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On the Impact of Bootstrap in
Survey Sampling and
Small-Area Estimation
P. Lahiri

Abstract. Development of valid bootstrap procedures has been a challeng-
ing problem for survey samplers for the last two decades. This is due to the
fact that in surveys we constantly face various complex issues such as com-
plex correlation structure induced by the survey design, weighting, imputa-
tion, small-area estimation, among others. In this paper, we critically review
various bootstrap methods developed to deal with these challenging issues.
We discuss two applications where the bootstrap has been found to be ef-
fective.
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1. INTRODUCTION

Efron (1979) proposed his bootstrap method to
study properties of various nonlinear smooth and non-
smooth statistics. The method involves generation of a
large number of independent resamples or bootstrap
samples, each drawn from the original sample with
replacement. For each such resample, the nonlinear
statistic of interest is calculated and the values of the
statistic for these resamples form the basis of infer-
ence. The properties of the bootstrap method for both
smooth and nonsmooth statistics have been extensively
studied for the i.i.d. case. The bootstrap is a computer-
intensive method. With the advent of modern computer
technology, however, the method offers a convenient
framework for analyzing data effectively, especially for
complex problems where an analytical solution is ei-
ther nonexistent or cumbersome to apply.

This paper provides a critical review of various mod-
ifications of Efron’s original bootstrap to handle com-
plex issues in survey sampling. We note that other
resampling techniques such as the the jackknife and
balanced repeated replication (BRR) have been used
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by survey samplers. The bootstrap, however, is proba-
bly the most flexible and efficient method of analyzing
survey data since it can be used to solve a variety of
challenging statistical problems (e.g., variance estima-
tion, imputation, small-area estimation, etc.) for com-
plex surveys involving both smooth and nonsmooth
statistics. Readers interested in other resampling meth-
ods in survey sampling are referred to an excellent re-
view paper by Rust and Rao (1996).

Various federal and private agencies routinely con-
duct large-scale sample surveys. In a typical sample
survey, a suitable probability sampling scheme is em-
ployed to collect data from a finite survey popula-
tion. Data collection usually involves stratification of
the survey population and selection of ultimate sam-
pling units in several stages. The sample selection
process invariably introduces a complex correlation
structure which makes the development of a theoret-
ically valid bootstrap method challenging. A survey
weight, representing a certain number of units in the
finite population, is usually attached to each unit in
the sample to account for various factors such as
the unequal probability of selection, nonresponse, post-
stratification and calibration. The incorporation of
these important survey weights in the bootstrap method
has received considerable attention over the last decade.
The survey-weighted statistic of interest yields
unbiased or nearly unbiased estimators of the corre-
sponding finite population parameter from the random-
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ization theory perspective where the observations are
treated as fixed and the random mechanism generat-
ing the survey data forms the basis for inference (see
Cochran, 1977). For sample surveys, bootstrap meth-
ods have been traditionally validated under randomiza-
tion theory.

In sample surveys, missing data are plentiful. When
a sampling unit does not respond to any of the survey
questions, the problem of unit nonresponse arises.
It has been a common practice to handle such unit
nonresponse by first forming suitable weighting classes
using auxiliary variables observed on all sampling
units and then suitably adjusting survey weights for
all respondents. A nonresponse adjustment factor is
the same within each weighting class but different
for different classes (see Kalton and Kasprzyk, 1986).
For a method of forming weighting classes using a
logistic or probit regression model, see Little (1986).
In case a sampling unit responds to some but not
all survey questions, we encounter the problem of
item nonresponse. Various deterministic (e.g., mean,
ratio, regression, etc.) and random (e.g., hot deck)
imputation methods exist to handle item nonresponse.
See Shao and Sitter (1996). Hansen, Hurwitz and
Madow (1953) recognized the danger of using standard
survey sampling methods which treat imputed values
as if they were true values. Imputation introduces
errors which must be accounted for. Section 3 reviews
the literature on bootstrap methods which account for
imputation errors in analyzing complex survey data.

Large-scale sample surveys are usually designed to
produce reliable estimates of various characteristics of
interest for large geographic areas. However, for effec-
tive planning of health, social and other services, and
for apportioning government funds, there is a grow-
ing demand to produce similar estimates for smaller
geographic areas and subpopulations, called small ar-
eas, for which adequate samples are not available. The
usual design-based small-area estimators are unreliable
since they are based on a very few observations that
are available from the area. In the absence of a reliable
small-area design-based estimator, we may use either
a frequentist predictor (e.g., empirical best linear un-
biased predictor, or EBLUP) or a hierarchical Bayes
estimator. These methods essentially use a suitable
multi-level mixed model or hierarchical Bayes model
which captures various salient features of the sampling
design and combines information from censuses or
administrative records in conjunction with the survey
data. For a review of small-area estimation, see Ghosh
and Rao (1994), Rao (1999), Lahiri and Meza (2002)

and Pfeffermann (2002), among others. Section 4 re-
views the parametric bootstrap methods which account
for various sources of uncertainties for EBLUP [same
as empirical Bayes (EB)]. The method emerges as a
very flexible and general method in covering a wide
variety of small-area models.

Finally, in Section 5, we briefly discuss two real-life
applications of bootstrap methodology from the U.S.
Department of Education and the U.S. Bureau of Labor
Statistics.

2. BOOTSTRAP METHODS FOR
COMPLEX SURVEYS

In this section, we provide a history of the evolution
of various bootstrap methods for complex surveys
(anything other than simple random sampling with
replacement). In the process, we attempt to bring out
similarities and differences among various bootstrap
methods proposed in the literature. Bootstrap methods
in survey sampling are usually justified from the
randomization approach to survey sampling which
may be described as follows.

