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Inference Based on Estimating Functions
in the Presence of Nuisance Parameters

Kung-Yee Liang and Scott L. Zeger

Abstract. In many studies, the scientific objective can be formulated in
terms of a statistical model indexed by parameters, only some of which
are of scientific interest. The other “nuisance parameters” are required
to complete the specification of the probability mechanism but are not of
intrinsic value in themselves.

It is well known that nuisance parameters can have a profound im-
pact on inference. Many approaches have been proposed to eliminate or
reduce their impact. In this paper, we consider two situations: where
the likelihood is completely specified; and where only a part of the ran-
dom mechanism can be reasonably assumed. In either case, we examine
methods for dealing with nuisance parameters from the vantage point of
parameter estimating functions. To establish a context, we begin with a
review of the basic concepts and limitations of optimal estimating func-
tions. We introduce a hierarchy of orthogonality conditions for estimat-
ing functions that helps to characterize the sensitivity of inferences to
nuisance parameters. It applies to both the fully and partly parametric
cases. Throughout the paper, we rely on examples to illustrate the main
ideas.

Key words and phrases: Conditional score function; estimating func-
tion; nuisance parameter; optimality; orthogonality.

1. INTRODUCTION

In many statistical problems, the likelihood of the
data f(y; 0, ¢) depends on parameters (0, ¢), where
a subset 0 is of scientific interest and the remain-
der ¢ is not. The parameters ¢ are often referred
to as “nuisance” or “incidental” parameters (e.g.,
McCullagh and Nelder, 1989, page 245) as their val-
ues are usually needed to make inferences about 0
even though they have little scientific import of their
own. :

It is useful to distinguish two different situations
based upon the degree of interaction between 6 and

~&. The first situation is when the very scientific in-
terpretations of the parameters of interest 8 change
with the value of the nuisance parameters ¢. An
example is the Box—Cox family of regression models

y:'b =x;0+¢;,
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where ¢; are independent normal variates with
mean 0 and variance o?. Here the interpretation
of the regression coefficients 0 changes with the
nuisance parameter ¢ as the unit of the response
variable y? changes. A detailed discussion of this
model and the associated issues for inference is
presented in Hinkley and Runger (1984). The sec-
ond situation, when the interpretation of 8 does not
change with the value of ¢, is more common and
the focus of this paper.

The following examples will be used throughout
the paper to examine the effects of nuisance param-
eters.

EXAMPLE 1.1. Longitudinal studies. Epidemio-
logic and clinical studies often collect repeated
observations of the same response variable over
time for many subjects (Diggle, Liang and Zeger,
1994). Consider one such study with repeated bi-
nary responses in which the scientific objective
may be represented by a regression model as logit
E(y;) =x;;0, j=1,...,n,1=1,..., K, where K
is the number of subjects and n; the number of ob-
servations for the ith subject. Here x;; is a p x 1
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vector of covariates thought to be related to the bi-
nary response y;;. It is unlikely that the responses
from the same subject are independent. Thus one
must also model the n; x n; covariance matrix
2(0,d) of y; = (¥i15---» Yin,)'- Note the dependence
of 3 on nuisance parameters ¢ which character-
ize the correlation among the responses from the
same subject. Also note that the interpretation of
0 remains the same regardless of the value of ¢.
Failing to acknowledge the presence of ¢ may lead
to spurious inferences about 0. For likelihood-based
inference for 0, the complete probability mechanism
must be specified so that additional higher-order
nuisance parameters may also be involved. See
Liang and Zeger (1986), Zhao and Prentice (1990)
and Fitzmaurice, Laird and Rotnitzky (1993).

EXAMPLE 1.2. Case-control studies. The case-
control design is commonly used in epidemiologic
studies of disease etiology. In this setting, individ-
uals with the prespecified disease, known as the
cases, and individuals who are disease-free, the
controls, are recruited. Information on risk factors
which are suspected of causing the disease is as-
certained from both disease groups. Frequently,
individuals are stratified into subgroups based
upon demographic or other variables which are re-
lated to both the disease and the risk factors of
interest. Collection of information on such “con-
founding” variables is essential for valid inference
on the etiology of the disease. Let y;; and y;, be
the number of cases and controls, respectively, from
the ith stratum, i = 1,..., K, exposed to a binary
risk factor. The conventional assumption is that y;;
follows a binomial-distribution with parameters n;;
and u;;. Here y;; is the probability a person in stra-
tum i with case status j was exposed to the binary
risk factor and n;; and n;, represent the number
of cases and controls, respectively, in the ith group.
The odds ratio parameter of interest

0= p;1(1 — pig)/{miz(1 — i1},

characterizes the strength of the relationship be-
tween the risk factor and the tisk of the disease. It
takes the value 1 when there is no association. The
nuisance parameters in this example are {¢; = u;9,
i=1,..., K}, the exposure probabilities of the con-
trols in each of K strata. Again the magnitude of
these nuisance parameters does not alter the inter-
pretation of 6, the common odds ratio. In Section 4,
an example with similar data structure will be given
in which the binomial assumption must be relaxed.

EXAMPLE 1.3. Teratologic experiments. In the
typical teratologic experiment, pregnant animals

(e.g., rats) are randomized to receive varied doses
of a chemical and sacrificed prior to the end of ges-
tation or pregnancy. Each fetus is examined and a
binary response indicating the presence or absence
of a particular malformation is recorded. The sci-
entific objective is to determine whether the risk
of malformation p increases with the teratogen
dose x, as characterized, for example, by the pa-
rameter 6; in the model logit u = 6, + 6;x. It has
long been recognized that teratologic data often in-
clude a so-called litter effect whereby fetuses from
the same litter tend to respond more alike than
fetuses from different litters. In the absence of a
litter effect, a binomial model for y, the number
of malformed fetuses, would be adequate. In the
presence of a litter effect, additional parameters ¢
which characterize this “extra-binomial variation”
are needed. One model is to assume that y follows
a beta-binomial distribution whose variance has
the form

Var(y) = nu(1 — p){1+(n —1)¢}.

A litter effect is typically reflected by a positive
value of ¢.

EXAMPLE 1.4. Proportional hazards model. In
clinical trials, one main concern is whether a new
treatment prolongs a patient’s life or time to recur-
rence of disease relative to the standard treatments.
Rather than comparing the mean times for different
treatment groups, it may be preferable to compare
hazard functions A(¢) which characterize the instan-
taneous probability of death among those who were
alive ¢ units of time after the randomization of treat-
ments to patients. If y represents the survival time,
then A(¢) =limg, o Pr(y € (¢, t + dt)|y > t)/dt. The
celebrated proportional hazards model (Cox, 1972)
takes the form

A(t;x) = Ag(t) exp(0'x),

where x is the vector of covariates and Ay(¢) is by
definition the hazard function among those with
x = 0. An element of 0 is the logarithm of the haz-
ard ratio between groups that differ by one unit in
its x, all other explanatory variables held fixed. This
interpretation is the same irrespective of the shape
of the infinite-dimensional Ay(¢). An interesting fea-
ture of this model is that while the difference of haz-
ard functions is modelled parametrically through 0,
the nuisance part of the model Ay(2) is left totally
unspecified.

It is well known that nuisance parameters can
seriously compromise likelihood inference, particu-
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F1G. 1. Beta-binomial log-likelihoods for the exposed group based on the data reported by Weil (1970).

larly when their number grows with the sample size
(Neyman and Scott, 1948). An example is the esti-
mation of a common odds ratio 6 in the case-control
study, Example 1.2, with n;; = n,, = 1 for all i.
As K — oo, the maximum likelihood estimate (mle)
converges to 62 rather than 4. While nuisance pa-
rameters are especially problematic when there are
relatively many, they can also diminish the quality
of inferences in the more common situation where
there are fewer, as the following example shows.

