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Parameter Design for Signal–Response
Systems: A Different Look at Taguchi’s
Dynamic Parameter Design
Arden Miller and C. F. J. Wu

Abstract. A recent trend in the industrial applications of robust pa-
rameter design is to consider complex systems which are called “sys-
tems with dynamic characteristics” in Taguchi’s terminology or signal–
response systems in this paper. This potentially important tool in quality
engineering lacks a solid basis on which to build a rigorous body of the-
ory and methodology. The purpose of this paper is to provide such a
basis. We classify signal–response systems into two broad types: mea-
surement systems and multiple target systems. Three issues are then of
fundamental importance. First, a proper performance measure needs to
be chosen for system optimization, and this choice depends on the type of
system. Taguchi’s dynamic signal-to-noise ratio is shown to be appropri-
ate for certain measurement systems but not for multiple target systems.
Second, there are two strategies for modeling and analyzing data: perfor-
mance measure modeling and response function modeling. Finally, the
proper design of such experiments should take into account the model-
ing and analysis strategy. The proposed methodology is illustrated with
a real experiment on injection molding.

Key words and phrases: Dynamic SN ratio, measurement systems, mul-
tiple target systems, robust parameter design, performance measures,
response function modeling.

1. INTRODUCTION

Taguchi (1987) introduced the robust parame-
ter design (RPD) methodology as a method of im-
proving the quality of a process or product by mak-
ing it less sensitive to factors which cause variabil-
ity. There has been much discussion in the litera-
ture about his methodology and alternative proce-
dures have been proposed. See Nair (1992) and Box
(1988) for general discussions. Most of the statisti-
cal literature concerning robust parameter design
involves situations where the quality characteristic
of interest (response) is a single quantity, Y, which
has a specified optimal value. For example, Shoe-
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maker, Tsui and Wu (1991) presented a case study
involving the plating of silicon layers on wafers. In
this case, the response was the thickness of the sil-
icon layer. A target value of 14.5 micrometers had
been identified and the goal of the experiment was
to determine conditions which would result in the
distribution of Y being as concentrated as possi-
ble around this value. Another example, presented
by Pignatiello and Ramberg (1985), involves a heat
treating process of leaf springs used on trucks. The
objective was to develop a process which would re-
sult in springs whose free height was as close as pos-
sible to the target value of 8 inches. Taguchi used
the somewhat confusing term “static characteristic”
to refer to this type of application, which we call a
simple response system.

Taguchi also identified a second type of applica-
tion for robust parameter design methodology which
he called “dynamic characteristics.” Simply stated,
this refers to situations where the response is re-
quired to assume different values as a result of
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changes in a signal factor,M. For example, a method
for determining the amount of calcium in a water
sample must produce different responses for differ-
ent amounts of calcium. The performance of this
type of system can only be evaluated by considering
the relationship between the response and the ac-
tual amount of calcium present in samples (signal).
As the term dynamic is misleading, we call this a
signal–response system because the signal–response
relationship is of prime importance. Since many en-
gineering systems can be adequately described as
signal–response systems, this methodology has be-
come increasingly important in engineering appli-
cations. See, for example, many case studies in the
American Supplier Institute Symposia on Taguchi
Methods (Dearborn, Michigan). In spite of the prac-
tical impact, signal–response systems have received
little attention in the research literature.

In this article we consider in detail an experiment
described by DeMates (1990) on injection molding.
As the system was required to inject different
amounts of material for different applications, a re-
liable method of controlling the amount of material
injected was needed. Part weight was adopted as
the response, and high injection pressure was cho-
sen as the signal factor due to its known ability to
change the amount of material injected. Seven con-
trol factors, each at two levels, were included in the
experiment (see Table 1). The term control factors
designates factors which can be readily adjusted to
different levels by the process operator and once
set remain constant during the operation of the
system. For the injection molding experiment, the
control factors were chosen since they were thought
to have the potential of affecting variability in part
weight. One compound noise factor which repre-
sents the settings of four confounded noise factors
was used (see Table 2). A noise factor is a factor
which may vary during the operation of the system
(and thus contribute to variability in the response)
but can be held constant for the purposes of an ex-
periment. Noise factors are often included in RPD
experiments to insure that important sources of
variability are investigated since the traditional
approach of using replicate observations to assess
variability is often ineffective. Replication assumes
that the observations reflect the variability in the
entire population of interest which is seldom rea-
sonable in practice as real systems tend to change
over time. For example, key parts wear over time,
operators change from shift to shift, batches of raw
materials vary, machine settings may drift and cli-
matic conditions vary over days as well as over
weeks and months. Even supposing the sample
is representative of the population, the number

Table 1
Control factors for injection molding case study

Factor X = +1 X = −1

A: injection speed 2.0 0.0
B: clamp time 44 s 49 s
C: high injection time 6.3 s 6.8 s
D: low injection time 17 s 20 s
E: clamp pressure 1,900 psi 1,700 psi
F: water cooling 70◦F 80◦F
G: low injection pressure 650 psi 550 psi

of replicates required to get a sufficiently precise
estimate of variability will, in most cases, be too
large to be economically feasible (see Gunter, 1988).
Available knowledge of the system, observational
studies, and screening experiments can be useful
methods of identifying important noise factors. In
some experiments compound noise factors are used
to reduce the required number of runs (see Phadke,
1989). A discussion of the use of compound noise
factors is contained in Section 6.

This article discusses robust parameter design
for signal–response systems using the injection
molding experiment to illustrate the methodology.
Two distinct types of signal–response systems, mea-
surement systems and multiple target systems, are
identified in Section 2. This classification plays an
important role in our methodological development.
For example, the choice of the performance measure
used for parameter design optimization depends on
the type of system (see Section 3). It turns out that
Taguchi’s dynamic signal-to-noise (SN) ratio, see
(2), is justifiable for many measurement systems
but not for multiple target systems. Two strate-
gies for modeling and analyzing data, performance
measure modeling and response function model-
ing, are discussed in Section 4. The former includes
Taguchi’s SN ratio analysis as a special case, while
the latter is a more flexible approach which can be
tailored for each type of system. Both strategies are
illustrated using the injection molding experiment
in Section 5. Strategies for designing experiments

Table 2
Compound noise factor for injection molding case study

Label Factor Levels

XN = +1 Melt index 22
Percent regrind 0%
Operator Experienced
Resin moisture Low

XN = −1 Melt index 18
Percent regrind 5%
Operator New
Resin moisture High
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are discussed in Section 6 and concluding remarks
are made in Section 7.