Suppose we have a finite population of N (< ∞)

elements labeled as {1, . . . ,N}. Let yi be the value of
a characteristic (or possibly a vector of characteristics)
for the ith unit of the finite population (i = 1, . . . ,N).
In general, we are interested in a variety of nonlinear
functions of yi (i = 1, . . . ,N). Here are a couple of
examples:

(i) A smooth function of finite population mean,
say θ = g(Ȳ ), where Ȳ = N−1 ∑N

i=1 yi, the finite
population mean.

(ii) A smooth function of a vector of finite popu-
lation means, say θ = g(Ȳ1, . . . , Ȳp)T , where Ȳj de-
notes the j th finite population mean (j = 1, . . . , p).
This case covers finite population variance (σ 2 =
Ȳ1 − NȲ 2

2 , where Ȳ1 = N−1 ∑N
i=1 y2

i and Ȳ2 = Ȳ ),
ratio of finite population means (R = Ȳ1/Ȳ2, where
Ȳ1 = N−1 ∑N

i=1 yi and Ȳ2 = N−1 ∑N
i=1 xi) and corre-

lation between two characteristics [ρ = (Ȳ5 −NȲ1Ȳ2)/√
(Ȳ3 − NȲ 2

1 )(Ȳ4 − NȲ 2
2 ), where Ȳ3 = N−1 ∑N

i=1 y2
i ,

Ȳ4 = N−1 ∑N
i=1 x2

i and Ȳ5 = N−1 ∑N
i=1 xiyi].

(iii) Nonsmooth functions (e.g., a quantile) of a
finite population.

A sample of size n is drawn using a probability
sampling design. Let p(s) denote the probability of
drawing the particular sample s out of all possible
samples S. Thus, p(s) ≥ 0 and

∑
s∈S p(s) = 1. In the

traditional randomization theory in survey sampling,
yi (i = 1, . . . ,N) are treated as fixed and all the infer-
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ences are made with respect to p(s), that is, the random
mechanism which generates data from the finite pop-
ulation. Design unbiasedness [i.e., unbiasedness with
respect to the sampling design p(s)] has played an im-
portant role in survey sampling. For nonlinear cases
as in (i) and (ii) above, a standard estimator of θ is

θ̂ = g( ˆ̄Y 1, . . . ,
ˆ̄Yp), where ˆ̄Y j is an unbiased or nearly

unbiased estimator of Ȳj (j = 1, . . . , p) under p(s). In
the case of (iii), one can use the quantile of an unbi-
ased or nearly unbiased estimator (under the sampling
design) of the finite population distribution function.

As is apparent from the discussion in the previous
paragraph, in survey sampling the evaluation of the
bias of an estimator is important. Also important is
the production of standard error estimates and the con-
struction of confidence intervals. For the linear case,
all these do not pose any problem and exact calcula-
tions are possible using the sampling design (see, e.g.,
Cochran, 1977). For the nonlinear case, however, exact
calculation is either difficult or impossible and the lin-
earization method (same as the Taylor series) has been
used. However, this method is very cumbersome espe-
cially for complex sampling designs and different vari-
ance formulas are needed for different estimators.

As an alternative to the linearization method, various
resampling methods have been developed for complex
surveys. Compared to the linearization method, these
methods are generally computer intensive but are
easy to implement. The bootstrap has been found to
be a very effective and versatile resampling method
which works in all practical situations for smooth and
nonsmooth functions involving complex surveys from
finite populations. The bootstrap methods discussed in
this section involve the following common steps:

1. Using a suitable probability sampling scheme, gen-
erate a resample (or bootstrap sample) from the
original sample.

2. Calculate the nonlinear statistic, that is, θ̂ , using
the resample or a suitable rescaled version of the
resample. Denote it by θ̂∗.

3. Calculate θ̂ for a large number (say, B) of indepen-
dent resamples. Let θ̂∗

1 , . . . , θ̂∗
B be estimates from

the B independent resamples. These θ̂∗
1 , . . . , θ̂∗

B

form the basis of inference for θ . For example, the
bias and the variance of θ̂ are estimated by

biasb = B−1
B∑

b=1

(θ̂∗
b − θ̂∗· ),

vb = (B − 1)−1
B∑

b=1

(θ̂∗
b − θ̂∗· )2,

where θ̂∗· = B−1 ∑B
b=1 θ̂∗

b . For confidence intervals,
we can use the percentile method or bootstrap-t
confidence intervals (see Rao, Wu and Yue, 1992).
Note that the bootstrap method, like the other
resampling methods, requires just one standard
formula which works for any statistics.

The finiteness of the survey population, the complex-
ity of the survey design and the complex weighting
scheme all contribute to the challenging task of find-
ing a valid bootstrap procedure. There are two basic
criteria for a good bootstrap procedure. First, the boot-
strap bias estimate should be 0 for the customary un-
biased estimator in the linear case. Also, in this case,
the bootstrap method should match the customary un-
biased variance estimator. In addition, a good bootstrap
method should produce a consistent variance estimator
for nonlinear statistics. We shall now discuss available
bootstrap methods in the following sections.

2.1 Stratified Simple Random Sampling

Suppose we have a finite population partitioned into
H strata where each stratum contains similar units
and simple random sampling without replacement
(SRSWOR) is used to select a number of ultimate
units within each stratum. Sampling is carried out
independently for different strata. For simplicity in
notation, we shall consider bootstrapping for the case
of a single stratum, that is, H = 1, since the same
bootstrap method needs to be carried out independently
for different strata.

