estimator. It is valid
for general sampling designs since we are modelling
only the 6;’s and not the individual elements in the
population. It is also design consistent since 7; — 1
as the sampling variance vy; — 0.

The mean squared error (MSE) of 67 under model
(4.4) may be written as

My(02) = EGT — 6;)% = g1:(02) + g2i(0?),
where

81(02) = o22fy(o222 + )1 = i

and
-1
g2i(0p) = (1 — %)%} [Z x;x] [(002] + ¢i)] X;.

The first term g1;(02) is of order O(1) while the sec-
ond term gy;(02), due to estimating 8, is of order
O(m™1) for large m.

The BLUP estimator (5.1) depends on the vari-
ance component o2 which is unknown in practical
applications. However, various methods of estimat-
ing variance components in a general mixed linear
model are available, including the method of fitting
constants or moments, maximum likelihood (ML)
and restricted maximum likelihood (REML). Cressie
(1992) gives a succinct account of these methods in
the context of model (4.4). All these methods yield
asymptotically consistent estimators under realistic
regularity conditions

Replacmg 0% with an asymptotically consistent
estimator 62, we obtain a two-stage estimator, OLH
which is referred to as the empirical BLUP or
EBLUP estimator (Harville, 1991), in analogy with
* the EB estimator. It remains unbiased provided (i)
the distributions of v; and e; are both symmetric
(not necessarily normal); (ii) & 62 is an even function
of 6;’s and remains invariant when f; is changed to
6; — xf'a for all a (Kackar and Harville, 1984). Stan-
dard methods of estimating variance components all
satisfy (ii). We may also point out that the MSE of
the EBLUP estimator appears to be insensitive to
the choice of the estimator 42.

If normality of the errors v; also holds, then we
can write the MSE of ¥ as

(5.3) Mz,-(of) = Mli(o'f) + E(ézH - 5{1)2’

see Kackar and Harville (1984). It follows from (5.3)
that the MSE of GLH is always larger than that of the

BLUP estimator 6. The second term of (5.3) is not
tractable, unlike the first term M;;(c2); but it can
be approximated for large m (Kackar and Harville,
1984; Prasad and Rao, 1990; Cressie, 1992). We
have, for large m,

(5.4) E@F — 07)? = ggi(02)

where
83i(0?) = Yz} (0222 + 4)~3V(82),

and the neglected terms in the approximation (5.4)
are of lower order than O(m~!). Here V(62) de-
notes the asymptotic variance of 52; Cressie (1992)
gives the asymptotic variance formulae for ML and
REML estimators Itis customary to ignore the un-
certainty in 62 and use My;(62) = g1,(62) + g2i(62) as
an estimator of MSE of 0” but this procedure could
lead to severe underestlmatlon of the true MSE.

A correct, approximately unbiased estimator of
MSE (#¥) is given by

(5.5) mse(Bf) = g1,(62) + 82:(62) + 285:(6D),

(see Prasad and Rao, 1990). The bias of (5.5) is of
lower order than m~1.

Noting that E[X;(y; — x7 3)? /(a 2 + ¥i)l =m —p,
a method of moments estimator 62 can be obtained
by solving iteratively

> @i —xlBP/ozi+ ) =m —p
i=1

in conjunction with (5.2) and letting 62 = 0 when
no positive solution exists (Fay and Herriot, 1979).
This method does not require normality, unlike the
ML and REML. Alternatively, a simple moment es-
timator is given by 52 = max(52, 0), where

; =<t—p>—1[2§§m—xfﬁ*>2

66 i S 41 (Sxad)” ,}]

and B* = (I;x;x7)~! (£;x,0,) is the ordmary least
squares estlmator of 3. The estimator 52 is unbi-
ased for 02 and under normality,

V(62) = V(62) = 2672y (02 + /2
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(see Prasad and Rao, 1990 for the case z; = 1).

Lahiri and Rao (1992) show that the estimator of
MSE, (5.5), using the moment estimator (5.6), is also
valid under moderate nonnormality of the random
effects, v;. Thus, inference based on 9{’ and mse(éf{ )
is robust to nonnormality of the random effects.

We next turn to the nested error regression model
(4.6). The BLUP estimator of Y; in this case is ob-
tained as follows: (i) using the model y; = X; + v;ln,
+ e; for the sampled elements, obtain the BLUP es-
timator of X;'3 + v;, where X; is the mean for non-
sampled elements; (ii) substitute this estimator for
#¢ in (4.7). Thus the BLUP estimator of Y; is given
by

= <*T ~ _T 5
67 YH=f5i+1—f)[X B+ - =LA,
where S is the BLUE of 3,
i =oy(oy + 0% /w)™!

with w;. = E;leij and w;; = k;; 2, and y;, and %;,, are
the weighted means with weights w;; (see Prasad
a}nd Rao, 1990, and Stukel, 1991). The BLUE
(3 is readily obtained by applying ordinary least
squares to the transformed data {(y; — vi¥iw)/kij>

(x;j — 7i%iw)/ky} (see Stukel, 1991, and Fuller and
Battese, 1973). If the sample fraction f; is negligi-

ble, we can write 17{{ as a composite estimator of
the form

5.8) TH 2 g + Xi — %) B+ (1 — X0 B,

where X; is the ith area population mean of x;s.
It follows from (5.8) that the BLUP estimator is a
weighted average of the “survey regression” estima-
tor 7, + X; — %;,)T3 and the regression synthetic
estimator X; 3. If k; = 1 for all (ij), then the sur-
vey regression estimator is approximately design-
unbiased for Y; under simple random sampling even
if n; is small. In the case of general k;s, it is model-
unbiased conditional on the realized local effect v;,
unlike the BLUP estimator which is conditionally
biased. R

An empirical BLUP estimator, ?f’ , is obtained
from (5.7) by replacing (02, 0%) with asymptotically
consistent estimators (62,52). Further, assuming
normality of the errors an approximately unbiased

estimator of MSE (l_f'f’ ), similiar to (56.5) under model
(4.4), is given by

mse(F ) = (1 - £)*[ (62,57 +82(62, 6%

(5.9)
+25(62,57)].