ExAMPLE 1.3 (Continued). Weil (1970) reported
the data from a teratologic experiment in which
32 pregnant rats were randomly assigned to either

a control or teratogenic chemical exposure group.

The response of interest was the number of pups
in each mother’s litter that survived a 21-day lac-
tation period. Let 6 be the survival probability
for a pup in the exposed group, and let ¢ repre-
sent the intralitter correlation coefficient in the
beta-binomial model. Figure 1 gives plots of the
beta-binomial log-likelihoods against 6 for selected
values of ¢. Different values of ¢ lead to differ-
ent conclusions as to which 6 is favored by the
data. For example, letting L(6, ¢) be the likelihood
function, L(0.8,0.8)/L(0.6,0.8) = exp(—2.89) sug-
gesting that 6 = 0.6 is strongly favored over 6 = 0.8
when ¢ = 0.8, whereas L(0.8,0.1)/L(0.6,0.1) =
exp(5.82) strongly supports the opposite conclusion.

Numerous likelihood-based solutions to the nui-
sance parameter problem have been developed (e.g.,
Kalbfleisch and Sprott, 1970; Basu, 1977). The ¢
can sometimes be eliminated from the likelihood
by finding a subset of the data whose distribution
is independent of ¢. This so-called marginal like-
lihood approach has particular application in es-
timating variance components in the general lin-
ear mixed model (e.g., Harville, 1977). An alternate
approach is to use an “integrated likelihood” ob-
tained by assuming a prior distribution for ¢ and
basing 0 inferences on the ¢ integral of the prod-
uct of the likelihood and this prior (Kalbfleisch and
Sprott, 1970). This partly Bayes strategy suggests
the fully Bayesian approach as well where priors
for both ¢ and 0 would be specified. A commonly
used likelihood-based strategy is to identify a suf-
ficient statistic T(y) for ¢ for fixed 6 and base 0
inferences on the conditional distribution of y given
T =t (e.g., McCullagh and Nelder, 1989, Chapter 7).
This “conditional-likelihood” strategy is especially
useful for exponential families.

Each of these approaches to reducing or elimi-
nating the effect of ¢ on inferences about 0 re-
quires that the full probability mechanism of the
data be specified. An alternate strategy to specifying
the complete probability mechanism is to combine
the data and unknown parameters in an estimating
function, the form of which requires specification of
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only a part of the probability distribution. To illus-
trate for the case-control example (1.2), we might
consider the estimating equation

K

Z(nil + niz)Al{yu(niz — ¥i2) = 0yi2(ni1 — ¥i1)} =0,
i=1

which depends only on the odds ratio parameter 60
and the data. Note the solution of this equation is
the well-known Mantel-Haenszel estimator for 0,
which is highly competitive with the mle in terms
of both finite sample and asymptotic properties
(Breslow, 1981).

Formally, an estimating function g is a function
of the data and unknown parameters 0 such that
an estimator § of 0 is obtained as its root, that is,
g(y,0) = 0. An unbiased estimating function has
the property E(g(y, 0);0, &) = 0 for all 8 and ¢.

The main objective of this paper is to examine
the use of estimating functions for reducing the
influence of nuisance parameters in problems like
Examples 1.1-1.4 commonly encountered in health
research. In Section 2, we review the history and
theory of estimating functions. Section 3 discusses
the difficulties nuisance parameters cause for the
elementary optimality theory of Section 2. Section
3 focuses on the use of conditional score functions
(Lindsay, 1982) which enjoy a hierarchy of orthog-
onality properties for estimating functions in the
parametric case. These properties form the basis for
our discussion in Section 4 of estimating functions
in which the full likelihood is not specified.

2. BACKGROUND ON ESTIMATING FUNCTIONS
2.1 Historical Perspective

The modern interest in estimating functions is in
actuality a return to the earliest roots of statistics.
Before the advent of objective functions such as the
sum of squares (Legendre, 1805) and the likelihood
(Fisher, 1925), scientists grappled with how to de-
sign estimating functions which combined observa-:
tions and unknowns of interest.

For example, Stigler (1986) tells the story of
/Tobias Mayer, a mid-seventeenth-century cartog-
rapher and astronomer who studied the motions
of the moon. He repeatedly observed the positions
of lunar features and derived, through approxima-
tions to the motion equations, a linear system with
three unknowns 0 about the characteristics of the
moon’s motion. Mayer’s problem was that he had 27
sets of observations and hence 27 equations with
only 3 unknowns. His solution was to divide the
27 equations into 3 sets of 9, to average equations
within a set and then finally to solve the result-

ing 3 equations in 3 unknowns as was standard
mathematical practice.

This example illustrates the early use of estimat-
ing functions to estimate parameters of scientific in-
terest. The key issue was how to combine indepen-
dent equations, each of which related an observation
made with error to parameters.

With the advent of simple objective functions
such as squared deviations (Legendre, 1805) and
likelihood (Fisher, 1925), statistics turned to new
methods of optimal estimation. Two strands of op-
timality theory evolved. The first is represented
by the Gauss—Markov theorem (e.g., Bickel and
Doksum, 1977), which identifies as best the linear
unbiased estimator that has minimum variance.
Gauss—Markov optimality is a finite sample prop-
erty defined in terms of the first two moments. The
second strand, advocated by Fisher (1925) is the
theory of maximum likelihood estimation. The mle
by definition optimizes the likelihood but also is
asymptotically unbiased and minimum-varianced
given regularity conditions. These two strands con-
nect in that they yield the same estimator for the
linear model with Gaussian errors.

The method of moments, advocated by Karl
Pearson, is a precursor of the modern estimating
function approach. Here, selected empirical mo-
ments are equated to their expectations which are
assumed to depend on parameters of scientific in-
terest 0. The resulting estimating functions are
then solved for §. By aggregating the data into
sample moments first and then forming estimating
functions, the weighting of observations that brings
efficiency to the modern approach is lost. Never-
theless, the focus on a few characteristics of the
probability distribution without specification of the
rest is a precursor of the methods described here.

Kimball (1946) introduced the modern definition
of an estimating function for inference about param-
eters of the extreme value distribution. He defined
the “stability” and “sufficiency” of estimating func-
tions in somewhat obscure terms. There appears to
have been little direct follow-up to this line of re-
search.

The modern line did follow closely from papers
by M. G. Kendall (1951) and Durbin (1960) on lin-
ear regression with stochastic predictor variables.
Durbin studied the time series model (our notation)

¥y, =0y,_1+¢&, &idN(,4¢), t=1,...,K,

where the initial value y, is assumed to be known.
Here maximum likelihood leads to

K
Zt:l Yi-1)t

6= )
K
D yt2~1
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Since the predictor variable y,_; is random, 6 is not
a linear function of the responses and hence does
not enjoy the Gauss—Markov finite sample optimal-
ity it would if the predictors were known constants.
Durbin therefore turned his attention to the esti-
mating function for 6

K K
21 gy, 0= y_1y.—0) yi,=0,

t=1 t=1

which is a linear function of 6. He referred to (2.1)
as an “unbiased linear estimating equation” and de-
rived the analogue of the Gauss—Markov theory for
unbiased estimating functions.