It is well known that ȳ = n−1 ∑
i∈s yi , the usual

sample mean, is unbiased for the finite population
mean Ȳ under SRSWOR and the design variance of ȳ

is given by

V (ȳ) = (1 − f )
S2

n
,

where f = n/N is the finite population correction
(f.p.c.) factor. The f.p.c. is an important factor in finite
population sampling which makes v(ȳ) = 0 when
n = N . When f ≈ 0, simple random sampling with
replacement (SRSWR) is a good approximation to
SRSWOR. The customary unbiased estimator of V (ȳ)

is given by

v(ȳ) = (1 − f )
s2

n
,

where s2 = (n−1)−1 ∑
i∈s(yi − ȳ)2 is the usual sample

variance.
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The usual bootstrap, as described in Efron (1979),
entails taking a SRSWR sample of size n from the
original sample yi , i ∈ s. Let ȳ∗ denote the mean based
on the bootstrap sample. Then the bootstrap variance
estimator of V (ȳ) is given by

V∗(ȳ�) = n − 1

n

s2

n
,

which does not yield v(ȳ). Define the average relative
error (ARE) as

ARE = [E(V∗(ȳ) − V (ȳ)]
V (ȳ)

,

where E and V are with respect to SRSWOR. It
is interesting to note that even for SRSWR from
the finite population (the most favorable case for
the bootstrap) the bootstrap method underestimates,
the ARE being −n−1 (e.g., 20% underestimation for
n = 5). In a hypothetical population setup, Efron
(1982) recognized the problem and suggested a simple
solution of taking a bootstrap sample of size n − 1
instead of n. Needless to say, this works for finite
population sampling as well when f is negligible.
When f is not negligible, the bootstrap method, even
with Efron’s correction, overestimates since it fails
to recover the f.p.c., resulting in a nonzero variance
estimate even for the extreme case of the census when
n = N.

The important problem of recovering the f.p.c. re-
sulted in mainly three different approaches in the lit-
erature: (i) without-replacement bootstrap (BWO), (ii)
with-replacement bootstrap (BWR) and (iii) a hybrid
of the BWR and BWO bootstraps. The BWR approach
attempts to adapt Efron’s original bootstrap by care-
fully choosing the bootstrap sample size or by rescal-
ing the generated bootstrap sample observations. On
the other hand, BWO tries to mimic the original SR-
SWOR sampling design.

We shall now consider the following three cases
which will bring out various issues in the application
of the bootstrap for SRSWOR sampling.

2.1.1 BWO Methods. Obviously, drawing a boot-
strap sample of size n without replacement does not
make sense since it provides the original sample. One
might think of a naive bootstrap without-replacement
sample of size n′ = f n in order to capture the f.p.c.
But this bootstrap sampling yields

V∗(ȳ∗) = (1 − f )
s2

n′ ,

resulting in an ARE of f −1 −1 and thus overestimating
the true variance. To reduce the amount of overestima-
tion, one may consider the method proposed by Gross
(1980). McCarthy and Snowden (1985) called this the
BWO method. The method is as follows: if N = kn,
create an artificial population of N units simply by
copying each of the n elements in the original sample
k times and then take a SRSWOR bootstrap sample of
size n from this artificial population. The method pro-
duces the following variance estimator:

(1 − f )
s2

n

n − 1

n − f
,

resulting in an ARE of (n − 1)/(n − f ) − 1. Thus,
unlike the naive method, it suffers from an under-
estimation problem. But, asympototically, when both
n and N increase with f fixed, the method provides
a consistent variance estimator. However, for stratified
sampling when the sample size within each stratum
is bounded and the number of strata is large (a situa-
tion commonly encountered in small-area estimation;
see Section 4), the method could yield an inconsistent
variance estimator (see Bickel and Freedman, 1984).
Furthermore, in many practical situations, k is not an
integer. When N = kn + r with 1 ≤ r ≤ n − 1, Bickel
and Freedman (1984) proposed the following correc-
tion to Gross’ method.

Construct two artificial populations of sizes kn and
(k + 1)n by copying each sample element k and k + 1
times, respectively. One of the two artificial popula-
tions is then selected using a randomization mecha-
nism which assigns a probability α to population 1
and 1 − α to population 2. From the selected artifi-
cial population, draw a SRSWOR bootstrap sample of
size n and then apply the bootstrap variance formula of
Gross (1980) given above. The parameter α is selected
so that the bootstrap variance estimator equals v(ȳ).
McCarthy and Snowden (1985) discussed some ex-
amples when the bootstrap method of Bickel and
Freedman (1984) is not feasible. In fact, it is not feasi-
ble when n3 < N2.

Sitter (1992b) proposed an alternative to randomiza-
tion of the two artificial populations in order to obtain
the customary variance estimator. He suggested choos-
ing a bootstrap sample size n′ and k so as to capture the
f.p.c. and match the bootstrap variance estimator with
the customary variance estimator. The method, how-
ever, produces noninteger n′ and k and requires appro-
priate randomization between the bracketing integers.
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2.1.2 BWR Methods. McCarthy and Snowden
(1985) noted that it is not essential to mimic the origi-
nal sampling design to capture the f.p.c. One can sim-
ply adapt Efron’s original bootstrap by taking a larger
bootstrap sample than is required if the original sam-
pling plan were SRSWR. They suggested a sample of
size n′ = (1 −f )−1(n−1) which yields the customary
variance estimator v(ȳ). One problem with this method
is that n′ could be noninteger and some randomization
is needed in most practical situations.

Rao and Wu (1988) proposed a BWR method which
rescales the bootstrap sample so as to recover the f.p.c.
in the usual SRSWOR variance formula. This proce-
dure selects m BWR sample, say y� = (y�

1, . . . , y
�
m)T ,

from the original sample and then rescales the boot-
strap sample by

ỹi = ȳ + m1/2(n − 1)−1/2(1 − f )1/2(y�
i − ȳ).