Here
g1i(02,0%) = (o fwy) + (1 — £,)°N; 2k Tk

with k? denoting the vector of ;s for nonsampled
units in ith area, and

82i(02,0%) = (&) — %% ) TATLUR) — 7%y )0

with
m n
T . el
A= Z Z w,-jx,-jxij — YiW; XXy, | -
i=1 L j=1
Further,

83i(02,0%) = w202 + o /w;) 3 [an(éf) +02V(52)
2 222 A2
—20“cicov(67, 6% )],

where cov denotes the asymptotic covariance (see
Stukel, 1991 and Prasad and Rao, 1990).

For the ML, and REML methods, the asymptotic
covariance matrix of (62,5%) can be obtained from
general theory (see, e.g., Cressie, 1992). Stukel
(1991) and Fuller and Battese (1973) use the method
of fitting constants which involves two ordinary
least square fittings: first, we calculate the residual
sum of squares, SSE(1), with v; degrees of freedom
by regressing through the origin the y-deviations
ki; I(Yij —¥iw) on the nonzero x-deviations ki; l(x,;,-—-iiw)
for these areas with n; > 1. Second, we calculate the
residual sum of squares SSE(2) by regressing y;;/k;;
on x;;/k;;. Then 62 = v SSE(1) and 62 = max(62, 0)
with

6% = n;MSSEQ) — (n — p)8?],
where

n =Y w1 - w;xL,AT'R;,)
i
with

Al = Z Zwijx,«jxg«'.
i

The Appendix gives the variances and covariance of

42 and 62.

Again, ignoring the uncertainty in 62 and 62 and
using My;(62,62) = g1,(62,6) as an estimator of
MSE (Y H) could lead to severe underestimation of
the true MSE.

Limited simulation results (Prasad and Rao,
1990; Datta and Ghosh, 1991 and Hulting and
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Harville, 1991) indicate that the estimator of MSE,

mse (YH ), given by (5.9), performs well even for
moderate m (as small as 15), provided 02/02 is not
close to zero.

5.2 EB Approach

In the EB approach, the posterior distribution of
the parameters of interest given the data is first
obtained, assuming that the model parameters are
known. The model parameters are estimated from
the marginal distribution of the data, and inferences
are then based on the estimated posterior distribu-
tion. Morris (1983) gives an excellent account of the
EB approach and significant applications.

Under model (4.4) with normal errors, the poste-
rior distribution of 6; given §;, 8 and o2 is normal
with mean 0? and variance g,;(02) = ~;%;, where

08 = E6;16;,8,02) = v,0; + 1 — y)x! B.

Under quadratic loss, 62 is the Bayes estimator
of 6;. Noting that the §; ~ N(x7B, o22? + 1;) are
marginally independent, we can obtain the estima-
tors 62 and 3 as before using ML, REML or the
method of moments. The estimated posterior distri-
bution is N(6FB, g1;(62)), where 67 is identical to the
EBLUP estimator éf’ . A naive EB approach uses QEB
as the estimator of §; and measures its uncertainty
by the estimated posterior variance
(5.10) V(;10;,8,62) = g1:(5D).
This can lead to severe underestimation of the true
posterior variance V(4;|8) (under a prior distribution
on 3 and o2), although 68 = E(,|6;,3,62) is ap-
proximately equal to the true posterior mean E(6;|9),
where 8 = (64, ...,0,)".

The above point is better understood when one
writes

E(6:10) = E 3 [E(0;16;, B, 00)]
‘and

V(6:18) = E; 3 [V(6,16;, 8, 0]

(5.11) .
+Vﬁ,a,2,[E(0iI0i’ﬁ1 03)]

where Eg o2 and V; o2 respectively denote the ex-
pectation and variance W1th respect to the posterior
distribution of 8 and a,, given the data 8. It follows
from (5.11) that (5.10) is a good approximation only
to the first variance term on the right side of (5.11),
but the second variance term is ignored in the naive
EB approach, that is, it fails to take account of the

uncertainty about the parameters 8 and o2. Note
that the form of the prior distribution on 8 and o2
is not specified in the EB approach, unlike in the
HB approach (Section 5.3).

Two methods of accounting for the underestima-
tion of true posterior variance have been proposed
in the literature. The first method is based on the
bootstrap (Laird and Louis, 1987), while the second
method uses an asymptotic approximation to the
posterior variance V(6;]|0) irrespective of the form
of the prior on B and o2 (Kass and Steffey, 1989).
In the bootstrap method, a large number, B, of in-
dependent bootstrap samples {0;(d),...,0,,(b); b =

.,B} are first drawn, where 6;(b) is drawn from
the estlmated marginal distribution N(x3,5222 +
;). Estimates 8*(b) and 0?(b) are then computed
from the bootstrap data {6;(b),x;, i = 1,...,m} for
each b. The EB bootstrap estimator of 6; is given by

07() =% ZE[G 16*(B), B*(B), 732(B)]

and its uncertainty is measured by

v = LN V0165 BBy o
Vi = 5 > VI6ilo;®), 8°®), 0,7

(5.12) b=l

B
+EB(pY _ p*EB(.}12
+B_1bz=;‘[0,. ®) - 6;FB ()P

The second term on the right side of (5.12) accounts
for the underestimation. The EB bootstrap method
looks promising, but further studies on its frequen-
tist performance are needed.