2. CLASSIFICATION OF
SIGNAL–RESPONSE SYSTEMS

It is useful to classify signal–response systems ac-
cording to the function of the system as this affects
the manner in which the performance of the system
should be evaluated. We have come across two com-
mon types of signal response systems (there may be
others): multiple target systems and measurement
systems.

A multiple target system is a system whose func-
tion requires that the value of a response quantity
can be adjusted by changing the level of a signal fac-
tor. One example is the injection molding system de-
scribed in Section 1. Another example can be found
in Yano (1991, page 293). In this case, the quality
characteristic of interest was the surface roughness
of parts after the surface has been machined using
a lathe. Since different applications required a dif-
ferent degree of surface roughness, some method of
controlling the surface roughness of machined parts
was needed. As experience indicated that the feed
rate of the tool bit could effectively be used to alter
the roughness of the machined surface, it was cho-
sen as the signal factor. It was thought that factors
such as type of lathe, cutting speed, depth of tool
cut, type of tool cut, corner radius, cutting edge an-
gle, front escape angle and side scoop angle may af-
fect the relationship between feed rate and surface
roughness. An experiment was conducted to select
settings for these control factors which would allow
surface roughness to be reliably controlled by the
feed rate of the tool bit.

A measurement system is the process used to ob-
tain an estimate of some quantity of interest for a
given unit or sample. This may include sampling,
sample preparation and calibration, as well as the
actual measurement process. The true amount of
the quantity present can be considered as an input
signal M which the system converts into a mea-
sured value or responseY. The precision with which
M can be estimated based on Y is determined by
the characteristics of the relationship between M
and Y. As an example, consider an experiment per-
formed at a foundry to optimize an eddy current
measurement procedure used to measure part hard-
ness. An eddy current machine uses the intensity of
feedback (Y) from an electronic probe to estimate
hardness (M). Three control factors, (i) frequency,
(ii) probe temperature and (iii) gain, were identi-
fied which represented factors that could be easily
changed and were thought to affect the relationship

between hardness and feedback intensity. Two noise
factors, (i) part chemistry and (ii) part cleanliness,
were included in the experiment since these rep-
resented conditions which changed from measure-
ment to measurement and thus introduced varia-
tion into the process. In simple terms, the purpose
of the experiment was to identify settings of the con-
trol factors which would make feedback intensity
sensitive to changes in hardness but insensitive to
changes in part chemistry and part cleanliness.

3. PERFORMANCE MEASURES

An important step in examining a signal–
response system is to identify a performance
measure (PM) which evaluates the suitability of a
given signal–response relationship for the intended
application. By optimizing the chosen measure,
control factor settings which achieve the desired
engineering objectives can be identified.

One approach to identifying a suitable PM is to
specify an ideal or target signal–response relation-
ship and penalize for deviations from this target
function. A good example of this approach is the
PM Taguchi recommends for signal–response sys-
tems (see Phadke, 1989, page 114). Suppose the tar-
get function is of the form

E�Y� = βtM;

where βt is the target slope and the actual signal–
response relationship can be represented by

Y = f�M� + ε; where E�ε� = 0; V�ε� = σ2:(1)

A PM can then be generated by averaging the mean
square error (MSE) over a specified range for the
signal factor, say �ma;mb�;

PM =
∫ mb

ma

MSEdm =
∫ mb

ma

��f�m� − βtm�2 + σ2�dm

In evaluating the performance of a system it may
be beneficial to modify the PM if there exists a spe-
cial type of control factor called an adjustment fac-
tor (see Leon, Shoemaker and Kacker, 1987, for an
in-depth discussion of adjustment factors). In prac-
tical terms, an adjustment factor affects the system
in a well-understood manner so that if the signal–
response function is known (or estimated) for any
setting of the adjustment factor, then the signal–
response function can be reliably deduced for any
other level of the adjustment factor. If such a fac-
tor exists, then it makes sense to evaluate the PM
given the adjustment factor is set to its optimal
level. Taguchi’s dynamic SN ratio assumes the ex-
istence of an adjustment factor which affects the
system in the same manner as a change of scale.
Suppose for a fixed set of control factor levels we
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Fig. 1. Examples of signal–response relationships.

have the true signal-response relationship given in
(1). Then by changing the adjustment factor we can
obtain any signal–response relationship of the form
Y = c �f�M� + ε�, where c is any positive constant.
To see how the adjustment factor is used in practice,
suppose a set of observations are made for a fixed
set of control factor levels, and let yij represent the
jth observed response at the ith signal level (Mi).
Now consider the least squares fit to the model

E�yij� = βMi:

Let β̂ represent the least squares estimate of β and
s2 = �n − 1�−1∑

i

∑
j�yij − β̂Mi�2; where n is the

total number of observations. So β̂ represents the
estimated slope for the best fitting linear model and
s2 represents the estimated MSE for this model (av-
eraged over the signal levels). If we assume the tar-
get function is βtM, then we would wish to use the
adjustment factor to scale the signal–response rela-
tionship by a factor of βt/β̂. Given this adjustment,
the projected MSE would be �βt/β̂�2s2. Minimizing
this MSE is equivalent to maximizing

log�β̂2/s2�;(2)

which Taguchi called the dynamic SN ratio. This
PM is based on the objectives that the ideal signal–
response relationship should be (a) linear and (b)
robust to uncontrolled factors. Figure 1 illustrates
the difference between a good signal–response sys-
tem (Figure 1a) and poor signal response systems
(Figure 1b, c) according to this measure. Each line
represents an observed signal–response curve for a
given set of noise factor conditions. The first system
is linear and relatively insensitive to noise factors
whereas the second system is sensitive to noise and
the third system is nonlinear.