The bootstrap variance estimator reduces to the cus-
tomary variance estimator in the linear case for any
choice of m. It is also possible to match the third mo-
ment by choosing m appropriately. This method avoids
the problem associated with noninteger sample size but
improper choice of m could lead to negative values
of θ̂ even when θ is positive, as noted by Rao and Wu
(1988). For stratified sampling with replacement, Rao
and Wu (1988) proved the consistency of their rescal-
ing bootstrap variance estimator for a smooth function
of means. In this case, m can be chosen to match the
third moment and it turns out the same choice ensures
that the bootstrap histogram of a t statistic captures
the second-order term of the Edgeworth expansion in
the special case of known population strata variances.
However, it is not yet known if a similar property will
hold for more complex sampling designs and for non-
smooth functions. For simulation results on the boot-
strap and other rival methods for stratified sampling,
see Rao and Wu (1988), Kovar, Rao and Wu (1988),
Sitter (1992a, b) and Rao, Wu and Yue (1992).

2.1.3 A Hybrid of BWO and BWR Methods. Sitter
(1992a) proposed a mirror-match bootstrap method for
a variety of complex survey designs. This method can
be viewed as a combination of BWO and BWR. Sitter’s
method selects the bootstrap sample in two steps:

1. Draw a SRSWOR of size n′ < n.
2. Generate the bootstrap sample of size n� by draw-

ing k = (f �f )−1(1 − f �) independent SRSWR

bootstrap samples, each of size n� = n(1 − f �) ·
(1 − f )−1, from the SRSWOR sample obtained
in 1.

Note that the choice of n′ = 1 in Sitter’s method re-
sults in the BWR originally proposed by McCarthy and
Snowden (1985). If k is not an integer, Sitter (1992a)
suggested a randomization between the bracketing in-
tegers (note that n� is an integer if k is). If f ≥ n−1,
the choice of n′ ensures the same f.p.c. as the original
sampling design. For stratified sampling, Sitter (1992a)
showed that, under suitable regularity conditions and
a flexible asymptotic setup, his method yields a con-
sistent variance estimator for smooth nonlinear statis-
tics and for θ = ȳ the bootstrap histogram matches
the second-order term of the Edgeworth expansion for
an appropriate choice of n�, f � = f within each stra-
tum.

2.2 Stratified Multistage Sampling

We shall first consider two-stage sampling without
stratification. In a two-stage sampling design, first a
SRSWOR of n primary stage units (p.s.u.’s) is drawn
from N primary stage units (p.s.u.’s) in the population,
and then from each selected p.s.u. a SRSWOR of mi

secondary stage units (s.s.u.’s) is drawn from Mi

s.s.u.’s in the ith p.s.u. (i = 1, . . . , n). For this design,
the bootstrap methods discussed in the previous section
do not work. To see this, consider a special balanced
case when Mi = M (i = 1, . . . ,N) and mi = m, i ∈ s.

Consider the estimation of the population mean

Ȳ = (MN)−1
N∑

i=1

M∑
j=1

yij = N−1
N∑

i=1

Ȳi,

where Ȳi = M−1 ∑M
j=1 yij denotes the population

mean for the ith p.s.u. (i = 1, . . . ,N ). An unbiased
estimator of the population mean is given by ȳ =
n−1 ∑n

i∈s ȳi , where ȳi is the sample mean for the ith
selected p.s.u. (i = 1, . . . , n). Note that under two-
stage sampling

V (ȳ) = (1 − f1)

n
S2

B + 1 − f2

mn
S2

W,

where f1 = n/N, the f.p.c. for first-stage sampling;
f2 = m/M, the f.p.c. for second-stage sampling within
the selected p.s.u.’s; S2

B = (N − 1)−1 ∑N
i=1(Ȳi − Ȳ )2,

the population variance of p.s.u. means; and S2
W =∑M

i=N

∑M
j=1(yij − Ȳi )

2/N(M − 1), the population
variance among the elements within the p.s.u.’s. The
customary unbiased estimator, say v(ȳ), of V (ȳ) is
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given by

v(ȳ) = 1 − f1

n
s2
B + f1(1 − f2)

mn
s2
W,

where s2
B = (n − 1)−1 ∑

i∈s(ȳi − ȳ)2 and s2
W =∑

i∈s

∑
j∈si

(yij − ȳi)
2/n(m − 1). All these results are

given in Cochran (1977, page 277). The bootstrap
method (after the correction described in the previ-
ous section) is simply vb = (1 − f1f2)s

2/mn, where
s2 = ∑

(i,j )∈s(yij − ȳ)2/(nm − 1). It can be seen that

E(vb) = (1 − f1f2)

[
n − 1

nm − 1

S2
B

n
+ S2

W

mn

]
.

Thus, the bootstrap method does not produce the
customary unbiased estimator v(ȳ). For the case when
f1 = f2 = 0, we get

ARE = −n(m − 1)

nm − 1

1

1 + R/m
,

where R = S2
W/S2

B. This implies that the bootstrap
methods discussed earlier underestimate the true vari-
ance and the amount of underestimation is a decreasing
function of R and n. For the unbalanced case, the un-
derestimation is expected to be more serious.