In the Kass-Steffey method, 9?3 is taken as the es-
timator of 6;, but a positive correction term is added

_ to the estimated posterior variance V(6;9;, 3,52) to

account for the underestimation. This term depends
on the observed information matrix and the par-
tial derivatives of 62, evaluated at the ML esti-
mates 3 and 62. This method also looks promis-
ing, but its frequentist properties remain to be in-
vestigated. (Steffey and Kass, 1991 conjecture that
the MSE of EB estimator is approximately equal to
their approximation to the posterior variance.) Kass
and Steffey (1989) also give an improved second-
order approximation to the true posterior variance,
(CA)

Turning to the nested error regression model (4.6),
the estimated posterior distribution of Y; given the
data y is normal with mean equal to the EBLUP

Y ¥ and variance equal to (1 — f;)?%¢1;(62,5%) which
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is a severe underestimate of the true posterior vari-
ance V(Y;|y). Again, the bootstrap and Kass-Steffey
methods can be applied to account for the underes-
timation.

If one wishes to view the EB approach in the fre-
quentist framework, a prior distribution on 8 and
o2 cannot be entertained. In this case, MSE is a
natural measure of uncertainty and any differences
between the EB and EBLUP approaches disappear
under the normality assumption. It may also be
noted that the EB estimator can be justified without
the normality assumption, similar to the EBLUP,
using the “posterior linearity” property (Ghosh and
Lahiri, 1987; Ericson, 1969).

5.3 HB Approach

In the HB approach, a prior distribution on the
model parameters is specified and the posterior dis-
tribution of the parameters of interest is then ob-
tained. Inferences are based on the posterior distri-
bution; in particular, a parameter of interest is esti-
mated by its posterior mean and its precision is mea-
sured by its posterior variance. The HB approach
is straightforward and clear—cut but computation-
ally intensive, often involving high dimensional in-
tegration. Recent advances in computational as-
pects of the HB approach, such as Gibbs sampling
(cf. Gelfand and Smith, 1990) and importance sam-
pling, however, seem to overcome the computational
difficulties to a large extent. If the solution involves
only one or two dimensional integration, it is often
easier to perform direct numerical integration than
to use Gibbs sampling or any other Monte Carlo
numerical integration method. Datta and Ghosh
(1991) apply the HB approach to estimation of small
area means, Y;, under general mixed linear models,
and also discuss the computational aspects.

We now illustrate the HB approach under our
models (4.4) and (4.6), assuming noninformative pri-
ors on 3 and the variance components o2 and o?.
The HB approach, however, can incorporate prior
information on these parameters through informa-
tive priors. '

Under model (4.4), we first obtam the posterior
distribution of 6; given 8 and o2, by assuming that
B has a uniform distribution over RP to reflect ab-
sence of prior information on 3. Straightforward
calculations show that it is normal with mean equal
to the BLUP estimator # and variance equal to
M;;(02), the MSE of 0¥, that is, E(6;|8,02) = 67 and
V(6:]8,02) = MSE (f¥). Hence, when o? is assumed
to be known, the HB and BLUP approaches lead to
identical inferences.

To take account of the uncertainty about o2 we
need to calculate the posterior distribution of o2

given # under a suitable prior on ¢2. The posterior
mean and variance of 6; are then given by

(5.13) E(6:|6) = E 5 (6F)
and
(5.14)  V(5:]8) = E 3[My(cD)] + V2 67,

where E,: and V,; respectively denote the expec-
tation and variance with respect to the posterior
distribution of o2 given 8. Numerical evaluation of
(5.13) and (5.14) involves one dimensional integra-
tion. Ghosh (1992) obtains the posterior distribu-
tion, f(02|0), assuming that o2 has a uniform dis-
tribution over (0, c0) to reflect the absence of prior
information about o2, and that o2 and 3 are inde-
pendently distributed. It is given by

—

f(02]9) = (62)~ 7" {ﬁ ‘/2} > v

- exp [— EQ"(O)]’

where
) T
Qu() = (o)1 [Z 702 — (Z 'Yiéixi)

(5] )

We next turn to the nested error regression model
(4.6). We ﬁrst obtain the posterior distribution of
Y; given y, o2 and o?, by assuming that B has
uniform d1str1but10n over RP. Straightforward cal-

 culations show that it is normal with mean equal

to the BLUP estimator Y H and variance equal to
MSE (YH) = Myi(02,02), that is, EY;y, 02,0%) = YH

and V({Y; |y, 02,0%) = MSE(YH ). Hence, when both
02 and o% are assumed to be known, the HB and
BLUP approaches lead to identical inferences.