Rather than developing a performance measure
by identifying an ideal signal–response relationship
and then penalizing departures from this ideal, we
prefer to base performance measures directly on the
ability of a system to perform its designated func-
tion. One reason for this is that it is not always pos-
sible to identify an ideal signal–response relation-
ship. Consider a situation where the relationship is
not linear in the original metrics of the response and
signal factor but can be made linear by a suitable
transformation of the signal factor. In this case, a
PM based on a linear ideal function may well yield
different values depending on whether the original
or transformed metric is used for the signal factor.
Another criticism of the dynamic SN ratio concerns
its assumption of the existence of an adjustment fac-
tor which acts like a scaling factor which does not
hold in many practical situations.

In the following subsections these performance
measures will be developed separately for two types
of systems: measurement systems and multiple tar-
get systems.

3.1 Measurement Systems

As the purpose of a measurement system is to
obtain an estimate of some quantity of interest, it
is reasonable that the system should be evaluated
with respect to the precision of estimates obtained.

Mandel (1964, page 366) developed a “criterion
for technical merit,” as a method of comparing the
relative merits of measurement systems. Mandel
only considered systems where the variation of
the response was constant across signal levels. Let
E�Y� = g�M� and V�Y� = σ2, where g is an invert-
ible function with inverse g−1. In this case, assum-
ing g�M� is known, the variance of M̂ = g−1�yobs�
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can be approximated by σ2/�g′�M��2. Mandel de-
fined σ/�g′�M�� as his criterion. Although Mandel
only considered the comparison of different sys-
tems, his criterion could also be used to optimize a
particular system.

Taguchi (1987, page 629) specifically considered
the optimization of measurement systems which are
based on linear calibration curves. Suppose E�Y� =
β0 + β1M and V�Y� = σ2. Taguchi, in essence,
adopted ω = β2

1/σ
2 as a performance measure (SN

ratio), which he justified on the basis that it is the
reciprocal of the estimation variance for M̂ = �yobs−
β0�/β1; provided β0, β1 and σ2 are assumed known.
Clearly, Taguchi’s SN ratio is a special case of Man-
del’s criterion.

The measures developed by Taguchi and Man-
del assume that the error variance is constant over
the levels of the signal factor. There are applica-
tions which require this assumption to be relaxed.
For example, Bocek and Novak (1970) discussed the
use of gas chromatography for quantitative analysis
and indicated that under certain circumstances this
involves nonconstant variance. Suppose the system
can be meaningfully represented by a model consist-
ing of a location function and a variance function as
follows:

E�Y� = g�M�; V�Y� = h�M�;(3)

where g is a monotonic function of M. Then for an
observed value of Y = yobs, the classical estimator
of M is

M̂�yobs� = g−1�yobs�;
where g−1 is the inverse function of g. The variance
of M̂ is approximately

V�M̂�yobs� ≈
V�Y�M =mt�
�g′�mt��2

= h�mt�
�g′�mt��2

;

where g′�M� = dg�M�/dM and mt is the true value
of M for the unit being tested. As the variance of
the estimate depends on the true signal level, a
performance measure can be obtained by integrat-
ing V�M̂� over the required range of signal values,
�ma;mb�, for the application being considered. A
general form for a performance measure would be

PM =
∫ mb

ma

h�m�
�g′�m��2 dm:(4)

The above development of performance measures
for measurement systems was based on the assump-
tion that the location function g�M� can be esti-
mated with sufficient precision that it is reasonable
to treat it as being known. For many practical sit-
uations this is not true and therefore the validity
of the developed measures may be questioned. An

alternative and more rigorous justification for the
SN ratio in (2) is based on the length of Fieller in-
tervals for the true value of M. Consider a linear
calibration system described by the model

Y = α+ βM+ σε; ε ∼N�0;1�:(5)

Let yj represent the measured values of Y, and
let mj represent the known values of M for the
standards (j = 1; : : : ; p). The classical estimates for
α, β and σ2 are β̂ = Sym/Smm, α̂ = ȳ− β̂m̄ and s2 =
�p − 2�−1�Syy − β̂Sym�, where Syy =

∑p
1 �yj − ȳ�2,

Smm =
∑p

1 �mj − m̄�2, and Sym =
∑p

1 �yj − ȳ��mj −
m̄�. For a specific value of M =m0, the 100�1−γ�%
prediction interval for Y is given by

α̂+ β̂m0 ± ts
√

1+ 1
p
+ �m0 − m̄�2

Smm
;(6)

where t= tγ/2; p−2. Suppose that y0 is the measured
value of Y for a sample which has an unknown
value ofM. A 100�1−γ�% confidence interval, called
a Fieller interval, for m0 can be obtained by us-
ing the set of values of M for which y0 is in the
100�1−γ�% prediction interval of m. Therefore, the
interval will contain all values of m that satisfy

�y0 − α̂− β̂m�2 ≤ t2s2
(

1+ 1
p
+ �m− m̄�

2

Smm

)
:(7)

These values can form (i) a finite interval, (ii) a
semi-infinite interval, (iii) two semiinfinite intervals
or (iv) the entire real line. Cases (ii), (iii) and (iv)
would imply no clear evidence of a relationship be-
tween Y and M (see Miller and Wu, 1991, for de-
tails). So only case (i) is of practical interest. It is
shown in Miller and Wu (1991) that for a finite in-
terval, (mL;mU), its length is

mU−mL = 2t
[(

1+ 1
p

)(
ω̂− t2

Smm

)

+ ω̂�mo − m̄�2
Smm

]1/2(
ω̂− t2

Smm

)−1

;

(8)

which depends on ω̂ = β̂2/s2, Smm and m0−m̄. This
is equivalent to a result shown by Hoadley (1970)
that the width of the Fieller interval depends on the
magnitude of the F-statistic, f = Smmω̂, for testing
Hx β = 0.