Also in 1960, Godambe published the first in a
series of papers that form the basis for the modern
theory of optimal estimating functions. The 1960 pa-
per generalized the Durbin result by showing that
even nonlinear score equations are optimal estimat-
ing functions by a finite sample criterion. The major
ideas of this and related work are summarized be-
low.

2.2 Optimal Estimating Functions

Let y4,..., yx be independent observations with
density function f(-; 0, ¢), where for the moment 6
and ¢ are each assumed to be scalar. Let g(y;, 0)
be an unbiased estimating function of the data and
parameter of interest such that E(g(y;, 0); 0, $) =0
for all 6 and ¢. Let

K
gy, 0 => g(y;0).
i=1

Godambe (1960) defined the optimal unbiased esti-
mating function as the minimizer of

(2.2) Sk = [E[([E(%g,,:))/a—o)ﬂ'

The numerator of (2.2) is the variance of g. The de-

nominator is the square of the average gradient of -

g. It is intuitively appealing that the optimal g has
, small variance and be on average as steep as pos-
sible near the true 6 because these characteristics
determine the asymptotic variance of §. Godambe
(1960) showed that in the case with no nuisance pa-
rameters (i.e., ¢ known), Sg is minimized by the
score function which is defined as the 6 derivative
of the logarithm of the likelihood function.

Godambe (1976) considered the nuisance parame-
ter case. Suppose ¢ is a complete, sufficient statistic
for the nuisance parameter ¢ for fixed 6 and that
the density for y factors

f(y;0,9)=f(ylt, 0) f(t;0, ).

Here the conditional distribution of the data given
t is independent of ¢ for all §. Then he showed that
the conditional score function dlog f(y|t; 6)/90 is the
optimal estimating function for 6; that is, it mini-
mizes (2.2).

One of the most important examples of an op-
timal estimating function from the perspective of
health research is the “quasi-score” function pro-
posed by Wedderburn (1974). To trace its develop-
ment, consider independent response y; with u; =
E(y;) and associated explanatory variables x;, i =
1, ..., K. Nelder and Wedderburn (1972) unified re-
gression methodology for discrete and continuous
responses under the class of generalized linear mod-
els (GLM’s). A GLM is specified by its systematic
part, A(pn) = x'0 for known “link function” A, and
its random part,

f(y;v, ¢) x exp{yy%(:)m +c(y, ¢)}

for known functions a(¢$), b(y) and c(y, ¢). Here
y = ¥(0). Special cases include the normal linear re-
gression model, Poisson regression, logistic regres-
sion and many parametric survival models. For a
detailed discussion on GLM’s, see McCullagh and
Nelder (1989, Chapter 2).

The score function for 6 in the GLM has the form

K . ’
ey y 2

i=1

v (y; — ri(8)) =0,

where v; = Var(y;) = a(¢)b”(y). Note that the nui-
sance parameter ¢ appears in (2.3) as a proportional
factor and may be ignored when solving the equa-
tion.

Wedderburn (1974) pointed out that the GLM
score equation (2.3) depends only on u; and v;, the
mean and the variance of y;,. He suggested that
(2.3) could be solved for & with arbitrary functional
forms of u and v including those which did not cor-
respond to a particular member of the GLM family.
He coined the term “quasilikelihood” for the inte-
gral of (2.3), which need not be a proper likelihood
function. Godambe and Heyde (1987) showed that
the estimating function in (2.3), now known as the
quasi-score function, minimizes (2.2) among unbi-
ased estimating functions which are linear in the
data, that is, take the form }; a;(0)(y; — 1;(0)).
Hence the quasi-score function is an example of an
optimal estimating function.

It is helpful at this stage to sketch a proof of the
optimality for (2.3) in the scalar case. Extension
to the multivariate cases is straightforward and
omitted.
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For an unbiased estimating function of the form
> a;(0)(y; — pi(0)), Sk in (2.2) reduces to

ZiK=1 atgvi
(X, ai(0u:/90))2
> K (a0,
(K@) - (91:/90) J77))°

For the quasi-score function a}(0) = (du;(0)/90) v;'!
and hence

1
(K ((01:/90)/. y5)°

The optimality of the quasi-score function, that is,
S% < Sg for any choice of a;(6), is a direct conse-
quence of Schwarz’s inequality; see Lindsay (1982)
for a more thorough proof.

Several authors, including Firth (1987), Crowder
(1987) and Godambe and Thompson (1989), have
studied an extension of the quasi-score function that
includes both y; and w; = (y; — ;)% i=1,..., K,
the so-called quadratic estimating functions. In the
regression case, it can easily be shown that the op-
timal quadratic estimating function for 0 is

K ’
> LE({;‘;%) Var(y;, w;)™!
(2.4) i=1

A Yi— E(y:) -0

w; — E(w;) ’
Note that the variance matrix for (y;, w;)’ involves
third and fourth cumulants, which must be assumed

known for the finite sample optimality theory to ap-
ply. We will return to this issue in Section 3.

*

2.3 Role of Unbiasedness

The theory of optimal estimating functions in
Section 2.2 takes as a basic assumption that
E(g(y, 0); 0, $) = 0 for all 6 and ¢, that is, g(y, 6)
is an unbiased estimating function. What is the
role of this assumption? First, under regularity con-
ditions, unbiased equations have roots which are
consistent estimators. To see this, given indepen-
dent observations y,,..., yg; let g; = g(y;,0) and

+define gx = K‘IZL-K:I g;. If the g, are unbiased
and E(g?) < oo, then gx converges almost surely
to 0, its expectation at the true 0. For g continuous
and a one-to-one function of #* in the neighborhood
of the true value 6, §x = gz*(0) — 0 since gx — 0
at 0. The problem with maximum likelihood esti-
mation in the presence of nuisance parameters is
partly attributable to this bias of the score equation.
The score is the derivative of the profile likelihood
£(6, d,), where b, is the maximum likelihood esti-
mator for ¢ for fixed 6. While E(9¢(0, ¢)/d0) = 0, it

is not true that E(94(6, ¢,)/96) = 0. With infinitely
many nuisance parameters, the score function can
fail to converge to 0 and hence give an inconsis-
tent estimate as its root. On the other hand, the
conditional score function is unbiased as discussed
in Section 3, which partly explains its superior
performance with many nuisance parameters.

Also, there is substantial finite sample evidence
from Monte Carlo studies showing the improved
performance of unbiased estimating functions over,
for example, the analogous score function; see Bres-
low (1981) for case-control studies and Liang and
Hanfelt (1994) for teratological experiments. Sec-
tion 3 presents a further example for the Weibull
distribution.

2.4 Limitations

Up to this point, we have reviewed the basic ideas
of optimal estimating functions. Two of their major
limitations must also be considered. First, optimal-
ity is ascribed to the estimating function, but scien-
tists and other practitioners are concerned about es-
timators. As Crowder (1989) put it: “This is like ad-
miring the pram rather than the baby.” Godambe’s
optimality criterion is equivalent to asymptotic not
finite sample optimality of the estimator (Durbin,
1960). In the context of quasilikelihood, McCullagh
(1983) showed that the solution of (2.3) is asymptot-
ically unbiased and has minimum variance among
solutions of estimating functions linear in the data.
Thus the limitation of estimating functions noted
above may not be an issue as such if one is willing
to appeal to a large sample argument.