The bootstrap methods described in the previous sec-
tion can be adapted to two-stage sampling. A common
feature of all these methods is the drawing of bootstrap
samples in two stages. In the case of the BWO method,
one needs to find n′ and k for bootstrap sampling of the
p.s.u.’s and s.s.u.’s within the selected bootstrap p.s.u.’s
with randomization to take care of noninteger sam-
ple sizes. See Sitter (1992b). In the case of the BWR
rescaling method of Rao and Wu (1988), one needs to
rescale at both stages of sampling. As Sitter (1992a)
says, it is difficult to compare two methods in two-stage
sampling either analytically or via simulation because
both involve complex algorithms. The bootstrap meth-
ods for two-stage sampling meet the two basic proper-
ties. The methods can be readily extended to stratified
two-stage sampling by simply drawing bootstrap sam-
ples independently for different strata.

Now, consider the general case of stratified multi-
stage sampling. As before, since the same bootstrap
sampling is performed for each stratum we consider
the case of a single stratum. Suppose n p.s.u.’s are sam-
pled and within the ith selected p.s.u. subsampling is
performed in multiple stages to select ni ultimate sam-
pling units (i = 1, . . . , n). Let yij and wij denote the
observation and the sampling weight associated with
the (i, j)th unit sampled (i = 1, . . . , n; j = 1, . . . , ni).

Ignoring the complicated weighting adjustment fac-
tors in the construction of sampling weights and the
f.p.c., Rao, Wu and Yue (1992) suggested a bootstrap
method which resamples the p.s.u.’s with replacement.
The method rescales the sampling weights instead of
the bootstrap observations themselves in order to cover
nonsmooth statistics. The weights are rescaled as fol-
lows:

w∗
ij = wij

[(
1 − (m/(n − 1))1/2)
+ (m/(n − 1))1/2(n/m)ri

]
,

where m is the bootstrap sample size and ri is the
number of times the ith p.s.u. is selected. For the linear
case with p.s.u.’s drawn with replacement, the method
provides an unbiased variance estimator but not the
usual with-replacement variance estimator because of
the Monte Carlo error caused by the finite B . For
the general case, the method overestimates the true
variance to some extent but it has the attractive feature
that it does not require knowledge of the sampling
design beyond the first stage.

As Rust and Rao (1996) noted, there is considerable
benefit and little loss, if any, in choosing m = n − 1 in
which case w∗

ij = wij (n/(n−1))ri. For n > 2, as noted
by Rust and Rao (1996), the bootstrap has a distinct
advantage over BRR which is tedious to apply with
n > 2. In this connection, see Nigam and Rao (1996)
for the concept of balanced bootstrap.

Shao and Tu (1995, Section 6.4.4) discussed the con-
sistency of different bootstrap variance estimators of
a function of averages. They also discussed the con-
sistency of bootstrap estimators of the distribution of
an appropriate pivotal quantity involving a function of
averages or a sample quantile. A general theory for
higher order comparison of bootstrap confidence in-
tervals with rival methods is not available due to the
difficulties in establishing Edgeworth expansions for
complex survey data. However, some simulation re-
sults show that bootstrap one-sided confidence in-
tervals perform better than those constructed using
normal approximations. See Shao and Tu (1995, Sec-
tion 6.3) for further details.

3. IMPUTATION

A first application of the bootstrap method known
as the approximate Bayesian bootstrap can be found
in Rubin and Schenker (1986). To understand their
method, consider the estimation of the finite population
mean Ȳ when a SRSWR of size n is drawn from a
finite population. The method requires construction of
M completed data sets using the following steps:
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1. Draw r bootstrap donors by taking a SRSWR of
size r from the r observed values (donors) in the
original sample.

2. Impute m = n − r missing values with SRSWR
from the r bootstrap donors obtained in step 1.

3. Repeat steps 1 and 2 to obtain M completed data
sets.

Let ȳI l and s2
I l (l = 1, . . . ,M) denote the sample

mean and the sample variance for these M completed
data sets. Then an approximate Bayesian bootstrap
estimator of Ȳ is given by ȳI = M−1 ∑M

l=1 ȳI l with
estimated variance

v(ȳI ) = 1

M

M∑
l=1

s2
I l

n
+ M + 1

M

{
1

M − 1

M∑
l=1

(ȳI l − ȳI )
2

}
.

This approximate Bayesian bootstrap can be viewed
as a modification of the multiple imputation which
Rubin started in the early 1970’s in the context of
a compensatory database at the Educational Testing
Service (Rubin, 1977, 1994). Such a modification was
suggested in order to achieve good randomization
properties of the multiple imputation for the popular
hot-deck imputation which is improper in the sense of
Rubin (1987, pages 118–119). For large m, the approx-
imate Bayesian bootstrap method has been shown to
be asymptotically valid under simple random sampling
when estimating means or totals. For small m, certain
adjustments are needed to achieve good randomization
properties of the approximate Bayesian bootstrap. See
Rubin and Schenker (1986) and Shao and Tu (1985,
Section 6.5.3) for further details. It is, however, not
clear how this approximate Bayesian bootstrap method
can be extended so that it can provide valid random-
ization inferences for both smooth and nonsmooth sta-
tistics and for different imputation methods (proper or
improper) in the context of complex surveys. See Fay
(1993) and Rao (1996, 2000).

Following the suggestion of Efron (1994), Shao
and Sitter (1996) considered a bootstrap method for
analyzing imputed complex survey data. The method
first replaces imputed values in the bootstrap sample
by new imputed values obtained using the bootstrap
donors and the same imputation method as in the
original sample. It is interesting to compare the Shao–
Sitter method with the Rubin–Schenker method for the
SRSWR case with hot-deck imputation. The Shao–
Sitter method involves the following steps:

1. Draw a SRSWR bootstrap sample of size n−1 from
the original sample.

2. Replace each missing value in the bootstrap sample
in step 1 by a randomly chosen observation from the
donors in the bootstrap sample.