The length of the Fieller interval decreases as ω̂
increases for ω̂ > t2/Smm. This can easily be seen
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by rewriting (8) as

mU −mL

= 2t
[
1+ 1

p
+ ω̂

(
ω̂− t2

Smm

)−1 �m0 − m̄�2
Smm

]1/2

·
(
ω̂− t2

Smm

)−1/2

:

(9)

The result is evident since both ω̂�ω̂ − t2/Smm�−1

and �ω̂ − t2/Smm�−1/2 are decreasing functions for
ω̂ > t2/Smm.

Since the observed length of the Fieller interval
is a random variable, the goal of the experiment
can be thought of as making the distribution of this
variable as favorable as possible. Noting that Smmω
has a noncentral F-distribution with 1 and ν = p−2
degrees of freedom, E�ω̂� = ν�ν − 2�−1�S−1

mm + ω�,
which means that the expected length of the Fieller
interval will decrease as ω decreases. This justifies
the maximization of the dynamic SN ratio, log ω̂,
described in (2).

3.2 Multiple Target Systems

For multiple target systems the signal factor is
used to adjust the function of the system to ac-
commodate different target values for the response.
The shape of the signal–response function is not
of direct concern for these applications as long as
all the desired target values can be realized. Let
M = �ma;mb� represent the useful range of signal
which in practice can be applied to the system, and
let T represent the required target values; T may
either be a set of discrete values or an interval.
In this section only results for discrete T will be
presented as the extensions to continuous T are
straightforward.

An obvious way to obtain a performance mea-
sure in this situation is to take an average (pos-
sibly weighted) of performance for the individual el-
ements of T . Assume that V�Y� given E�Y� = yt
is a suitable performance measure, as would be the
case if a quadratic loss function is applicable. Then
a suitable performance measure can be defined by

PM =
∑

yt∈T
V�Y�M =mt�w�yt�(10)

for discrete T , where mt = g−1�yt� and w�yt� is a
weighting function based on the relative importance
of the various targets. In some cases it may not be
possible to set M so that E�Y� = yt for all yt in T .
In these cases, the PM can be modified by replac-
ing V�Y� by the minimum obtainable mean square
error.

The PM in (10) is suitable for multiple target sys-
tems which are used for a single purpose. Occasion-
ally, one may encounter a multipurpose system. For
example, an injection molding machine may be used
to inject a number of different molding materials.
As the physical properties of these materials may
be quite diverse, the signal–response relationship
may vary substantially with respect to the mate-
rials. One approach would be to identify compro-
mise settings of the control factors such that the
system performs reasonably well over the range of
materials. In this case, a weighted average of the
performance for individual materials could be used
as an overall performance measure. Alternatively,
the control factor settings could be optimized for
each material individually. This approach may not
be practical for control factors which are very diffi-
cult to set. In practice, compromise settings can be
obtained for those control factors which are difficult
to set, and customized settings can be obtained for
the rest.

In view of Taguchi’s recommendation of the dy-
namic SN ratio (2) and its prevalent use in some
industrial sectors, it is important to point out why
it is not appropriate for multiple target systems.
Roughly speaking, maximizing log ω̂ has the effect
of minimizing s2 and maximizing β̂2: The former is
always desirable, while the latter can lead to un-
desirable results. For fixed M = �ma;mb�; a larger
�β̂� value can give a wider range of the Y values,
which may be outside the specification limits of the
target. Furthermore, if there is error in the setting
of M (there is some indication of this in the injec-
tion molding example), this error will be propagated
through a larger slope �β̂�; again resulting in a big-
ger variation in Y:

4. MODELING AND ANALYSIS

The purpose of a RPD experiment is to identify
the manner in which control factors affect the per-
formance of the system. Therefore, the goal is to
model the chosen PM as a function of the control
factors. However, there are two distinct approaches
to developing such a model, which we refer to as per-
formance measure modeling (PMM) and response
function modeling (RFM).

Performance measure modeling (PMM) requires
a two-stage modeling procedure. The first stage is
to obtain an estimate of the PM for each combina-
tion of control factors used in the experiment. For
a fixed combination of control factor levels, the re-
sponse is measured for various combinations of sig-
nal and noise factor levels and these observations
are used to estimate the PM. The second stage in-
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volves using these estimates to model the PM as
a function of the control factors. The preferred set-
tings of the control factors are determined directly
from this fitted model.

Performance measure modeling can be illustrated
using Taguchi’s dynamic SN ratio approach. Con-
sider a full factorial experiment involving three two-
level control factors (C1;C2;C3), two two-level noise
factors (N1;N2) and a four-level signal factor (M).
For each of the 8 distinct control factor combinations
there are 16 observations corresponding to the noise
and signal factor combinations. These 16 observa-
tions are used to fit a linear model, E�Y� = βM,
and the parameter estimates are then used to es-
timate the PM, in this case P̂M = β̂2/s2. Now the
eight P̂Ms are treated as the set of observations for
a 23 experiment where C1, C2 and C3 are the exper-
imental factors and standard analysis techniques
can be applied to them. A typical analysis would be
to use a normal plot to identify active effects and
thus identify a suitable model for PM as a function
of the control factors.

Response function modeling (RFM) uses the ex-
perimental data to model the signal–response re-
lationship as a function of the control and noise
factors. The specified performance measure is then
evaluated with respect to the fitted models in order
to select preferred levels of the control factors. This
approach in essence treats the signal–response re-
lationship as the response and models this relation-
ship as a function of the control and noise factors.
This is an extension of the response modeling ap-
proach recommended by Welch, Yu, Kang and Sacks
(1990) and Shoemaker, Tsui and Wu (1991) for sim-
ple response applications.