Second, nuisance parameters can compromise the
optimality theory. While Godambe (1976) demon-
strated that the conditional score function is opti-
mal by criterion (2.2), he had to assume the exis-
tence of a complete sufficient statistic for ¢ that did
not depend on 6. Such a statistic can be found for
exponential family distributions but more generally
t = t(0). In this case, the conditional score function
for 0 depends on ¢ as well and hence is only locally
optimal at the true ¢ (Lindsay, 1982). The quasi-
score function in (2.3) can also suffer this limitation.
For example, if the over-dispersion parameter ¢ de-
pends on one of the x covariates, such as treatment
assignment, a(¢) will not factor out of the sum over
subjects in (2.3).

In the next section, we discuss in more detail the
difficulty nuisance parameters cause for the opti-
mality theory of estimating functions. In addition,
we will examine some desirable properties that
conditional score functions possess which serve as
guidelines about how to handle nuisance parame-
ters in the absence of a fully specified likelihood.
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3. OPTIMAL ESTIMATING FUNCTIONS
AND NUISANCE PARAMETERS

In Section 2, we reviewed the optimality theory
for estimating functions when there are no nuisance
parameters or when the data follow an exponential
family distribution. In this section we consider the
more general case focusing on (i) how the optimality
theory may break down in the presence of nuisance
parameters and (ii) alternate approaches to estimat-
ing 0 in the presence of nuisance parameters.

3.1 Parametric Case

Recall that in the absence of nuisance parameters,
that is, when ¢ is known, the score function for 0,

dlog L(9, d)

Uﬂ(o’ (b) = 20 )

is optimal among unbiased estimating functions for
0. The use of Ug becomes complicated when ¢ is
unknown, as U, may not be unbiased unless eval-
uated at the true ¢ value, &, that is, in general
E(Uq(0, d); 0, dy) # 0. One might expect to resolve
this problem by replacing ¢ with an estimate & in
U o In fact, under regularity conditions, the mle
0 is the solution of Uy(8,dy) = 0, where by is
the maximum likelihood estimate of & for fixed 0
(Richards, 1961). However, while it is true in gen-
eral that E(Ug(0, $);0, d) = 0, it is not true that

E(U4(0, $p); 0, d) = 0, so that @ is in general a so-
lution of a biased estimating function for 0.

EXAMPLE 3.1. Let y;, i = 1,..., K, be indepen-
dent observations from a Weibull distribution with
a shape parameter 6 and scale parameter ¢, so that
the likelihood function has the form

K
L0, ) [] 00y

i=1

exp(—¢y?).

The score function for 0 is

K K
U0, ) = 7+Zlogy, ¢Zy log y;.

i=1

The maximum likelihood estimate ‘?0 for ¢ at fixed
0 is ¢, = K/Y.; y!. Evaluated at ¢, the expected
score equation for 6 is

A K
E(U(0, ¢4); 0, ¢) = 3(1 + Ag — KBg),

where

K- (K 2)( 1)/+1

AK=(K_1)JZO Jj (,]+1)2,
GV By = (K- I)KZz(K 2)( 1)+
K= jard J J(+2)*

Figure 2 shows plots of E(U4(0, $4))/ K versus 6 for
K = 10, 20, 30, 40 and 50. The expected bias of

E (U6 (9) &6 )) 91¢)/K

F1G. 2. Expected bias in Weibull profile score of size K.
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U,(8, $4) per observation can be substantial when
K and 6 are small. We will return to this example
later to examine the bias of , the mle of 0, induced
by this bias in U (6, $,).

The bias that results in the score equation when
nuisance parameters are replaced by estimates
leads us to consider alternate estimating functions.
One strategy is to consider a function which is
the 0-derivative of a proper log-likelihood function
which depends upon 0 only. One such candidate is
the marginal score function based upon a marginal
likelihood defined in Section 1. Formally, g(y;0) is
a marginal score function for 0 if

oy 9log f(s(y); 0)
g(y ’ 0) - (99 ’
where s(y) is a function of the data y whose distri-
bution depends on 0 only.

EXAMPLE 3.2. Lety be a K x 1 vector of Gaussian
observations with mean x'¢ and covariance matrix
3 = 32(0). It has been shown that the distribution
of s = Ay, where A is a (K — p) x K matrix and
p = dim(é), will be independent of & and of choice
of A so long as E(Ay) = 0 (Harville, 1977). One
such choice is any K — p rows of I —x(x'x)"1x’ with
rank = K — p. Note that the corresponding likeli-
hood based on Ay is also known as the restricted
maximum likelihood for 0.

There are two limitations with marginal score
functions. First, there is no general guidance as to
how one finds the proper statistics. Second, there
1s no known theory to support the optimality of the
marginal score functions.

An alternate strategy that avoids these limi-
tations is the use of conditional score functions.
Specifically, let t = t(y) be sufficient for ¢ for given
0. The conditional score function for 0 defined as
dlog f(y|t;0)/90 is optimal among unbiased esti-
mating functions for 0 if t is complete (Godambe,
1976); see Section 2.2.

EXAMPLE 1.2 (Continued). In this example, the
likelihood function is proportional to a product of
2K binomial distributions indexed by 6, ¢4, ..., .
For given 6, the complete and sufficient statistics
for ¢, are simply ¢; = y,; + y;5, the total num-
ber of exposed individuals in the ith stratum,
i=1,..., K. This is a direct consequence of }_; y;;
and (¢4, ..., tx) being jointly sufficient for an expo-
nential family with 6, ¢,,..., ¢ as the canonical
parameters. The conditional score function has the
simple form

Z(yi — E(y;lt;0)),

which by definition is independent of {¢;} and, ob-
viously, unbiased for all 6.

Thus far, the conditioning statistic t is assumed
to be functionally independent of 8, which is indeed
the case when f is from an exponential family of
the form

(3.2)  f(y;0,d) xexp{0's+ db't — h(0, d)},

where both s and t are functions of y. However, this
is a special case that rules out many important prob-
ability models including, for example, Efron’s (1986)
double exponential models, generalized linear mod-
els with errors-in-variables (Stefanski and Carroll,
1987) and curved exponential family distributions
(Efron, 1975). More generally, t, the minimal suffi-
cient statistic for ¢ for fixed 0, is a function of 0 as
well, that is, t = t; (McCullagh and Nelder, 1989,
Chapter 7). In this situation, the conditional distri-
bution of y given t4 depends on ¢ except when 0 is
equal to its true value. Lindsay (1982) extends the
concept of conditional score functions in this more
general situation by defining

U.(0, ) = 7080 )

B [E(&logL((), b) to):
d0

which reduces to dlog f(y|t;0)/90 when t, = t. Due
to the dependence of (3.3) on ¢, the conditional
score function is only locally optimal at the true ¢
(Lindsay, 1982). Despite the fact that the optimal-
ity theory of estimating functions breaks down in
the presence of nuisance parameters, one may ar-
gue that the conditional score function is preferable
to the conventional score function Ug(0, ¢) as fol-
lows. Note that U, is, by definition, orthogonal to the
space spanned by the sufficient statistic t,, which
unfortunately, in this case, depends on 0 and hence
induces the continued dependence of U.(0, ¢) on ¢.
However, the representation in (3.3) implies the fol-
lowing properties indicative of the reduced depen-
dence of U.(0, &) which are not shared by Uy (0, ).
These are listed so that (3.3) implies (a), which im-
plies (b), which implies (c), which implies (d):

(@) E(U(0, dp); 0, d) = 0 for all 0, d and any ¢,
which is a function of tg;

(b) E(U.(0, d*);0,d) =0 for all 0, b and b*;

(c) E(U (0, b*)/ddb*;0,d) = 0 for all 8, b and ¢*;

(d) Cov(U.(0, d),dlog L(0, d)/dd; 0, d) = 0 for all
0 and &.