3. Repeat steps 1 and 2 to obtain M final bootstrap
samples.

The bootstrap variance estimator can then be ob-
tained using the M bootstrap samples using the stan-
dard formula, that is, vb given earlier in this section.

For the general stratified multistage design given
in Section 2.2, the Shao–Sitter method requires new
imputations (using the same method as in the original
sample) for missing values in the bootstrap sample
but does not require any change in the bootstrap
weights. Saigo, Shao and Sitter (2001) proposed a
modification of the Shao–Sitter method that does not
require rescaling and can be applied where random
imputation is used and the first-stage stratum sample
sizes are very small.

The role of modeling cannot be ignored in analyz-
ing data that are not missing completely at random
(MCAR). Rubin (1976) formalized models to explain
the missing-data mechanism. Since then, a number of
different classes of models have been proposed in the
literature. Two such classes are the class of selection
models (see Little and Rubin, 1987) and the class of
pattern-mixture models (see Little, 1993). Likelihood-
based methods, both classical and Bayesian, have been
used to analyze missing data using these models. It is
conceivable that the parametric bootstrap method will
improve the classical likelihood-based methods in this
context.

4. PARAMETRIC BOOTSTRAP IN
SMALL-AREA ESTIMATION

To estimate per-capita income for small areas
(population less than 1000), Fay and Herriot (1979)
considered an aggregate level model and used an em-
pirical Bayes method which combines survey data
from the U.S. Current Population Survey with vari-
ous administrative and census records. Their empiri-
cal Bayes estimator worked well when compared to the
direct survey estimator and a synthetic estimator used
earlier by the Census Bureau. To estimate areas planted
with corn and soybeans for 12 counties (small areas) of
north central Iowa, Battese, Harter and Fuller (1988)
used a nested error regression model to combine in-
formation from a firm survey and satellite data which
provide information on the number of pixels planted
with corn and soybeans for each county. To cover
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these two important small-area models, and other mod-
els in common use, Butar and Lahiri (2003) (see also
Butar, 1997) proposed the following model for small-
area data analysis.

Let Yi be an ni × 1 vector of observations available
from the ith small area and let Ui be a ki × 1 vector of
small-area effects. Let Xi and Zi be ni ×p and ni × ki

matrices of known constants. Let n = ∑m
i=1 ni and

k = ∑m
i=1 ki . Consider the following Bayesian model:

MODEL 1.

1. Yi | Ui
ind∼ Nni

(Xiβ + ZiUi,Ri), i = 1, . . . ,m;
2. A priori, Ui

ind∼ Nki
(0,Gi), i = 1, . . . ,m,

where β is a p × 1 column vector of unknown
regression coefficients and Ri = Ri(ψ) and Gi =
Gi(ψ) are, respectively, ni × ni and ki × ki matrices
which possibly depend on ψ , an s × 1 vector of
unknown variance components.

EXAMPLE (The Fay–Herriot model).

1. Yi | θi
ind∼ N(θi,Di), i = 1, . . . ,m;

2. A priori, θi
ind∼ N(X′

iβ,A), i = 1, . . . ,m,

where the Di ’s are known and the Xi’s are p × 1
vectors of known constants. In the notation of Model 1,
ni = ki = 1, Zi = 1, Ui = θi − X′

iβ , ψ = A,
Ri(ψ) = Di and Gi(ψ) = A (i = 1, . . . ,m).

Generally, in small-area estimation, we consider the
estimation of θi = l′iβ +λ′

iUi , where li and λi are p×1
and ki × 1 vectors of known constants, respectively.
Under the above model and squared error loss function,
the Bayes estimator of θi is given by

θ̂i (Yi;β,ψ)

= l′iβ + λ′
iGi(ψ)Z′

iV
−1
i (ψ)(Yi − Xiβ),

where Vi(ψ) = Ri + ZiGiZ
′
i (i = 1, . . . ,m).

When ψ is known but β is unknown, β is estimated
by the maximum likelihood estimator β̂(ψ), where

β̂(ψ) =
[

m∑
i=1

X′
iV

−1
i (ψ)Xi

]−1[
m∑

i=1

X′
iV

−1
i (ψ)Yi

]
.

Plugging in β̂(ψ) for β in the Bayes estimator, we get
the following empirical Bayes estimator of θi :

θ̂i (Yi;ψ)

= l′i β̂(ψ) + λ′
iGi(ψ)Z′

iV
−1
i (ψ)[Yi − Xiβ̂(ψ)].

Note that θ̂i (Yi;ψ) is also the best linear unbiased
predictor (BLUP) under the following mixed linear

model:

Yi = Xiβ + ZiUi + ei,

where the ei’s are independent of the Ui’s and ei
ind∼

Nni
(0,Ri), i = 1, . . . ,m. In practice, β and ψ are both

unknown. In this case, an empirical Bayes estimator
of θi is obtained as θ̂i (Yi; ψ̂), where ψ̂ is a consistent
estimator of ψ satisfying certain regularity conditions
(see Butar and Lahiri, 2003). This is also an EBLUP
under the above mixed linear model.