To take account of the uncertainty about 02 and
o2, Datta and Ghosh (1991) further assume 3, (02)~!
and (62)~1 = (6%)71)\ to be independently dis-
tributed with (62)~! ~ gamma ((1/2)ay, (1/2)go) and
(071X ~ gamma ((1/2)a;,(1/2)g1), where ay > 0,
80>0,a; >0,g; >0and )\ =0?/02. Here gamma
(a, B) denotes the gamma random variable with pdf
f@) = exp(—az)aPzP~1/1(B), z > 0. Datta and Ghosh
(1991) obtain closed form expressions for E(Y;|y, \)
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and V(Y;|y,\) by showing that f(y* ly,\) is a mul-
tivariate ¢-distribution. They also derive the pos-
terior distribution of )\ given y, but it has a com-
plex structure making it necessary to perform one-
dimensional numerical integration to get E(Y;|y)
and V(Y;]y) using the following relationships:

E(Y;ly) = EA[E(Y;]y, V]
and
V(Tily) = EAlV(Yily, V] + VALET |y, V],

where Ey and V), respectively denote the expecta-
tion and variance under the posterior distribution
of X\ given the data y.

Datta and Ghosh (1991) compare the HB, EB and
EBLUP approaches using the data for our exam-
ple 4 and letting ap = @; = 0.005 and gy = g; = 0
to reflect the absence of prior information on o2
and o2. As one might expect, the three estlmates
were close to each other as point predictors of small
area (county) means; the EB estimate was obtained
by replacing A\ with the method-of-fitting constants
estimate X in E(Y;|y,)). The naive variance esti-
mate, V(Y;]y, }) = (s¥8)? associated with the EB es-
timate E(Y;|y, %), was always found _to be smaller
than the true posterior variance,  V¥ily) = (sFBy2,

associated with the HB estimate YHB = E(Y;|y); for
one county, s¥2 was about 10% smaller than sHB,
Note that the customary naive EB variance est1-
mate, V(Y;ly, 83,52, 52), will lead to much more se-

vere underestimation than V(Y;|y, }) since the lat-
ter takes account of the uncertainty about 8 and

o%. The estimated MSE, mse (Y¥) = (s¥)?, associ-

ated with the EBLUP estimate, Y 7/, was found to
be similar to the HB variance estimate. Our exam-
ple in Section 6 also gives similar results. Datta
and Ghosh (1991) have also conducted a simula-
tion study on the frequentist properties of the HB
and EBLUP methods using the Battese, Harter and
Fuller (1988) model. Their findings indicate that the
simulated MSEs for the HB estimator are very close
to those for the EBLUP estimator while the coverage

probabilities based on Y ¥ £(1.96)s" turn out to be

slightly bigger than those based on Y ¥ + (1.96)s,
both being close to nominal confidence level of 95%.
Hulting and Harville (1991) obtain similar results in
another simulation study using the Battese, Harter
and Fuller (1988) model and varying the variance
ratio 02/02. However, they find the HB method pro-
duces different and more sensible answers than the
EBLUP procedure if the estimate for o2/0? is zero
or close to zero.

The HB approach looks promising, but we need to
study its robustness to choice of prior distributions
on the model parameters.

6. EXAMPLE

Several of the proposed small area estimators are
now compared on the basis of their squared er-
rors and relative errors from the true small area
means Y;. For this purpose, we first constructed
a synthetic population of pairs (y;, ;) resembling
the business population studied by Sdrndal and
Hidiroglou (1989) where the census divisions are
small areas, y;; denotes wages and salaries of jth
firm in the ith census division and x; the corre-
sponding gross business income. To generate the
synthetic population, we fitted the nested error re-
gression model (4.6) with xT,B Bo + Prx;j and kyj =

1/ 2 to a real population to estlmate Bo and B; and

the variance components o2 and o2. The resulting
synthetic model is given by

Yij ~2.47 + 0.20x;; + v; + ey,
j=1..N,i=1...,m,

6.1
@1 v; A N(0,22.14),
i A1 N(0,0.47x;).

We then used model (6.1) in conjunction with the
population x;;-values to generate a synthetic popula-
tion of pairs (y;;, x;;) with m = 16 small areas. Table
1 reports the small area population sizes, N;, and
the small area means (Y;,X;) for this synthetic pop-
ulation of size N = 114. A simple random sample of
size n = 38 was drawn from the synthetic popula-
tion. The resulting small area sample sizes, n;, and
sample data (y;;,x;;) are reported in Table 2. Note
that direct estimators cannot be implemented for
areas 1, 4 and 13 since n; = 0 for these areas. We

. have, therefore, confined ourselves to the following

indirect estimators valid for all n; > 0:

(i) Ratio-synthetic estimator: Y® = (5/2)X;,
where (¥,%) are the overall sample means.
(i) Sample-size dependent estimator:

PR 5,4 /DX, — 2, ifw; > W,

%’;(%?EG)+ ( WL)Y , ifw; <W,;,

where Y FEC is a “survey regression” estima-
tor, (7;,%;) are the sample means, w; = n;/n
and W; = N;/N. This estimator corresponds
to the weight (3.6) with 6§ = 1 or the weight
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TABLE 1
Small area sizes, N;, and means (Yi:Xi) for a synthetic population (N = 114)