(3.3)

Property (a) states that the conditional score func-
tion is unbiased when suitable estimates of ¢ are
inserted (Lindsay, 1982). Property (b) states that



166 K.-Y. LIANG AND 8. L. ZEGER

the unbiasedness of the conditional score function
is also preserved if evaluated at the incorrect value
¢* for the nuisance parameter. Hence, for example,
0(&"), the root of U (8, ¢*) is consistent for any ¢*.
Property (c) can be viewed as an asymptotic version
of (b) because (c) implies that E(U.(0, $);0, d) =
0 not for any nuisance parameter value, but for
thoseﬁ:o which are v/ K -consistent, that is, for which
VEK(b — &) = 0,(1). The final property (d) implies
that E(U,(0, bg);0,d) = 0 for &y, the maximum
likelihood estimator of ¢ for fixed 6. Note that prop-
erty (d) has been used by Godambe (1991b) to de-
fine the orthogonality between two sets of estimat-
ing functions.

To illustrate these ideas, consider a class of dis-
tributions for y of the form (Liang and Tsou, 1992)

(3.4) f(y;0,d) x exp{0's + d'ty — h(8, d)},

where s = s(y) and ty = t(y, 8). This class of dis-
tributions includes the following as special cases:
(i) the exponential family in (3.2) with ty = t; (ii) the
subexponential model by Lindsay (1982) with s = 0;
(iii) the double exponential family by Efron (1986);
(iv) the generalized linear models with Gaussian co-
variate errors (Stefanski and Carroll, 1987); (v) the
Weibull distribution discussed in Example 3.1; and
(vi) the variance component model in Example 3.2.
The conditional score function is

(35) U,(0, ) =s — E(s | to) + b{ty — E(th | ta)},

where t}, is the derivative of t, with respect to 0.
Thus, the conditional score function does depend on
&, which appears only as a weight associated with
the third term in (3.5). Properties (a), (b) and (c)
are obvious from: (3.5), whereas for (d) we note that
dlog L(0, &)/ddb =ty — dh/dd.

EXAMPLE 3.1 (Continued). The Weibull distribu-
tion can be seen as a special case of (3.5) with s =
ZilOgyii ty = -2 y? and A(96, $) = K log(6¢).
The conditional score function has the form

U(6, $)

1[& .
=3 {X:logy}9 — K(AK+logt9)}
i1

) 0 1
) LZI y; log y; Kto(BK‘FE log to) )
where Ax and By are given in (3.1). To compare
the conditional score estimator of 6 with the max-
imum likelihood estimator, we conducted a simula-
tion study where, for each selected 6 and ¢, 1,000
replicates of K = 30 independent Weibull observa-
tions were generated. Table 1 gives empirical esti-

TABLE 1
Empirical estimates of expectations and biases in associated esti-
mators of parameter from the Weibull distribution: upper entry,
¢o = 1; lower entry, ¢o =2

0 EU46, ¢0)) EU40,H5)) EWU(0, b)) EWULO, D))
1 0.088 1.119 0.135 0.119
(0.238)* (0.225) (0.225) (0.225)
—0.295 0.647 -0.341 —0.353
(0.231) (0.221) (0.221) (0.221)
2 0.103 0.605 0.100 0.105
(0.117) (0.108) (0.109) (0.108)
0.092 0.601 0.097 0.101
(0.111) (0.106) (0.106) (0.106)
4 —0.039 0.193 —0.055 —0.057
(0.058) (0.054) (0.054) (0.054)
—0.045 0.209 —0.035 -0.041
(0.057) (0.054) (0.054) (0.054)
Bias of estimator
1 0.032 0.053 0.031 0.031
0.017 0.042 0.020 0.020
2 0.066 0.106 0.062 0.063
0.051 0.105 0.062 0.062
4 0.101 0.174 0.089 0.088
0.075 0.179 0.093 0.093

*Standard error of the empirical estimate of expectations

mates of [E{(J,ﬁ(o’ ¢0)}> IE{UO(O’ ¢9)}’ [E{Uc(e’ d’O)}
and E{U,(0, $,)} and biases of estimates of 0 ob-
tained by solving these equations. Here ¢, is the
true value of ¢. It is clear that the impact of estimat-
ing ¢ is far greater for U, than it is for U,. The ab-
solute value of E(U (6, ¢,)) is 5 to 10 times as large
as that of E{U (6, ¢,)}, whereas there is little dis-
crepancy between E{U.(6, $¢)} and E{U (0, o)},
both of which are close to E{U4(8, ¢¢)}. This phe-
nomenon transmits directly to biases of correspond-
ing estimators. Overall, the bias of 90, the solution
of U,(6, dy) = 0, is half that of 6, the maximum
likelihood estimate. We also note that the variance
of 6, is comparable to that of 6 although this is not
shown in the table. Several researchers, including
Cox and Reid (1987), Liang (1987), Ferguson, Reid
and Cox (1991) and Lindsay and Waterman (1992),
have investigated strategies for approximating the
conditional score function in this more general case
and cases where the complete sufficient statistics
for ¢ for fixed 0 are difficult to find.

3.2 Quasilikelihood

As indicated in Section 2.2, a major application
of the theory of optimal estimating functions is the
quasi-score function. While in this case the variance
of y; depends on a nuisance parameter &, the quasi-
score function in (2.3), g(y;0), does not since the
variance is assumed to take the form a($)V(1;(9))
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so that a(¢) factors out of g. More generally, Var(y;)
does not factor and is expressed as V;(u;, ). An
example is the beta-binomial variance from Exam-
ple 1.3. Here, the quasi-score function depends on
the nuisance parameter. One needs to estimate ¢ in
order to solve it. Consequently, the quasi-score func-
tion for 0 is only locally optimal at the true ¢ value.
Just as g; = y; — n;(0) may be used as the basis for
the inference on the mean parameters, it seems nat-
ural to consider w; = (y; —u;(0))2—V;(u;, &) for the
inference on the variance parameters, ¢. Following
the proof laid out in Section 2.2, one can show that
the estimating function in (2.4) is optimal among a
class of joint estimating functions for 6 and ¢ which
are a linear combination of (g;,, w;),i=1,..., K.

This joint optimality approach is subject to the fol-
lowing criticisms. First, to compute the estimating
function in (2.4), one needs to know the third and
fourth moments of the y;’s (Godambe and Thomp-
son, 1989). Such knowledge is seldom available (e.g.,
Firth, 1989). Second, the 6 component in (2.4), call
it Uy, is seen as a linear combination of y; — u; and
(y; — m;)? rather than a function of y; — u; alone
as in (2.3). Thus the unbiasedness of U, and hence
the consistency of the corresponding estimator of
0 depends on whether Var(y;) = V;(u;, ), that
is, whether one has correctly specified the variance
function of y; as characterized by ¢. This is pre-
cisely the situation one tries to avoid, namely, a po-
tentially strong effect on inference for parameters of
interest due to the presence of nuisance parameters.
Specifically, none of the properties (a)-(d) stated in
Section 3.1 is fulfilled by Uy unless V; = Var(y;).

It is worth noting that the use of quadratic es-
timating functions- was originally motivated on the
grounds that a portion of the information on 6 may
not be fully captured by y;, as Var(y;) depends on
the mean as well (Crowder, 1987; Firth, 1987).