4.1 Parametric Bootstrap MSE Estimator

Butar and Lahiri (2003) developed a parametric
bootstrap method to estimate the MSE of θ̂i (Yi; ψ̂), de-
fined as MSE[θ̂i (Yi; ψ̂)] = E[θ̂i (Yi; ψ̂) − θi]2, where
the expectation is taken with respect to Model 1. They
first used the following well-known identity due to
Kackar and Harville (1984):

MSE
[
θ̂i (Yi; ψ̂)

] = g1i (ψ) + g2i (ψ)

+ E
[
θ̂i (Yi; ψ̂) − θ̂i (Yi;ψ)

]2
,

(1)

where g1i(ψ) = MSE[θ̂i (Yi;β,ψ)], and the second
and third terms on the right-hand side of (1) mea-
sure additional uncertainties due to the estimation of
β and ψ , respectively. Butar and Lahiri (2003) used
their parametric bootstrap twice—once to estimate the
first two terms of (1) by correcting the bias of g1i (ψ̂)+
g2i (ψ̂) and then to estimate the third term involving
uncertainty due to the estimation of ψ . The parametric
bootstrap MSE estimator is then given by

V BOOT
i = g1i (ψ̂) + g2i(ψ̂)

− E�

[
g1i (ψ̂

�) + g2i (ψ̂
�)

− g1i (ψ̂) − g2i(ψ̂)
]

+ E∗
[
θ̂i(Yi; ψ̂∗) − θ̂i (Yi; ψ̂)

]2
,

where E� is the expectation with respect to the fol-
lowing bootstrap model (i.e., Model 2) which mimics
Model 1 and the calculation of ψ̂� is the same as that
of ψ̂ except that it is based on Y �

i ’s instead of Yi’s.

MODEL 2.

1. Y �
i | U�

i

ind∼ Nni
(Xiβ̂ + ZiU

�
i , R̂i), i = 1, . . . ,m;

2. A priori, U�
i

ind∼ Nki
(0, Ĝi), i = 1, . . . ,m,

where R̂i = Ri(ψ̂) and Ĝi = Gi(ψ̂).

Under certain regularity conditions, Butar and Lahiri
(2003) showed that

E
[
V BOOT

i

] = MSE(θ̂EB
i ) + o(m−1).
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For a special balanced case of the Fay–Herriot model,
the Butar–Lahiri parametric bootstrap is identical [up
to order O(m−1)] to the measure of uncertainty pro-
posed by Morris (1983) who approximated the
posterior variance under flat priors on the hyperpara-
meters. For an application of the Butar–Lahiri para-
metric bootstrap for nonnormal mixed models, see
Lahiri and Maiti (2002). Alternative methods have
been proposed to estimate the MSE of EBLUP or EB.
See Lahiri (1995), Jiang, Lahiri and Wan (2002) and
Chen and Lahiri (2002) for jackknife methods and
Prasad and Rao (1990) and Datta and Lahiri (2000) for
Taylor series methods.

Laird and Louis (1987) proposed a measure of un-
certainty of an empirical Bayes estimator for a very
special case of the Fay–Herriot model with X′

iβ = µ

and Di = D (i = 1, . . . ,m). Instead of estimating the
MSE, they attempted to approximate the posterior vari-
ance under an unspecified prior on the hyperparame-
ters. Butar and Lahiri (2003) argued that in certain
cases the Laird–Louis parametric bootstrap method
may provide a measure smaller than the naive measure
g1i (ψ̂)+g2i (ψ̂) which does not account for additional
uncertainties due to the estimation of various hyper-
parameters and hence may severely underestimate the
true uncertainty of the empirical Bayes estimator. The
Laird–Louis parametric bootstrap method has been ex-
tended to solve a variety of problems. See Arora,
Lahiri and Mukherjee (1997), Booth and Hobert
(1998), Butar and Lahiri (2003), Gail, Pfeiffer, van
Houwelingen and Carroll (2000), among others.

Recently, Pfeffermann and Tiller (2002) considered
a parametric bootstrap approximation to the prediction
mean square error (PMSE) for state-space models with
estimated parameters. Their paper and Butar and Lahiri
(2003) complement each other and one cannot be
considered a special case of the other. This is because
of the differences in the asymptotic settings. As noted
earlier, Butar and Lahiri (2003) developed asymptotic
properties of their parametric bootstrap when m is large
with bounded sample size within each area. In contrast,
asymptotic validity of the parametric bootstrap of
Pfeffermann and Tiller (2002) is with respect to the
sample size within the single area (e.g., n1 in our
notation).

The parametric bootstrap method is quite general
and can conceivably be applied to any model whatso-
ever for which an original estimation problem is de-
fined. However, the study of the asymptotic properties
of such a parametric bootstrap method could be very
challenging.

4.2 Interval Estimation

The naive confidence interval of the small-area
mean θi based on the normal posterior distribution
with estimated hyperparameters is usually too narrow
to meet the target empirical Bayes coverage probability
in the sense of Morris (1983). One possible reason for
this undercoverage is that the naive method does not
account for the additional uncertainties incurred due
to the estimation of the hyperparameters. Even after
the corrections described in Section 4.1, the confidence
interval continues to have an undercoverage problem.
This may be due to the fact that the distribution of the
pivotal random variable used in the construction of the
confidence interval is not adequately approximated by
the normal distribution.

Chatterjee and Lahiri (2002) suggested a parametric
bootstrap confidence interval for θi in the Fay–Herriot
model. To explain their method, first note that an
empirical Bayes estimator of θi is given by

θ̂EB
i = (1 − B̂i)Yi + B̂iX

′
i β̂,

where B̂i = Di/(Di + Â). The parametric bootstrap
empirical Bayes estimator of θ∗

i is given by

θ̂∗EB
i = (1 − B̂∗

i )Y ∗
i + B̂∗

i X′
i β̂

∗,
where (Y ∗

1 , . . . Y ∗
m) is the bootstrap sample generated

using Model 2 and the quantities B̂∗
i and β̂∗ are

computed from the bootstrap sample using identical
formulas as with the original data. Now obtain t0 such
that

P
∗[

θ∗
i ∈

{
θ̂EB∗
i ± t0

√
Di[1 − B̂i(Â

∗)]
}]

= 1 − α.