To illustrate the RFM approach, consider the pre-
vious example. The experiment contains 32 combi-
nations of control and noise factor levels. For each of
these combinations there are four observations cor-
responding to the levels of the signal factor. These
four observations are used to fit a parametric model
for the signal–response relationship. Suppose in our
case a model of the form

Y = βM+ ε; ε ∼N�0; σ2�
is suitable. Then β and σ2 are estimated for each of
the 32 control/noise factor combinations, and mod-
els for β and σ2 as functions of the control and noise
factors are produced. The chosen PM is then eval-
uated for different combinations of the control fac-
tors using these models. A systematic development
of RFM is given in Miller and Wu (1991).

We do not, in general, recommend the PMM pro-
cedure since it can often obscure useful information
present in the data. Box (1988) illustrates for sim-

ple response systems how very different data sets
can give the same estimated values of performance
measures. Therefore, modeling the PM directly can
result in the loss of valuable information regard-
ing the problem. Clearly, the same argument applies
to signal–response applications. The PPM approach
only provides information on how control factors af-
fect the overall performance of the system. Any in-
formation in the data on how specific control fac-
tors affect the shape of the signal–response system
or interact with specific noise factors is lost. It is
this type of information which can be most valu-
able in suggesting directions for future research.
The response-based approaches do not suffer from
this deficiency. The initial modeling of the response
will often provide useful insight into the system and
may suggest directions for future research. The PM
is then applied to this model to identify preferred
settings of control factors. In many cases, it will not
be necessary to do this step formally since it will be
straightforward to deduce the preferred settings di-
rectly from the response model. The advantages of
the RFM approach will be clearly demonstrated in
Section 5 using the injection molding experiment.

5. ANALYSIS OF THE INJECTION
MOLDING EXPERIMENT

In this section, data from the injection molding
experiment is used to demonstrate the PMM and
RFM approaches. The Appendix contains the data
from the original experiment (DeMates, 1990).

First, a suitable PM must be identified. Suppose
it is required that the system is capable of achiev-
ing target values from 650 to 700. Since this range
of target values is obtainable for all combinations
of control and noise factors used in the experiment,
a reasonable PM would be the variation of the re-
sponse over this range.

The experiment was run over two days using a
split-plot randomization procedure. On the first day,
the compound noise factor was set to its low level
and the control factors were then varied using a
27−4 factorial design (see Table 3). For each control
factor combination, the signal factor was varied over
its eight levels and four observations were taken at
each level. On the second day, the procedure was
repeated using the high level of the compound noise
factor.

Figure 2 contains scatter plots of the data �Y;M�
and the fitted quadratic models for several runs,
where the response Y is the part weight and the
signal factor M is the high injection pressure (see
Section 2). Figure 3 contains the residual plots (af-
ter the quadratic model fit) against M: Although
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Fig. 2. Fitted quadratic models for injection molding data: (a) XN = 1, Row 1; (b) XN = 1; Row 2; (c) XN = −1; Row 1; (d) XN = −1;
Row 2.

Fig. 3. Residual plots for injection molding data: (a) XN = 1; Row 1; (b) XN = 1; Row 2; (c) XN = −1; Row 1; (d) XN = −1; Row 2.

Table 3
Primary array for injection molding case study

Control Factors

Row A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 −1 −1 −1 −1
3 1 −1 −1 1 1 −1 −1
4 1 −1 −1 −1 −1 1 1
5 −1 1 −1 1 −1 1 −1
6 −1 1 −1 −1 1 −1 1
7 −1 −1 1 1 −1 −1 1
8 −1 −1 1 −1 1 1 −1

the quadratic model appears reasonably satisfac-
tory, there appears to be a systematic pattern in
the residual plots. In order to investigate this fur-
ther, the total sum of squares for each control/noise
factor combination was divided into contrasts using

orthogonal polynomials of M. Then a forward se-
lection procedure was used to test sequentially the
addition of higher-order terms (at the 0.05 signifi-
cance level) to the models.

In 12 of the 16 cases, the selection procedure in-
dicated that a quadratic polynomial was adequate.
In the other four cases, the cubic term was also
added. An interesting aspect of this analysis was
that in over half the runs there was an unusually
large sum of squares attributed to the sixth degree
term (it was typically more than a factor of 10 larger
than the fourth or fifth degree terms). As it is un-
likely that the sixth degree term is important this
suggests that at least part of the systematic pat-
tern in the residuals (after quadratic fit) seen in
Figure 3 may not be due to model inadequacy. One
possible explanation is that a systematic difference
exists between the settings of the signal factor and
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the actual high injection pressure delivered by the
system. For example, the residuals corresponding to
M = 900 are negative in most of the residual plots.
This could be explained if the system consistently
delivered a high injection pressure of less than 900
at a nominal setting of 900, since this would cause
the observed part weights to be lower than expected.
Whatever the real explanation for this phenomenon,
it is clear it will not be corrected by using a more
complicated model.

Figure 2 indicates that the quadratic model ad-
equately captures the essential features of the
signal–response relationship. Although for certain
runs the above analysis indicated that the cubic
term was significant, from a practical point of view
it does not appear necessary. Therefore, a quadratic
location model based on orthogonal polynomials
was used,

E�Y� = β0 + β1P1�M� + β2P2�M�;(11)

where the values P1�M� and P2�M� for the vari-
ous signal levels are given in Table 4. This type of
model was adopted as it makes the interpretation of
results easier with β1 representing the linear com-
ponent of the signal–response relationship and β2
the quadratic departure from linearity.

5.1 PMM Analysis

The first step is to estimate the PM for each com-
bination of control factors. From the residual plots
it seems reasonable to assume variation is constant
across levels of the signal factor. For each row in the
control factor array, the standard least squares es-
timate of variance, s2, for the fitted quadratic model
(11) was used as the estimated PM. The next step
is to treat s2 as the response for the control fac-
tor design array. Actually, log�s2� will be used in
order to stabilize the variation of these estimates.
Figure 4 gives the half-normal plot of factor effects
for log�s2�. This plot does not clearly indicate that
any control factors have an effect on the PM. How-
ever, it does appear that A, B, and D warrant further
consideration.