EXAMPLE 3.3. Consider K independent observa-

tions y; with mean 6; + 6x;, i = 1,..., K, and

variance assumed to be constant, say, ¢. The sci-
entific focus is on estimation of 6 = (6, 63). The
optimal estimating functions for (6, 05, ¢) are

K -1 0 —-1
* v d) d)3
U‘i;( “ _‘1’)(¢3 ¢4—¢>2)

. ¥i — 01— bzx;
(yi = 01— 022,)* — & ’
where ¢3 and ¢, are the central third and fourth

moments of the y’s. For ease of discussion, we as-
sume ¢3 and ¢, are known to the investigators.

(3.6)

We further assume that x; = 1ifi =1,...,K/2,
and equals 0 otherwise and that the variances from
these two subpopulations are different, with ¢, and
¢, being the true variances, respectively. While it
is difficult to derive the solution of U* = 0 in closed
form, asymptotically one may show that it converges
to (63, 65, ¢*), which is the solution to the system

— (b4 — ¢*2)(51 + %)

2
+¢3<¢1 +é0 o + 87 + (8 +52)2> —o0,
2 2
—(ps—"2)(81+89)+d3(d1— " +(8;+85)%) =0,
)
¢>3<51 + §2>

2 2

_¢*(¢1;‘¢0 ot 61'*'(3;"'52) ):O,

where 61 = 010 — 0’{, 62 = 020 - 0; and 010 and 020
are the true values of §; and 6,, respectively. Figure
3 shows the bias 8, of 0, for a range of parameter
values for ¢, ¢35 and ¢, when ¢, = 1. Substantial
bias can result when the true distribution of the y’s
departs from being Gaussian as measured by the
skewness ¢5 and kurtosis ¢4. Also evident from this
figure is that the bias increases as the discrepancy
between ¢, and ¢, increases.

3.3 Summary

In this section, we reviewed the difficulty nui-
sance parameters cause for the optimality theory
discussed in Section 2. Basically, the optimal esti-
mating function for parameters of interest, either
the conditional score function in the parametric case
or the quasi-score function in the quasilikelihood
setting, depends upon nuisance parameters as well.
Consequently, the optimality only holds locally at
the true ¢ values and no global optimality can be
claimed.

Nevertheless, we identified in Section 3.1 several
desired orthogonality properties possessed by the
conditional score function despite its dependence on
¢. The tradeoff is that one needs to specify fully the
likelihood function for the y’s. While no distribu-
tional assumption is needed for the quasilikelihood,
we argued in Section 3.2 that the jointly optimal
estimating equations can lead to inconsistent esti-
mates for ® when the variance function is misspeci-
fied. In the next section, we discuss, in the absence
of the likelihood function, ways to derive locally opti-
mal estimating functions which possess the orthog-
onality properties in Section 3.1 in settings which
include the quasilikelihood as a special case.



168 K.-Y. LIANG AND S. L. ZEGER

Bias of 6,

06 08 10 12 14

1

A
o

Bias of 6,
0.0

-0.2

06 08 10 12 14
9

FIG. 3. Bias of 0 for a range of parameter values in b1, 3 and ¢y left, by = 3.0; right, ¢, = 4.0.

4. HANDLING NUISANCE PARAMETERS
THROUGH ESTIMATING FUNCTIONS

Very often one faces a problem where either the
investigators are uncertain about the complete ran-
dom mechanism or the probability distribution is
too complicated to write down explicitly. Examples
include data from longitudinal studies (e.g., Liang
and Zeger, 1986), from complicated stochastic pro-
cesses (Azzalini, 1984) and from spatial processes
encountered in plant ecology (Besag, 1974). It is
worth pointing out that in each of these examples,
the parameters of interest 0 are well defined, reflect-
ing the scientific interest, even though they may not
completely specify the distribution of the data y.
The primary issue to be addressed in this section
is how to make inference for 0 in the absence of a
likelihood function. We are especially interested in
controlling the effects of nuisance parameters ¢ in

- this semiparametric situation. Here, “semiparamet-
ric” refers to situations where only the quantities of
interest are modeled parametrically (e.g., through
regression), whereas the nuisance part ¢ may be
finite or infinite dimensional.

4.1 Optimal Estimating Functions

We assume throughout the section the existence
of unbiased estimating equations {g; = g;(y, 0); i =
1,..., K} such that E(g;;0, d) = 0 for all 6, b and
i and that the g; are uncorrelated with each other.

Note that the dimension of g may be different than
that of 0, for example, g, = y; — E(y;;0) = y; — x,0
is a scalar whereas 0 is p-dimensional. Very often
it is easier to verify the unbiasedness of g; through
checking E(g;|A;) = 0 for some statistics A;. The
choice of A;, preferably to have maximum dimension
(McCullagh and Nelder, 1989, Section 9.4), varies
from case to case. In a stochastic process problem
where g; = 8,(y1, ..., ¥;;0) we typically choose A; =
(¥1,---,¥i_1), the history. The zero-correlation be-
tween g; and g;, j < i = 1,..., K, in this case
is also easily seen since Cov(g;,g;) = [(g;g;) =
F{g;E(g;|A;)} = 0. In Example 1.2 with K inde-
pendent 2 x 2 tables, a natural choice of A, is ¢; =
¥i1 + ¥;2, the total number of exposures in the ith
stratum subgroup. In the case where there is no
such conditioning event available, A; will be taken
as a null set.

To combine these K uncorrelated estimating
functions for 0 into a single one, a simple strategy
is to consider a linear combination of the g;. One
main advantage when g; is conditionally unbiased
[i.e., E(g; |A;) = 0] is that one may now consider
a broader class of unbiased estimating functions
in which the weight associated with g; is allowed
to be a function of A; rather than a constant only,
that is,

K
> a;(0,A)s;.

i=1
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Following the proof in Section 2.2, the linear combi-
nation with corresponding root that has minimum
asymptotic variance'is

K /og, / 9
wn g= S E( %) varce 1 4) s
i=1

The weight associated with each g; is a product of
two terms. The first term, Var(g; | A;)™!, is used to
downweight those g; with greater degree of uncer-
tainty. The other term, E(Jg;/d0|A;), transforms
the space spanned by the data to the parameter
space. Lindsay (1982) considered some desirable
properties of g where E(dg; /00 | A;) = — Var(g; | A;).
He called this situation information unbiased and
noted that the optimal g is simply }_,g; in this
case.

EXAMPLE 1.1 (Continued). In the situation where
the scientific objective may be characterized by the
regression model E(y;) = p;(0), wherey; isan n; x 1
vector of responses, the use of g; =y; — p; leads to

K N/
5= 2 (%) Cov 50— m(o)

This was referred to as the generalized estimating
equation (GEE) by Liang and Zeger (1986). Note
that the dimension of g; varies from subject to sub-
ject in this case and that when n; = 1 for all i, g
reduces to (2.3), the quasi-score function.

Prentice (1988) suggested a second-order sys-
tem of equations where if w;, = (y;1,..., Yin,
Yi1¥izs -+ +» Yin;—1Y4n,;), then g; = w; — E(w;). Here
the variance of g; depends upon third- and fourth-
order cumulants so that the optimal second-order
equations are less easily applied than simpler
alternatives.

ExaMPLE 1.2 (Continued). While the conditional

score function has been shown to be optimal, it is:

complicated to compute. As an alternative, one may
consider the estimating function g; = y;1(n;5—y;2)—
0yio(nij1—vi1), i =1,..., K. The unbiasedness of g;
is obvious as

E(g:) = ninigpin (1 — pig) — 0nyniomio(1 — pyq) = 0.