Chatterjee and Lahiri (2002) showed that

P

[
θi ∈

{
θ̂EB
i ± t0

√
Di(1 − B̂i)

1/2
}]

= 1 − α + O(n−3/2).

Extensions of the above parametric bootstrap method
to other complex small-area models are currently under
investigation. Note that Carlin and Gelfand (1991) pro-
posed certain parametric bootstrap confidence intervals
for a wide variety of models following a suggestion of
Efron (1987). However, the orders of accuracy of their
intervals are not yet known.

5. APPLICATIONS

In this section, we briefly discuss two applications
of the bootstrap in government agencies. For other real-
life applications, see Kaufman (1996), Butar and Lahiri
(2003) and Roberts, Kovacevic, Mantel and Phillips
(2001), among others.
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EXAMPLE 1 (National Center for Education Statis-
tics). Zhang, Brick, Kaufman and Walter (1998) used
a variant of the Shao–Sitter bootstrap method to as-
sess the effect of imputation error on variance esti-
mation using data from the 1993–1994 Schools and
Staffing Survey (SASS). To estimate standard errors
using the bootstrap method, 48 replicate weights were
carefully created. The survey contains many quanti-
tative and categorical variables on the 47,105 public
school teachers who responded to the survey. However,
the authors considered six categorical and seven con-
tinuous variables for their study.

For an arbitrary estimate, say θ̂ , inflation of the
standard error was measured by steI (θ̂)/ ste(θ̂ ), where
steI and ste denote, respectively, the bootstrap standard
error that incorporates the extra imputation error and
the traditional standard error that does not. The study
shows that this inflation factor could be high especially
for the categorical variables with high imputation rates.

The biggest impact of the bootstrap was observed for
T0040, a categorical variable generated by the follow-
ing question with six possible response categories:

“Which of these categories best describes your other
assignment at this school?”

(1) Administrator (e.g., principal, assistant principal,
director, school head),

(2) counselor,
(3) library media specialist/librarian,
(4) coach,
(5) other professional staff (e.g., department head,

curriculum coordinator),
(6) support staff (e.g., secretary, aide).

The imputation rate for this variable is 24%. We
chose this variable to demonstrate the impact of the
bootstrap method. Four types of imputation methods
were used in the SASS. However, for their study the
authors chose a directional nearest neighbor procedure
which is explained below. The imputation was carried
out in the following steps:

1. Different imputation classes were formed by the
following matching variables: (i) groups of states
with similar schools (STGROUP), (ii) state, (iii) in-
structional level of teacher (TEALEVEL), (iv) type
of community where the school is located (URB)
and (v) number of students enrolled in the school

FIG. 1.

(ENR). The following steps are then carried out
within each imputation class.

2. The records are sorted by STGROUP, state,
TEALEVEL, grade level taught this year
(GRADELEVEL), URB, teaching assignment field
(TEAFIELD) and ENR.

3. If the first record in the file is a nonrespondent, it
is replaced by a donor which is the first nonmissing
value as one goes down the data file sequentially.
Otherwise, the first record is stored as a donor for
the first missing value in the file.

4. If the second record is missing, it is imputed by the
value stored in step 3. Otherwise, the nonmissing
value for the second record replaces the donor
stored in step 3 for imputations of the subsequent
records in the data file.

Figure 1 is obtained from the data given in Table 4 of
Zhang, Brick, Kaufman and Walter (1998). It displays
the inflation of standard error estimates. For all the
categories, inflation is more than unity, implying that
the traditional standard error estimates are generally
underestimated. The amount of inflation could be as
high as 2.1.

EXAMPLE 2 (U.S. Bureau of Labor Statistics).
Pfeffermann and Tiller (2002), recently applied their
method (discussed in Section 4) to a model fitted to
7-year (1992–1998) monthly data for Employment to
Population Ratio in the District of Columbia. This
series represents the number of employed persons as
a percentage of the total population over 15 years of
age and is one of the key economic series published
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FIG. 2.

monthly by the Bureau of Labor Statistics for all the
50 states and the District of Columbia.

Due to the rotation pattern of the sampling design
of the Current Population Survey data, sampling au-
tocorrelations cannot be ignored and so in their simu-
lation study Pfeffermann and Tiller (2002) considered
an AR(15) model to describe the observational equa-
tion that corresponds to the sampling errors. The state
equation part of their model (which corresponds to the
unknown population ratio) involves trend, slope and
seasonal components.

The bar charts given in Figures 2 and 3 are obtained
using the data given in Table 1 of Pfeffermann and
Tiller (2002). They display the biases and root PMSE
of different root PMSE estimators of the trend predic-
tor. In the bar charts, we use labels 1, 2 and 3 for the
naive estimator, the bias corrected naive estimator and
the parametric bootstrap estimator, respectively. The
parametric bootstrap method is clearly very effective
in eliminating the relatively large and very significant
biases of the naive prediction MSE even for their com-
plex model involving 18 hyperparameters estimated by
a three-step estimation procedure. It also performs well
in terms of the root PMSE. For other relevant results,
see Pfeffermann and Tiller (2002).

FIG. 3.

6. CONCLUDING REMARKS

In this article, we have reviewed a variety of prob-
lems encountered in survey sampling and discussed
how bootstrap methods have been used to deal with
such problems in an effective manner. Survey sampling
is a fascinating field and is constantly offering prac-
tical problems that are theoretically challenging. The
flexibility of the bootstrap and its straightforward im-
plementation in a complex environment will certainly
make the method promising to handle new problems in
the field of survey sampling. We hope that this paper
will serve as a bridge between mathematical statisti-
cians developing bootstrap methods and practitioners
working in various survey organizations.
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