5.2 RFM Analysis

For RFM, we first fit location and dispersion mod-
els for each combination of control and noise fac-
tors used in the experiment. For the location model,
we use the quadratic model in (11). Since repli-
cate observations were made at each signal level,
it is possible to separate variation into a lack-of-fit
component and a replicate component. The repli-
cate component σ̂2

p will reflect part-to-part varia-
tion for observations taken over a short time in-
terval. The lack-of-fit component σ̂2

l will represent

Table 4
Levels for orthogonal polynomials

Signal factor levels

650 700 750 800 850 900 950 1,000

P1�M� −7 −5 −3 −1 1 3 5 7
P2�M� 7 1 −3 −5 −5 −3 1 7

longer-term variation, and as was noted previously,
contains a systematic component which may be due
to systematic errors in the recorded values for the
signal factor. Therefore, we will analyze these two
components of variation separately. The estimated
values for each of the location parameters and the
two components of variation are given in Table 6.

Next, the effects of the control and noise factors on
these parameters are evaluated. Figure 5 contains
half-normal plots for the location model parameters,
and Figure 6 contains half-normal plots for the two
components of variation. For β0 there are six effects
which appear to be significant: G, C, E, A, N and F.
Only C stands out as being clearly significant for β1.
There are no clearly significant effects for β2; but E,
N, D, B, AN, FN and GN appear marginal. None of
the estimated effects are significant for lack-of-fit
variation, while for the part-to-part variation A is
clearly significant and N, EN, B and C are all large
enough to warrant further attention.

The fitted models for the parameters are

β̂0 = 666:4+ 1:2XA − 1:8XC + 1:4XE

− 1:0XF + 1:8XG + 1:1XN;

β̂1 = 4:79+ 0:16XC;

β̂2 = 1:33+ 0:03XB − 0:04XD − 0:05XE

− 0:04XN + 0:01XAXN − 0:03XFXN

− 0:02XGXN

ν̂ = 0:12+ 1:10XA + 0:22XB − 0:21XC;

+ 0:40XN + 0:28XEXN + 0:04XE;

where ν = log σ2
p.

Table 5
Estimated parameters for PMM

Row β̂0 β̂1 β̂2 s2

1 665.8 5.00 1.25 8.39
2 662.2 4.91 1.46 19.70
3 666.8 4.93 1.25 9.06
4 666.4 4.66 1.40 10.40
5 665.3 4.56 1.38 4.34
6 674.3 4.33 1.34 9.75
7 666.4 4.92 1.31 1.54
8 664.3 4.96 1.27 3.27
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Fig. 4. Half-normal Plot for log�s2�.

Table 6
Estimated parameters for injection molding data

XN = 1 XN = −1

Run β̂0 β̂1 β̂2 σ̂2
l σ̂2

p Run β̂0 β̂1 β̂2 σ̂2
l σ̂2

p

1 666.5 5.02 1.16 5.61 7.78 1 665.0 4.98 1.33 6.87 1.20
2 664.2 5.12 1.44 7.10 4.45 2 660.0 4.69 1.48 26.81 3.20
3 668.2 4.98 1.22 4.28 4.99 3 665.2 4.86 1.26 6.34 2.70
4 668.4 4.76 1.25 4.81 3.53 4 664.2 4.55 1.54 3.64 2.64
5 666.3 4.66 1.35 4.93 0.67 5 664.2 4.46 1.39 2.54 0.56
6 674.4 4.32 1.32 14.78 1.00 6 674.1 4.33 1.36 13.27 0.30
7 666.6 4.92 1.31 2.30 0.21 7 666.1 4.91 1.30 1.76 0.18
8 664.9 4.90 1.25 3.21 0.75 8 663.6 5.02 1.29 3.96 0.12

To begin, consider the fitted model for β1. Factor
C can be used to adjust the sensitivity of the re-
sponse to the signal. In this case C would be set
to level XC = 1 if a wider range of attainable tar-
gets was necessary. Otherwise the level of C could
be determined by other considerations.

Next consider the model for log σ2
p. Part-to-part

variation is not the only type of variation which is
relevant to the process. However, it is clearly desir-
able to reduce this type of variation as much as pos-
sible. In this case, A should be set to the XA = −1
level. It also appears worthwhile to set B to the
XB = −1 level and C to the XC = 1 level. The com-
pound noise factor N and the EN interaction also
affect σ2

p. Since the EN interaction was significant,
E was also included in the model. Table 7 contains
the estimated values of log σ2

p for the combinations
of levels of E and N assuming XA = −1, XB = −1
and XC = 1. The table indicates that for E set to

XE = −1 the part-to-part variation will be more
consistent with respect to changes in the noise fac-
tors than for XE = 1.

Now consider the model for β0. Due to previous
considerations the levels of A, C and E have already
been determined. This leaves factors F and G which
could be used to make adjustments to β0 (if neces-
sary). Notice, that N does affect β0 but no interac-
tion has been identified which could offset this.

Finally, consider the model for β2. In this case
the levels for B, D and E have been previously de-
termined. Consider the effect of N. The estimated
observed coefficient (given fixed levels of control fac-
tors) for N would be

�−0:04+ 0:01XA − 0:03XF − 0:02XG�XN:

In order to make the system insensitive to changes
in N, we would like to make the absolute value of
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Fig. 5. Half-normal plots for location model parameters: (a) β0; (b) β1; (c) β2.

Fig. 6. Half-normal plot for variance parameters: (a) log σ2
l ; (b) log σ2

p.

this coefficient as small as possible. As the setting
XA = −1 has already been determined, this sug-
gests setting XF = −1 and XG = −1.