Area Area
No. Ni IT‘ _Y—l‘ No. Ni Xl‘ _Y—;
1 1 137.70 24.22 9 27 97.58 15.56
2 6 100.84 20.43 10 5 76.04 5.88
3 4 47.72 5.48 11 12 90.15 15.20
4 1 45.64 6.55 12 7 86.24 13.40
5 8 108.53 20.55 13 4 164.28 26.06
6 6 65.68 14.85 14 6 164.70 22.44
7 6 116.34 21.46 15 13 83.86 9.40
8 6 92.74 13.40 16 2 134.49 29.49
TABLE 2
Data from a simple random sample drawn from a synthetic population (n = 38,N = 114)
Area Area
No. n; xjj Yij No. n; x;j xij
1 0 —_ —_ 9 10 333.24 47.62
80.91 5.27
2 3 33,70 5.90 43.65 6.97
47.19 13.22 29.29 -0.19
75.21 17.44 102.66 15.94
109.34 19.84
3 1 36.43 2.54 30.56 2.57
127.96 24.61
4 0 —_ — 190.34 3541
52.16 2.54
5 1 28.82 3.61 10 1 45.91 —6.34
11 2 43.03 8.83
6 2 30.60 11.48 190.12 27.31
129.69 21.45 12 1 47.39 1.70
13 0 —_— —_
7 4 200.60 46.96 14 3 35.66 -0.80
113.92 15.57 40.23 2.75
74.33 8.66 111.23 10.87
. 53.00 11.90 15 6 51.61 -3.20
67.46 12.47
8 3 95.43 11.76 190.97 21.77
35.75 —0.69 35.11 2.92
39.08 21.46 25.09 —5.46
73.51 7.35
16 1 229.32 53.83

(3.7) with A = 2. We have not included the op- four estimates along with their average relative er-

timal composite estimator due to difficulties rors
in estimating the optimal weight (3.4). | om

(iii) EBLUP (or EB) estimator Y under model ARE = - Z lest. — Y;|/Y;
(4.6) with X738 = Bo+B1x; and k;; = x;/%, where i=1

o2 and o2 are estimated by the method of
fitting constants.

and average squared errors

(iv) HB estimator Y7 under model (4.6) as in [ -,
(iii), using Datta-Ghosh’s diffuse priors with ASE = m ;(est. bOR

ap=0,80=0,a; =0.05and g, =0.
‘ These values are reported in Table 3. We also cal-
culated the standard error, s, of EBLUP estima-

Using the sample data (y;,x;) and the known small
X tor using (5.9) and the posterior standard deviation

area population means X; we computed the above
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TABLE 3
Small area estimates and their (%) average relative errors and average squared roots; standard error (S.E.) of EBLUP and HB
estimators
S.E.
Area
No n; Y; RS SD EBLUP HB EBLUP HB
1 0 24.22 19.79 19.79 22.16 22.16 7.40 8.29
2 3 20.43 14.90 19.20 20.47 20.18 2.20 2.47
3 1 5.48 6.86 5.34 4.85 4.87 2.62 2.60
4 0 6.55 6.56 6.56 4.97 4.94 5.40 5.99
5 1 20.55 15.60 15.52 17.98 17.81 3.10 3.17
6 2 14.85 9.44 14.39 13.99 13.47 2.07 2.40
7 4 21.46 16.72 21.62 21.31 21.22 1.59 1.74
8 3 13.40 13.33 11.22 11.44 11.58 1.86 2.00
9 10 15.56 14.02 14.27 13.95 13.98 1.14 1.22
1 1 5.88 10.93 6.27 3.30 3.96 3.06 3.63
11 2 15.20 12.96 13.29 14.66 14.44 2.61 2.57
12 1 13.40 12.11 11.17 9.97 10.17 3.14 3.14
13 0 26.06 23.61 23.61 27.13 27.13 5.52 6.13
14 3 22.44 23.67 18.98 24.05 24.22 3.10 3.48
15 6 9.40 12.05 7.40 8.24 8.43 1.32 1.50
16 1 29.49 19.33 40.20 30.31 30.24 2.58 2.87
Av. Rel. Error%: 17.85 12.40 11.74 11.23
Av. Sq. Error: 22.10 12.38 2.84 2.69

RS=ratio synthetic estimator; SD=sample-size dependent estimator; EBLUP=EBLUP or EB estimator; HB=HB estimator.

(standard error), s?B, of HB estimator using one-
dimensional numerical integration. These values
are also reported in Table 3.

The following observations on the relative perfor-
mances of small area estimates may be drawn from
Table 3: (1) EBLUP and HB estimators give simi-
lar values over small areas, and their average rel-
ative errors (%) are 11.74 and 11.23 and squared
errors are 2.84 and 2.69 respectively. Asymptoti-
cally (as m — oo), the two estimators are identical,
and the observed differences are due to moderate
m(= 16) and the method of estimating o2 and o2
(REML or ML would give slightly different EBLUP
values). (2) Standard error values for EBLUP and
HB estimators are also similar. This is in agree-
ment with the empirical results of Datta and Ghosh
(1991) and Hulting and Harville (1991). (3) Un-
" der the criterion of average squared error, EBLUP
and HB estimators perform much better than the
ratio-synthetic and sample-size dependent estima-
tors: 2.84 for EBLUP vs. 12.38 for sample-size de-
pendent (SD) and 22.10 for ratio-synthetic (RS). (4)
Under the criterion of average relative error (%),
however, EBLUP and HB estimates are not much
better than the sample-size dependent estimator:
11.74 for EBLUP versus 12.40 for SD. However, both
perform much better than the ratio-synthetic esti-
mator with % ARE = 17.85.

It may be noted that EBLUP, EB and HB estima-
tors are optimal under squared error loss and cease

to be so under relative error loss. This is due to the
fact that the Bayes estimators under relative error
loss can often differ quite significantly from those
under squared error loss. This nonoptimality car-
ries over to EBLUP estimator which usually mim-
ics closely the Bayes estimators. The above obser-
vations could perhaps explain why in our example
the Bayes and EBLUP estimator did not improve
significantly over the SD estimator under relative
error.

