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Comment

Arnoldo Frigessi

In the beginning there was the Gibbs sampler and
the Metropolis algorithm. We are now becoming
more and more aware of the variety and power of
MCMC methods. The article by Besag, Green, Hig-
don and Mengersen is a further step toward full
control of the MCMC toolbox. I like the three appli-
cations, which show how to incorporate MCMC
methods into inference and which also give rise to
several methodological contributions. As the au-
thors write, out of five main issues in MCMC, they
concentrate primarily on the choice of the specific
chain. The other four issues regard, in one way or
another, the question of convergence of MCMC pro-
cesses. I believe that choosing an MCMC algorithm
and understanding its convergence are two steps
that cannot be divided. Estimating rates of conver-
gence (in some sense) before running the chain or

' stopping the iterations when the target is almost
hit are needed operations if we would like to trust
the inferential conclusions drawn on the basis of
MCMC runs. This is especially true because conver-
gence of MCMC processes is much harder to detect
as compared to convergence of, say, Newton—Raph-
son.
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We can often read in applied papers that “100
iterations seem to be enough for approximate con-
vergence,” the number being sometimes supported
by studies on simulated data (see, e.g., Frigessi and
Stander, 1994). This is really too weak to rely on
the statistical conclusions, and more can be done. If
X® is the MCMC process with target distribution
7 on (), the burn-in can be estimated by comput-
ing a t* such that

[P(X® = 12D) — 7 ()l < &,

for some fixed accuracy ¢ and for some chosen
norm, say, total variation. Several techniques are
available to bound the total variation error from
above,

(2 [P(X® = [xD) — 7 ()] < g(2),

where g(t) is a nonincreasing function decaying to
zero. Then an upper bound on ¢* can be derived by
inversion of g, probably a pessimistic estimate of
the burn-in, but a “safe” choice. Tight bounds of the
type (2) are hard to get and there are no precise
general guidelines for the length of the burn-in.
However a very rough reference value for t* is
available if 7 is a lattice-based Markov random
field (MRF). In Section 1 of Frigessi, Martinelli and
Stander (1993) we extend and adapt results origi-
nally developed in statistical mechanics and rather
unknown to statisticians. Let # be a MRF on a

(1) Vit>t*
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lattice A and consider a reversible MCMC that
updates at each step one of the |A| = n variables
chosen uniformly at random and that satisfies two
further not too restrictive conditions [Frigessi, Mar-
tinelli and Stander, 1993, equation (8) and point (i)
in Theorem 1]. If 7 satisfies some sort of mixing
condition (SZ or MO in Frigessi, Martinelli and
Stander, 1993), then, for n large enough,

3) t* > Cnlogn,

where C > 0 does not depend on n. Before com-
menting on this result, I warn immediately that
checking mixing for complex MRF is hard. How-
ever, for large signal-to-noise ratio, mixing condi-
tions (of Dobrushin type) that are easier to check
and also imply (3) can be considered.

Choosing a burn-in of order nlogn for large
lattices is reasonable as a rough guideline. When
restoring an image of 256 X 256 pixels, with low
noise variance, this reads as 12 full updates of the
lattice. Of course there is a constant C that may be
large (but smaller compared to n). Hence 120 or
1,200 full updates is a rough estimate of the needed
burn-in. In Section 6.4 of the article by Besag,
Green, Higdon and Mengersen we read that the
first 500 full sweeps were discarded, which is in
agreement.

A related question is: How should we choose
among the many MCMC alternatives? How should
we argue in favor of a new method? Comparison
with other algorithms is needed and many valid
criteria are available: choose the method that is
easier to implement, modify or adapt; prefer the
algorithm that is easier to understand. More impor-
tant for large data sets, use the algorithm that
converges faster, something that can be understood
intuitively, by numerical experimentation or by rig-
orous estimates of rates of convergence, obtained at
least in the case of some simple =, possibly only
asymptotically.

A more prudent, yet very reasonable approach, is"

to use the algorithm for which either upper bounds
on t* (or similar quantities) are explicitly available
or on-line monitoring is easier, say, by regeneration
points; and this regardless of the chosen algorithm
being possibly less efficient than others whose con-
vergence, however, cannot be precisely measured.
In other words, we will prefer an MCMC chain for
7 whose t* can be estimated to another MCMC
chain intuitively likely to converge faster, but whose
t* cannot be bounded: being able to rely on the
results of inference is indispensable.

I wonder if the potential MCMC user will feel
puzzled and abandoned in front of the many op-
tions offered: regular scan of the components or

random choice; grouping; auxiliary variables or
Gibbs sampler; and: Is it convenient to design a
Hastings algorithm that has a high acceptance
probability? To this point, although very cautiously
expressed, I read in Besag, Green, Higdon and
Mengersen that “an acceptance rate between about
30 and 70% for each variable often produces satis-
factory results.” On what evidence are these values
based?