Notice that the PMM approach did not clearly in-
dicate that any control factors could be adjusted to
improve system performance. Even if certain fac-
tors had been identified, it would not have provided
insight into how these factors affect the system. On
the other hand, RFM not only indicated certain con-
trol factors could be used to improve the system, it
also provided insight into how these factors affected
the system. In particular a quadratic model was

Table 7
Estimated Values for log σ2

p

XE = −1 XE = 1

XN = −1 −1.57 −2.05
XN = 1 −1.33 −0.69

identified as suitably describing the signal–
response relationship and control factors which
could be used to alter the parameters of this rela-
tionship were identified. Further, the residual plots
produced from the fitted models for the signal–
response relationship indicated the possibility of a
systematic error in the signal levels. Finally, the
flexibility of the RFM procedure allowed varia-
tion to be divided into two components, σ2

p and σ2
l ,

which led to the conclusion that factor A could be
used to reduce part-to-part variability.

The advantages of the RFM approach can be
better appreciated by contrasting the main find-
ings summarized above with those obtained using
Taguchi’s approach. First, Taguchi’s dynamic SN
ratio assumes a linear relation while the data
clearly exhibit a quadratic relation. Second, use of
data analysis techniques, like residual plots sug-
gests the possibility of errors in the signal factor
setting. Third, analyzing components of variation
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allows us to identify factor A as effective in reduc-
ing part-to-part variability, which can have major
engineering implications.

6. DESIGNING EXPERIMENTS

The experiment used for the injection molding
experiment is typical of many RPD experiments
which use a PMM approach to analysis. High in-
jection pressure was used as the signal factor since
it was known to have a strong influence on the re-
sponse (part weight). Four key causes of variability
in part weight were identified: melt index, percent
regrind; operator; and resin moisture. A single com-
pound noise factor was defined to represent levels
of these factors (see Table 2). Seven control factors
were identified (see Table 1). These represented set-
tings of the injection molding apparatus that were
thought to have the potential of influencing the
signal–response relationship.

The original experiment was designed on the ba-
sis that PMM was to be used to analyze the data.
This requires the PM to be estimated for each com-
bination of control factors used in the experiment.
It is prudent to use the same combinations of noise
and signal factors to obtain each estimate, since
the choice of combinations can affect the estimate.
Therefore the design array should be constructed
as the “product” of a primary array which is used
to vary levels of the control factors and a secondary
array which is used to vary levels of the noise and
signal factors. The overall design array consists
of replicating the secondary array, for each row in
the primary array which Shoemaker, Tsui and Wu
(1991) referred to as a product array design. The
total number of runs will be the number of rows in
the primary array times the number of rows in the
secondary array. Often fractional factorial designs
are used for one or both of these arrays to reduce
the size of the experiment.

For the injection molding experiment a 27−4 de-
sign was used for the primary array (see Table 3).
This allows seven control factors to be investigated
using just eight runs. However, all control factor in-
teractions are confounded with control factor main
effects, and the results may be misleading if any of
these interactions are nonnegligible. For each of the
8 rows of the primary array 16 observations were
taken corresponding to all combinations of levels for
the compound noise factor (2 levels) and the signal
factor (8 levels). The compound noise factor is, in
essence, four noise factors which have been com-
pletely confounded with each other. This approach
is risky and should only be used if the manner in
which the noise factors affect the system is known

to satisfy certain conditions. The combinations of
levels used to define the levels of the compound
noise factor should represent the extreme sets of
conditions for all settings of the control factors. For
example, assume that the individual conditions as-
signed to XN = −1 are known always to decrease
part weight and those assigned to XN = +1 always
to increase part weight. Further, for simplicity, as-
sume the effects of the individual noise factors are
additive so that XN = +1 and XN = −1 represent
the extreme cases. Under these circumstances, a re-
duction in the difference in part weights between
XN = +1 and XN = −1 can reasonably be ex-
pected to result in an overall reduction of variation
in part weight. On the other hand, consider the con-
sequences if the new operator tends to produce parts
which are lighter than those produced by the expe-
rienced operator for some control factor settings but
produces heavier parts for other settings. For the
second group of control factor settings, the effect of
the operator will tend to offset the effects of the
other noise factors which will reduce the difference
in part weights between XN = +1 and XN = −1.
However, for these control factor settings XN = +1
and XN = −1 do not represent the extreme cases
(the extreme cases would have the reverse levels
of operator) and so the variation in part weights
is not necessarily reduced at these settings. A sec-
ond consequence of using a compound noise factor is
that the effects of the individual noise factors can-
not be separated. This limits the usefulness of the
design in terms of the information it provides about
directions for future research. If, for example, set-
ting factor A (injection speed) to the +1 level had
been found to improve the PM, there is no way of
determining the nature of the improvement. Is the
process more robust to operators, percent regrind,
melt index, resin moisture or some combination of
these? Answers to questions like this will indicate
which sources of variability can be addressed using
factor A and which sources require other solutions.

One main difficulty associated with using a prod-
uct array design with the noise factors in a different
array from the control factors (as is required for
a PMM approach) is that it can lead to inefficient
designs. Consider the injection molding experiment
and assume that cost is mainly determined by the
number of control/noise factor combinations which
are used (this is a reasonable assumption for many
signal–response system experiments, as the signal
factor is usually relatively easy to adjust in compar-
ison to control/noise factors). The actual experiment
only used a total of 16 control/noise factor combina-
tions, but to achieve this it was necessary to use a
resolution III design for the primary array (7 fac-
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Table 8
Comparison of resolution of designs

Noise–control Product array Product array
combinations for PMM for RFM

16 II III
32 II IV
64 III IV

128 IV V

tors) and what was effectively a resolution II design
for the secondary array (4 factors). Suppose a de-
sign was wanted which used resolution IV designs
for both the primary and secondary arrays. This
would mean that the primary array must contain
at least 16 rows and the secondary array must con-
tain at least 8 rows resulting in a minimum of 128
control/noise combinations (see Box, Hunter and
Hunter, 1978, page 410) for a table of maximum res-
olution designs). Contrast this to the situation when
an RFM approach is used. For RFM a fitted model
of the signal–response relationship is obtained for
each combination of control and noise factors used
in the experiment, which means the same set of
signal levels should be used for each combination of
control/noise factors. A product array design should
be used, but in this case the primary array contains
levels of both the control and noise factors and the
secondary array only contains levels for the signal
factor. For the injection molding experiment, one
can construct a 32-run primary array for the 7 con-
trol factors and 4 noise factors which has resolution
IV (Box, Hunter and Hunter, 1978, page 410). Ta-
ble 8 compares the maximum resolution of designs
which can be constructed using each of the product
array approaches for given numbers of control/noise
combinations. Table 9 contains an example of a
16-combination, resolution III array which is suit-
able for RFM and could have been used instead of
the design described in Section 5. Notice this array
utilizes all 16 possible combinations of the 4 noise
factors compared to the 2 combinations which were
actually used.