All in all, our results in Table 3 clearly demon-
strate the advantages of using the EBLUP or HB
estimator and associated standard error when the
assumed random effects model fits the data well.
(Note that we simulated the data from an assumed
model.) It is important, therefore, to examine the
aptness of the assumed model using suitable diag-
nostic tools; Section 7.1 gives a brief account of di-
agnostics for models (4.4) and (4.6).

7. SPECIAL PROBLEMS

In this section we focus on special problems that
may be encountered in implementing model-based
methods for small area estimation. We also discuss
some extensions of our basic models (4.4) and (4.6).

7.1 Model Diagnostics

Model-based methods rely on careful checking of
the assumed models in order to find suitable models
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that fit the data well. Model diagnostics, therefore,
play an important role. However, the literature on
diagnostics for mixed linear models involving ran-
dom effects is not extensive, unlike standard regres-
sion diagnostics. Only recently have some useful
diagnostic tools been proposed. See, for example,
Battese, Harter and Fuller (1988); Beckman, Nacht-
sheim and Cook (1987); Calvin and Sedransk (1991);
Christensen, Pearson and Johnson (1992); Cressie
(1992); Dempster and Ryan (1985) and Lange and
Ryan (1989).

We first consider the Fay-Herriot type model (4.4),
where only area-specific covariates are used. When
the model is correct, the standardized residuals
ri = 6222+ )" YD G, —x'P), i = 1,...,m are
approximately iid N(0,1) for large m where B is
the BLUE estimator (5.2) with o2 replaced by &2.
We can, therefore, use a ¢ — g plot of r; against
&~ 1[F,,(r)], where &() and F(r) are the standard
normal and empirical cdfs, respectively. A primary
goal of this plot is to check the normality of the
random effects v; since the sampling errors e; are
approximately normal due to the central limit the-
orem effect. Dempster and Ryan (1985) note that
the above q — q plot may be inefficient for this pur-
pose since it gives equal weight to each observa-
tion, even though the f;s differ in the amount of
information contained about the v;s. They propose
a weighted g — ¢ plot which uses a weighted em-
pirical cdf Fz,(r) = EI(r — r;)W;/3;W; in place of
F,,(r), where I(t) = 1 for ¢ > 0 and 0 otherwise, and
W; = (62 +2; %)~ in our case. This plot is more
sensitive to departures from normality than the un-
weighed plot since it assigns greater weight to those
observations for which 2 account for a larger part
of the total variance 62 +z; 2y);.

We next turn to the nested errors regression
model (4.6), where the y;s are correlated for each
i. In this case, the transformed residuals r; =
kit (yy—Adu) -kt (x;j—9iX,,)T B are approximately
uncorrelated with equal variances ¢2. Therefore,
traditional regression diagnostics may be applied to
the rys, but the transformation can mask the effect
of individual errors e;. On the other hand, stan-
dardized BLUP residuals k;; Yy, — ng — #;)/6 may
be used to study the effect of individual units (i)
on the model, provided they are not strongly corre-
lated. Lange and Ryan (1989) propose methods for
checking the normality assumption on the random
effects v; using the BLUP estimates ;.

Christensen, Pearson and Johnson (1992) develop
case-deletion diagnostics for detecting influential
observations in mixed linear models. Their meth-
ods can be applied to model (4.6) as well as to more
complex small area models.

7.2 Constrained Estimation

Direct survey estimates are often adequate at an
aggregate (or large area) level in terms of precision.
For example, Battese, Harter and Fuller (1988), in
their application, find that the direct regression es-
timator of the mean crop area for the 12 counties
together has adequate precision. It is, therefore,
sometimes desirable to modify the individual small
area estimators so that a properly weighted sum of
these estimators equals the model-free, direct esti-
mator at the aggregate level. The modified estima-
tors will be somewhat less efficient than the origi-
nal, optimal estimators, but they avoid possible ag-
gregation bias by ensuring consistency with the di-
rect estimator. One simple way to achieve consis-
tency is to make a ratio adjustment, for example,
the EBLUP estimator Y7 of a total Y; is modified to

(7.1) Y# (mod) = (?H /Z?;‘f) Y,

where Y is a direct estimator of the aggregate
population total Y = X,Y;. Battese, Harter and
Fuller (1988) and Pfeffermann and Barnard (1991)
propose alternative estimators involving estimated
variances and covariances of the optimal estimators
Y7

The previous sections focused on simultaneous es-
timation of small area means or totals, but in some
applications the main objective is to produce an en-
semble of parameter estimates whose histogram is
in some sense close to the histogram of small area
parameters. Spjgtvoll and Thomsen (1987), for ex-
ample, were interested in finding how 100 munic-
ipalities in Norway were distributed according to
proportion of persons not in the labor force. They
propose constrained EB estimators whose variation
matched the variation of the small area population

. means. By comparing with the actual distribution

in their example, they show that the EB estimators
are biased toward the prior mean compared to the
constrained EB estimators. Constrained estimators
reduce shrinking towards the synthetic component;
for example, in (5.1) the weight 1 — +;, attached to
the synthetic component, is reduced to 1 —'yil /2 Fol-
lowing Louis (1984), Ghosh (1992) develops a gen-
eral theory of constrained HB estimation. Ghosh
obtains constrained HB estimates by matching the
first two moments of the histogram of the estimates,
and the posterior expectations of the first two mo-
ments of the histogram of the parameters and mini-
mizing, subject to these conditions, the posterior ex-
pectation of the Euclidean distance between the es-
timates and the parameters. Lahiri (1990) obtains
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similar results in the context of small area estima-
tion, assuming “posterior linearity,” thus avoiding
distributional assumptions. Constrained Bayes es-
timates are suitable for subgroup analysis where the
problem is not only to estimate the different compo-
nents of a parameter vector but also to identify the
parameters that are above or below a specified cut-
off point. It should be noted that synthetic estimates
are inappropriate for this purpose.