In fact it has been shown that E(g; | A;) =0for A; =
¥i1+ ¥i2 Mantel and Hankey, 1975). It is worth not-
ing that the conditional unbiasedness shown here
and many other cases can be done using complete-
ness and sufficiency of A;, if it exists. The computa-
tion of B;(0) = E(dg;/d0 | A;) Var(g; | A;)~!, which
depends on 6 only, involves the calculation of the

four moments of the extended hypergeometric dis-
tribution. However, simplification occurs when eval-
uated at 8 = 1, that is, B;(1) = 1/(n; + m;) (Yanagi-
moto, 1989; McCullagh, 1991). Interestingly, the so-
lution of }°; B;(1)g; = O gives rise to the well-known
Mantel-Haenszel estimator (Mantel and Haenszel,
1959). Note that this estimating function approach
can easily accommodate regression analysis for odds
ratio [e.g., 0, = 60;(x;;0)], where x; represent con-
founding variables to be controlled.

The estimating function approach may be applied
to situations where the binomial assumption for the
y’s no longer holds. This occurs in studies of famil-
ial aggregation for diseases where y;; is the num-
bers of affected among n;; relatives of the ith sam-
pled case and y;y is the numbers of affected among
n;o relatives of the matched control (Liang, 1985).
The parameter of interest 6 measures the degree
of familial aggregation. The binomial assumption is
clearly violated because individuals from the same
family are correlated. Hence, the conditional score
method is not applicable. In the absence of a likeli-
hood function to work with, we may appeal to the
same g; defined earlier which still has zero expec-
tation for each i =1, ..., K, the number of sampled
cases. The trade-off in this situation is that there
is no obvious candidate for the conditioning event
A, such as y;; + y;» when the binomial assump-
tion fails to hold. Consequently, the computation of
E(og;/96) and Var(g;) involves higher moments of
the y’s which may depend on additional parameters
such as those describing the within-family correla-
tions.

EXAMPLE 1.3 (Continued). Largely for mathe-
matical convenience, the beta-binomial distribution
is used to account for the litter effect in terato-
logic experiments. The biologic justification and
especially the finite sample performance of likeli-
hood inference under the beta-binomial distribution
have recently been challenged (e.g., Kupper, Portier,
Hogan and Yamamoto, 1986; Liang and Hanfelt,
1994). Note that the conditional score method does
not work in this case since the minimal suffi-
cient statistic for &, ty is y itself. Consequently,
U.(0,d) = 0. Since the scientific objective can be
realized through a regression model for the means,
one alternative is to use the quasi-score function
with g; = v, — n;(0) as the basis for inference.
Through extensive simulation studies, Liang and
Hanfelt (1994) found that, for the configurations be-
ing considered, this approach outperformed the mle
based on the beta-binomial likelihood even when
the data were generated from the beta-binomial
distribution.
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EXAMPLE 1.4 (Continued). Special attention is
needed for the proportional hazards model since ¢
is of infinite dimension. To establish the notation,
let tq) < to < < tk) be the distinct failure
times observed among a sample of n subjects. Fre-
quently, n > K because some subjects are censored,
that is, are still event-free at the end of the study
or lost to follow-up during the study. For each i, we
consider g; = x;) — E(x(;|A;), where the random
variable x;) is the vector of covariates of the sub-
ject failed at ¢;) and A, represents the information
on the history of the covariates and censoring prior
to time ¢(;) plus the information that a subject fails
at {(;. With this conditioning set, we choose

% ¢cr,, Xe exp(x;0)
Z teR, exp(xi’o) ’

8 =X —

which depends on 6 only. Here R;, is the set of
subjects who were at risk prior to ¢(;). It is easy
to verify that Cov(g;|A;)™! = —E(dg;/0|A,;) and
hence g; is information unbiased, that is, g =>_; g;.
Of course, this g is the well known partial score
function (Cox, 1975).

4.2 Handling Nuisance Parameters

So far we have avoided consideration of the pos-
sible dependence of g on additional parameters &.
The reason for this dependency on ¢ is that, while
the g; are chosen to be functionally independent of
&, the distribution of g; in general depends on ¢.

There are two approaches by which this depen-
dence can be eliminated. In the first, we choose g;
whose distribution, conditional on A;, depends on 0
only. It is then obvious that g in (4.1) depends func-
tionally on 0 not on ¢. Such g; are called pivotal and
were considered by Morton (1981). While desirable,
this approach has found limited usage as, except in
special cases such as location-shift models, it is dif-
ficult to find such pivotal quantities without the full
knowledge of the distribution for y. As an applica-
tion of this approach, we note that the distribution
of g; given A, in Example 1.4 depends on 6 only.

The second approach relies upon finding g;’s
" which are information unbiased, that is, for which
E(7:/98 |A;) = Cov(g;|A;)™! so that g = X, g,
independent of ¢. The conditional score function
in exponential families (3.2) and the partial score
function in Example 1.4 are special cases. A limi-
tation of this approach is the requirement that the
dimension of g; be the same as that of 0. In ad-
dition, just as for the first approach, there are no
general rules for finding such g; without full knowl-
edge on the distribution of y. Furthermore, the

finding of such g; may be at the expense of losing
efficiency, which is sometimes considerable.

More generally, the distribution of g in (4.1) will
depend upon 6 and ¢. However, we argue that the
impact of the nuisance parameters on g and on the
corresponding solution of g = 0 is small. This is
because the three orthogonality properties (b), (c)
and (d) enjoyed by the conditional score function
U.(0, ) are shared by g in (4.1) as well; that is, we
have that the following hold:

(b) E(g(0, d*);0, d) = 0 for all 8, & and &*;

(c) E(9g(0, d*)/ddb*;0,d) =0 for all 0, b and d*,

(d) Cov(g(0, d),dlog f(y;0,d)/ddb) = 0 for all 0
and .

The orthogonality property (a) would be satisfied
if &y is a function of A; which is not null. To com-
plete the process, we assume the existence of (f)o,
which is a v/ K-consistent estimator of ¢, that is,
VE(by—d)=0 »(1). One may estimate 0 byA iterat-
ing until convergence between solving g(0, dby) =0
and updating ¢4. There are three important impli-
cations of this approach. First, the choice among
Vv K-consistent estimators of ¢ is irrelevant, at least
when K is large; that is, the asymptotic variance of
6 is the same as when ¢ is known. To see this, note
that, under regularity conditions,

(0, bo) _ 2(0, )
NS NS

1 2849 )00 (0’;’ 9 SR (o — b)

+0,(VEK).

The asymptotic equivalence between g(8, bgy)/vK
and g(0,d)/vK is established as, according to
property (c), K~! 9g(0, &)/d¢ converges to zero as
K — oo, while vE(dbg — d) = O,(1).

Second, to pursue this asymptotic analysis fur-
ther, we note that, for any j > 2,

g8, d)/9d")
T (6, )60 ~ o7

due to property (c*):

(c*) E(og)(0, d)/dd); 0, d*) = 0 for all 0, b and
¢

Thus, the bias of g(0, &,) with ¢, plugged into the

estimating function is diminished at a faster rate

than that of Uy(0, dg), the ordinary score function

evaluated at dy.