Adopting the prudent approach mentioned above,
I will measure the speed of convergence, for finite
Q, with p,, by the second-largest eigenvalue in
absolute value of the transition matrix P. Let

exp[(1/T)U(x)]
Zp )

a(x) =

By stochastic domination one can show that
Metropolis has, for sufficiently large T, the small-
est p, among all #-reversible Markov chains on ()
that update a single variable at every step (chosen
at random) and that depend only on the ener-
gy difference U(x©?P) — U(x®*") (see Frigessi,
Martinelli and Stander, 1993). In this class one
can easily find MCMC chains both with larger and
with smaller acceptance probabilities than min(1,
m(x@") /7 (xCD)), In general the Gibbs sampler
does not only depend on such energy differences,
but this is true for the two-dimensional Ising model.
Hence, for sufficiently large T, always accepting
(like the Gibbs sampler) is not the best. For low
values of T the situation is flipped: the Gibbs
sampler has a smaller p, than Metropolis, and here
accepting more (always) is an advantage. General
rules must be quite tricky and hard to summarize
in some values.

Besag, Green, Higdon and Mengersen hide some
very nice new ideas in the appendices. I end this
comment with some simple remarks on the use of
random proposal probabilities. 1 apologize for the
triviality of my examples, by means of which I try
to understand possibilities and limitations of such
random proposal distributions.

I take the multivariate normal distribution
40,27 1) as the target 7 and I first consider as
nonrandom proposal density R(x — y) the (sic!)
multivariate normal #(u,37!), for some fixed
mean vector u. The acceptance probability (2.9) is

A(x > y) = min(l,exp[(x - y)TE;L]).

In order to estimate the rate of convergence of this
Hasting algorithm, I will use the remarkable neces-
sary condition for geometric decay of the total vari-
ation error given in Mengersen and Tweedy (1994,
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Theorem 2.1), which says that if R(x — y) = R(y)

and
R(x) 1
T|x: <—1>0
( 7(x) m)

for all m, then [|[P(X® = {x®) — 7(-)|| tends to
zero in t slower than geometrically. It is straight-
forward to check these conditions in the Gaussian
example, and hence convergence is very slow.

With a random proposal density we can get a
geometrically convergent MCMC: Let R(x — y) =
R(y) be, with probability 1, a multivariate normal
M, %" 1) and, with probability 3, a multivariate
normal #(—u, 3" !). To bound the rate of conver-
gence one can use directly the uniform minorization
technique in Roberts and Polson (1994). Since

P(x - y) > w(y)exp[—su"Su],
it follows that

IP(X® = {x®) — 7] < (1 - exp(—3p73n))’,

and convergence is geometric. Hence, randomizing
the proposal density helps. The mixture is somehow
reminiscent of antithetic variables. We get a burn-in
of order O(exp(3u” > u)), which may be quite over-
estimated because the uniform minorization tech-
nique is sometimes poor. Consider again, for in-
stance, the two-dimensional Ising model with T
sufficiently large. For a uniform proposal probabil-
ity the best estimate of the burn-in for Metropolis,
based on uniform minorization, is O(exp[(2/T)n]),
while one can show in this case (see Frigessi, Mar-
tinelli and Stander, 1993) that always ¢* < O(e®/")

Comment

Alan E. Gelfand and Bradley P. Carlin

We heartily endorse the authors’ conclusion that
Markov chain Monte Carlo (MCMC) “represents a
fundamental breakthrough in applied Bayesian
modeling.” We laud the authors’ effective unifica-
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and under condition (MO) in that paper t* =
O(nlog n). For the Gibbs sampler the bound is
even worse.

The next simple example shows that sometimes
a random proposal density does not speed up con-
vergence w.r.t. a deterministic density. Take 7 to
be the exponential density with parameter A. Let
R(x — y) = R(y) be also exponential with parame-
ter 0 < A’ < A. Then the acceptance probability is

A(x — y) = min(1, exp[ — (A — A)(y — x)])

and the uniform minimization bound yields

/\/ t
IP(X® = 2®) — ()]l < (1 _ 7) .

As before, consider now the random proposal den-
sity (again a symmetric mixture)

R(x > y) =R(y) = (X exp(—A'y)
+(2A — Mexp[—(2A — A)y]).
Via uniform minimization we obtain

IP(X® = {xD) — ()]

AI t Alt
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Under a prudent policy, that is, trusting only cer-
tain bounds, here in this example randomizing can
slow down convergence. Of course lack of symmetry
plays a role. Summarizing, a blind use of random
proposal densities may not be advantageous. Are
there some guidelines for a successful application of
this potentially powerful idea?

tion of spatial, image-processing and applied
Bayesian literature, with illustrative examples from
each area and a substantial reference list. (As an
aside, one of us pondered the significance of the fact
that roughly one-fourth of the entries in this list
have lead authors whose surname begins with the
letter “G™)

We begin with a few preliminary remarks. First,
with regard to practical implementation, the artifi-
cial “drift” among the variables alluded to in Sec-
tion 2.4.3 is well known to those who fit structured
random effects models and is a manifestation of
weak identification of the parameters in the joint
posterior. Reparametrization and more precise hy-
perprior specification are common tricks to improve