The optimal estimators (i.e., EBLUP, EB and HB
estimators) may perform well overall but poorly
for particular small areas that are not consistent
with the assumed model on small area effects. To
avoid this problem, Efron and Morris (1972) and Fay
and Harriot (1979) suggest a straightforward com-
promise that consists of restricting the amount by
which the optimal estimator differs from the direct
estimator by some multiple of the standard error
of the direct estimator. For example, a compromise
estimator corresponding to the HB estimator 9{’3,
under a normal prior on the 6,’s, is given by

gB, if 6; — cypl/? < 0HB < §; + cyp!?
OFB = { G, — cy}/?, if BHB < §; — cyp}/?
b+, if BHB > 0, + ey,

where ¢ > 0 is a suitable chosen constant, say ¢ = 1.
A limitation of the compromise estimators is that no
reliable measures of their precision are available.

7.3 Extensions

Various extensions of the basic models (4.4) and
(4.6) have been studied in the literature. Due to
space limitation, we can only mention some of these
extensions.

Datta et al. (1992) extend the aggregate-level
model (4.4) to the case of correlated sampling errors
with a known covariance matrix and develop HB
and EB estimators and associated measures of pre-
cision. In their application to adjustment of census
undercount, the sampling covariance matrix is block
diagonal. Cressie (1990a) introduces spatial depen-
dence among the random effects v;, in the context
of adjustment for census undercount. Fay (1987)
and Ghosh, Datta and Fay (1991) extend model
(4.4) to multiple characteristics and perform hier-
archical and empirical multivariate Bayes analysis,
assuming that the sampling covariance matrix of
0;, the vector of direct estimators for ith area, is
known for each i. In their application to estimation
of median income for four-person families by state,
0; = (6;1,0;2)T with 6;; = population median income
of four-person families in state i and ;3 = % (pop-
ulation median income of three-person families in

state i) +4l (median income of four-person families
in state i). By taking advantage of the strong corre-
lation between the direct estimators 6;; and 05, they
were able to obtain improved estimators of 6;;.

Many surveys are repeated in time with partial
replacement of the sample elements, for example,
the monthly U.S. Current Population Survey and
the Canadian Labor Force Survey. For such re-
peated surveys considerable gain in efficiency can
be achieved by borrowing strength across both small
areas and time. Cronkite (1987) developed re-
gression synthetic estimators using pooled cross-
sectional time series data and applied them to es-
timate substate area employment and unemploy-
ment using the Current Population Survey monthly
survey estimates as dependent variable and counts
from the Unemployment Insurance System and
Census variables as independent variables. Rao and
Yu (1992) propose an extension of model (4.4) to time
series and cross-sectional data. Their model is of the
form

~

(72) 05, = 0,~, + e, t= 1, ey T,

(7.3) 0 = X[,B+v; +uy, i=1,...,m,

where 0, is the direct estimator for small area i at
time ¢, the e;’s are sampling errors with a known
block diagonal covariance matrix ¥ = block diag
(®,,...,¥,), X;; is a vector of covariates and v; id
N(0,02). Further, the u;’s are assumed to follow
a first order autoregressive process for each i, i.e.,
Wit = pUis_1+€, |p| < 1 with e 5 N(0,o2). They ob-
tain the EBLUP and HB estimators and their stan-
dard errors under (7.2) and (7.3).

Models of the form (7.3) have been extensively
used in the econometric literature, ignoring sam-
pling errors (see, e.g., Anderson and Hsiao, 1981;
Judge, 1985, Chapter 13). Choudhry and Rao (1989)
treat the composite error w;; = e;; + u;; as a first or-
der autoregressive process and obtain the EBLUP
estimator of x?,'ﬁ +v;. A drawback of their method
is that the area by time specific effect u;; is ignored
in modelling the 6;’s.

Pfeffermann and Burck (1990) investigate more
general models on the 6;’s, but they assume mod-
eling of sampling errors across time. They obtain
EBLUP estimators of small area means using the
Kalman filter. Singh and Mantel (1991) consider
arbitrary covariance structures on sampling errors
and propose recursive composite estimators using
the Kalman filter. These estimators are not opti-
mal but appear to be quite efficient relative to the
corresponding EBLUP estimators.
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Turning to extension of the nested error regres-
sion model (4.6), Fuller and Harter (1987) propose
a multivariate nested error regression model and
obtain EBLUP estimators and associated standard
errors. Stukel (1991) studies two-fold nested error
regression models, and obtains EBLUP estimators
and associated standard errors. Such models are
appropriate for two-stage sampling within small ar-
eas. Kleffe and Rao (1992) extend model (4.6) to
the case of random error variances, a?, and obtain
EBLUP estimator and associated standard errors in
the special case of x;; = 1.