The third point is that this approach enjoys a
certain robustness, which we now describe. As-
suming that ¢, can be derived as the solution of
¥, E((ow;/ddb) | AF) Cov ™ (w; |A})w; = O for some




INFERENCE 171

estimating functions w;(y;,0,d) and condition-
ing event A}. The estimating procedure described
above is formally.equivalent to jointly solving

[E(E'E Ai) 0

00

>

i—1 OW; | o
o (% |4)
(4.2)
, ( Cov™'(g; | A)) 0 )
0 Cov l(w; |A})

(®)-

In words, when solving (4.2), g; and w; are weighted
as if they are independent of each other. Conse-
quently, even if the assumption on how ¢ describes
the distribution of the y’s is misspecified, the solu-
tion remains consistent and its asymptotic variance
is unaltered. This is because the 8-component of the
estimating equations in (4.2) involves g; only; in fact
it is identical to (4.1). On the other hand, this form
of model robustness is achieved at the expense of
losing efficiency if the assumption on ¢ is indeed
incorrect. While the efficiency loss for @ can only be
examined case by case, our experience has been that
the gain in robustness by adopting this approach is
far greater than the loss in efficiency.

Returning to the quasilikelihood setting with g; =
yi — 1i(0) and w; = (y; — 1;)” — V(i3 0, &), the
discussion raised above amounts to the compari-
son between the quasi-score function method and
the quadratic estimating function method in (2.4)
as discussed by Crowder (1987) and Firth (1987).
The approach described in this subsection, which
is the quasi-score method, is robust in that it is
consistent regardless of the correct specification of
V; as the variance of y;, a property not shared by
the quadratic method. On the other hand this ap-
proach is less efficient compared to the quadratic
estimating method, as it does not utilize the infor-
mation about the mean parameters 0 in the sec-
ond moments. Note that the generalized estimat-
ing equation methods discussed in Example 1.1 of
- Section 4.1 are multivariate analogues of the quasi-
score function and the quadratic estimating func-
tion, and hence the trade-off between bias and pre-
cision discussed above applies here as well.

EXAMPLE 3.3 (Continued). The estimating func-
tion in (4.2) in this case would be the same as
in (3.6) except ¢ is taken as zero. Consequently,
the estimator for 8 = (6, 6y) is the conventional
least-squares estimator. This estimator remains un-
biased even if the constant variance assumption is

violated. The variance of 6, derived from solving
(3.6) is
¢(ds — ¢°) — ¢3

V(d)l’ ¢37 4)4) K(d)ai — (bz))tl)t() )
where A; is the proportion of subjects with x; = J,
J =0, 1. The efficiency of 6, estimation when using
(4.2) relative to using (3.6) is then

V(hy, b3, bs) $3

4.3 =1-
(4.3) V(d1, b3 =0, dy) (ps— P2)d

While one can always find pathological cases
to make the ratio in (4.3) arbitrarily small, the
efficiency of the estimator obtained from (4.2) is
relatively high in most realistic situations. This ob-
servation reflects our experience from analyzing
binary longitudinal data and from finite sample
and asymptotic efficiency studies (Liang and Zeger,
1986; Liang, Zeger and Qaqish, 1992).

5. DISCUSSION

We have used this opportunity to review the topic
of statistical inference using estimation function in
the presence of nuisance parameters. We have ar-
gued that estimating functions are one tool for min-
imizing the influence of nuisance parameters. This
can occur in two ways. The most fundamental is that
the use of estimating functions allows us to specify
only that part of the probability mechanism that is
of scientific interest. Hence, we avoid a second part
and its associated nuisance parameters. For exam-
ple, in the logistic model for longitudinal data, we
need only specify the mean and covariance of the
repeated observations for each individual. Higher-
order moments which are not of scientific interest
are not modelled explicitly. Second, we can design
estimating functions so that their solutions are in-
fluenced as little as possible by nuisance parame-
ters. In this spirit, we advocate, in larger samples,
the use of the estimating equation g defined in (4.1)
or, equivalently, (4.2) because asymptotic inferences
about 0 using g are not affected by the incorrect
specification of the model for ¢. An example is the
choice between quasilikelihood and quadratic esti-
mating function estimators when regression coeffi-
cients are the scientific focus. The increase in ef-
ficiency that might be gained through use of the
quadratic equations (Firth, 1987) may not in the
great majority of problems justify their increased
sensitivity to the correct specification of the vari-
ance structure. As Tukey (1986) has pointed out, it
is increasingly difficult to estimate higher moments
from data. Hence assumptions about higher-order
moments or about their relationships with lower
moments are increasingly difficult to verify.
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Comment

V. P. Godambe

It is indeed very insightful on the part of the ed-
itors to put the two papers, one of Reid and the
other of Liang and Zeger, together for discussion.
For, at first sight, the two papers have little in
common. By and large, the first paper has a para-
metric setup, the other a semiparametric one. Yet
the subject matters of the two papers have deeper
links which remain to be explored. On one hand,
we have results concerning profile likelihood pri-
marily based on parametric models (cf. Cox and
Reid, 1987), and on the other hand, we have re-
sults based on semiparametric models utilizing op-
timal estimating function theory. How to compare
these two sets of results? This stimulating ques-
tion has remained largely uninvestigated. Among
some exceptions are included the demonstrations
of Cox’s partial likelihood (Cox, 1975) as the opti-
mal estimating function for a semiparametric model
(Godambe, 1985) and similar optimality of the score
function obtained from the Cox—Reid (Cox and Reid,
1987) profile likelihood (Godambe, 1991b). Possibly

other discussants will provide other examples. Fur-

ther related comments are given in my discussion
of the paper by Liang and Zeger, to follow.
~ I'liked both the papers. However, due to time con-
straints I will restrict my additional comments only
to one paper (Liang and Zeger). I do hope that the
two papers and their discussion would stimulate
further research in the problem area (briefly men-
tioned above) implied by the papers.

V. P. Godambe is Distinguished Professor Emeritus
and Adjunct Professor, Statistics and Actuarial Sci-
ences Department, University of Waterloo, Waterloo
N2L 3G1, Ontario, Canada.

cal studies involving reproduction, teratogenesis or carcino-
genesis. Food and Cosmetic Toxicology 8 177-182.

YANAGIMOTO, T. (1989). Combining moment estimates of a pa-
rameter common through strata. J. Statist. Plann. Inference
25 187-198.

ZEGER, S. L. and LIANG, K.-Y. (1986). Longitudinal data analysis
for discrete and continuous outcomes. Biometrics 42 121—
130.

ZHAO, L. P. and PRENTICE, R. L. (1990). Correlated binary re-
gression using a generalized quadratic model. Biometrika
77 642-648.

Liang and Zeger have a lucid style of presenta-
tion. With properly selected examples they first il-
lustrate how the existence of nuisance parameters
can affect inference about the parameter of interest.
Using the same examples they later demonstrate
how the effect of the nuisance parameters can be re-
duced or eliminated using estimating function the-
ory. All this is accomplished at a common level of
understanding. This paper therefore has both sci-
entific and pedagogical value.

The following comments are meant to clarify and
emphasize some points in the paper which perhaps
have not received enough attention.

In Section 2.4, the authors state that a major lim-
itation of estimating function theory is that it as-
cribes optimality to the estimating function, while
scientists and practitioners are concerned about es-
timators. They quote Crowder’s remark “This is
like admiring the pram rather than the baby”
(Crowder, 1989), from the discussion of the paper
of Godambe and Thompson (1989); these authors’
reply to Crowder, not reproduced in the present pa-
per, is given below with some elaboration. I hope
this will remove some misunderstanding about an
important aspect of the subject.

How good is the estimate? Conventionally the
question is answered in terms of the “error” of the
estimator. Now the concept of error is somewhat
complicated and does not admit a simple defini-
tion. Certainly error is not just a root of an arbi-
trary (unbiased or nearly so) estimate of variance.
In parametric inference, however, the practice is
fairly clear. For a parametric model, the error is de-
rived from the natural estimate of the variance of
the score function. The error is the inverse of the
square root of observed Fisher information (Efron