MacGibbon and Tomberlin (1989) and Malec, Se-
dransk and Tompkins (1991) study logistic regres-
sion models with random area-specific effects. Such
models are appropriate for binary response vari-
ables when element-specific covariates are avail-
able. MacGibbon and Tomberlin (1989) obtain EB
estimators of small area proportions and associated
standard errors, but they ignore the uncertainty
about the prior parameters. Farrell, MacGibbon
and Tomberlin (1992) apply the bootstrap method of
Laird and Louis (1987) to account for the underesti-
mation of true posterior variance. Malec, Sedransk
and Tompkins (1991) obtain HB estimators and as-
sociated standard errors using Gibbs sampling and
apply their method to data from the U.S. National
Health Interview Survey to produce estimates of
proportions for individual states.

EB and HB methods have also been used for es-
timating regional mortality and disease rates (see,
e.g., Marshall, 1991). In these applications, the ob-
served small area counts, y;, are assumed to be in-
dependent Poisson with conditional mean E(y;|6;) =
n;0;, where 6; and n; respectively denote the true
rate and number exposed in the ith area. Further,
the ;s are assumed to be random with a specified
distribution (e.g., a gamma distribution with un-
known scale and shape parameters). The EB or HB
estimators are shrinkage estimators in the sense
that the crude rate y;/n; is shrunk towards an over-
all regional rate, ignoring the spatial aspect of the
problem. Marshall (1991) proposes “local” shrink-
age estimators obtained by shrinking the crude rate
towards a local neighbourhood rate. Such estima-
tors are practically appealing and further work on
their statistical properties is desirable.

De Souza (1992) studies joint mortality rates of
two cancer sites over several geographical areas
and obtains asymptotic approximations to posterior
means and variances using the general first order
approximations given by Kass and Steffey (1989).
The bivariate model leads to improved estimators
for each site compared to the estimators based on
univariate models.

8. CONCLUSION

In this article, we have used the term “small area”
to denote any local geographical area that is small or
to describe any small subgroup of a population such
as a specific age-sex-race group of people within a
large geographical area. Sample sizes for small ar-
eas are typically small because the overall sample
size in a survey is usually determined to provide de-
sired accuracy at a much higher level of aggregation.
As a result, the usual direct estimators of a small
area mean are unlikely to give acceptable reliabil-
ity; and it becomes necessary to “borrow strength”
from related areas to find more accurate estimators
for a given area or, simultaneously, for several ar-
eas. Considerable attention has been given to such
indirect estimators in recent years.

We have attempted to provide an appraisal of in-
direct estimation covering both traditional design-
based methods and newer model-based approaches
to small area estimation. Traditional methods cov-
ered here include demographic techniques for lo-
cal estimation of population and other characteris-
tics of interest in post-censal years, and synthetic
and sample size dependent estimation. Model-based
methods studied here include EBLUP, EB and HB
estimation. Two types of basic small area models
that include random area-specific effects are used
to describe these methods. In the first type of mod-
els, only area-specific auxiliary data are available
for the population elements while in the second type
element-specific auxiliary data are available for the
population elements.

We have emphasized the importance of obtaining
accurate measures of uncertainty associated with
the model-based estimators. To this end, an approx-
imately unbiased estimator of MSE of the EBLUP
estimator is given as well as two methods of approx-
imating the true posterior variance, irrespective of
the form of the prior distribution on the model pa-
rameters. The latter approximations may be used

. as measures of uncertainty associated with the EB

estimator. In the HB approach, a prior distribution
on the model parameters is specified and the result-
ing posterior variance is used as a measure of uncer-
tainty associated with the HB estimator (posterior
mean). We have also mentioned several applications
of the model-based methods.

We have also considered special problems that
may be encountered in implementing model-based
methods for small area estimation; in particu-
lar, model diagnostics for small area models, con-
strained estimation, “local” shrinkage, spatial mod-
elling and borrowing strength across both small ar-
eas and time. We anticipate quite a bit of future
research on these topics.

Caution should be exercised in using or recom-
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mending indirect estimators since they are based
on implicit or explicit models that connect the small
areas, unlike the direct estimators. As noted by
Schaible (1992): “Indirect estimators should be con-
sidered when better alternatives are not available,
but only with appropriate caution and in conjunc-
tion with substantial research and evaluation ef-
forts. Both producers and users must not forget
that, even after such efforts, indirect estimates may
not be adequate for the intended purpose.” (Also see
Kalton, 1987.)

Finally, we should emphasize the need for devel-
oping an overall program that covers issues relating
to sample design and data evolvement, organization
and dissemination, in addition to those pertaining
to methods of estimation for small areas.

APPENDIX
Variances and Covariance of 52 and 52
Let 42 and 42 be the estimators of 02 and o2 ob-
tained from the method of fitting constants. Then
V(6?) = 2v; 1,4
V©2) = 207217 (n - p — 1) - po*

+ 17**03 + 217*0203]
with
e = 3 w3 (1 - w,-.iﬁ,,A;li,-w)

2
-1 22 =T
+«tr(A1 Ewi,xiwxiw)

and
A2 A . —-1. -1
cov (62,82) = —2n; vyl (n — p — 1y)ot.

(See Stukel, 1991.)
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cidedly influenced by linear modeling, and we see
that clearly in their paper. There has also been
a tendency to judge the performance of the esti-
mation methods by concentrating on a single, ar-

" bitrary small area. In our comment, we shall dis-

cuss what opportunities there might be to expand
the class of statistical models for small area data
and to consider multivariate aspects of small area
estimation.