The above discussion focused on reducing the
number of control/noise combinations. However, in
some situations certain control/noise factors are
more difficult or expensive to set than others. In
these cases, cost is determined by the number of
level changes of the “difficult-to-change” factors
and designs which involve restricted randomiza-
tion such as split-plot or strip-plot designs may
be useful in reducing cost. Difficult-to-change fac-
tors are assigned to main-units which reduces the
number of times these factors are reset. Further
discussion can be found in Box and Jones (1992).
In considering fractional factorial design matrices

which are suitable for split-plot designs, the key
characteristic is the number of distinct combina-
tions of the difficult-to-change factors in the design
matrix. This number can be reduced by having as
many generators as possible in the defining relation
made entirely from the difficult-to-change factors.
Consider combining this requirement with the re-
strictions imposed by the modeling procedures. For
RFM all control and noise factors are included
in the primary array and therefore in selecting
the primary array as many generators as possi-
ble should be made from difficult-to-change factors.
For PMM the control and noise factors are split be-
tween the primary and secondary arrays and so the
difficult-to-change factors may also be split. This
can severely restrict the ability to select generators
made entirely from difficult-to-change factors.

7. CONCLUSION

This paper explored the use of designed ex-
periments to improve the performance of signal–
response systems. These are systems whose func-
tion depends on the causal relationship between a
signal factor and a response variable. Measurement
systems and multiple target systems are examples
of such systems and were considered in detail. To
summarize we recommend the following steps for
investigating signal-response systems.

1. Identify a suitable performance measure which
reflects the ability of the system to perform its
designated function.

2. Adopt a response function modeling approach. In
essence this means that the signal–response re-
lationship is to be modeled as a function of both
control and noise factors. Then the identified per-
formance measure is applied to the fitted model
to determine preferred settings for the control
factors.

3. The experiment should be designed using a two-
stage strategy. First, a design array is adopted
for the control and noise factors. Then, for each
row in this array, the signal factor is varied over
a number of levels.

4. The analysis is quite straightforward. For each
row in the control–noise array, parametric loca-
tion and dispersion models are fitted for the re-
sponse. The fitted parameters for these models
are then modeled as functions of the control and
noise factors. Standard procedures, such as half
normal plots and regression analysis, are used
to identify significant effects and produce a fit-
ted model. The PM is then applied to this model
and preferred settings of the control factors are
identified.
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Table 9
A 16 run, resolution III design for 7 control factors and 4 noise factors

Control factors Noise factors

Run A B C D E F G N O P Q

1 −1 −1 −1 −1 +1 +1 +1 −1 −1 −1 +1
2 +1 −1 −1 −1 −1 −1 −1 +1 +1 −1 −1
3 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1
4 +1 +1 −1 −1 +1 −1 −1 −1 +1 +1 +1
5 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1
6 +1 −1 +1 −1 −1 +1 −1 +1 −1 +1 +1
7 −1 +1 +1 −1 −1 −1 +1 +1 +1 −1 +1
8 +1 +1 +1 −1 +1 +1 −1 −1 −1 −1 −1
9 −1 −1 −1 +1 +1 +1 −1 +1 +1 +1 −1
10 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1
11 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1
12 +1 +1 −1 +1 +1 −1 +1 +1 −1 −1 −1
13 −1 −1 +1 +1 +1 −1 −1 +1 −1 −1 +1
14 +1 −1 +1 +1 −1 +1 +1 −1 +1 −1 −1
15 −1 +1 +1 +1 −1 −1 −1 −1 −1 +1 −1
16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

APPENDIX: DATA FROM THE INJECTION MOLDING EXPERIMENT

Table A1

Signal factor levels

Run 650 700 750 800 850 900 950 1,000 XN

1 640.1 644.4 647.6 655.2 664.8 674.4 693.2 709.8 1
641.2 646.2 646.3 657.3 669.7 671.3 689.4 714.2
633.6 642.8 647.2 656.4 668.3 676.7 691.1 717.2
638.2 643.9 647.8 658.0 669.2 675.1 695.3 704.5

2 638.6 645.3 645.5 655.1 662.1 670.8 692.3 711.8 1
636.3 640.2 642.1 654.3 663.6 668.2 691.1 712.3
634.4 641.8 642.1 653.3 660.7 672.3 690.5 714.6
638.2 641.1 644.3 654.6 667.1 674.3 686.7 710.1

3 642.6 648.3 650.0 657.3 666.3 675.2 695.2 714.6 1
640.2 642.9 648.2 659.4 667.3 674.4 691.4 713.7
641.6 646.1 647.9 658.1 670.1 676.6 689.9 714.2
639.9 645.2 649.9 660.0 671.5 678.2 699.2 709.9

4 643.8 649.8 650.6 658.3 666.2 673.2 696.6 713.8 1
641.6 646.3 649.7 657.9 666.8 675.8 691.2 711.7
642.2 645.2 648.2 659.1 670.2 675.8 690.2 711.8
643.6 647.2 650.1 660.0 671.8 678.2 690.6 712.2

5 642.6 645.6 647.9 654.6 666.8 672.3 687.9 709.8 1
641.8 645.8 648.2 655.2 665.7 674.6 688.8 710.2
642.0 645.7 648.0 654.7 665.8 673.9 689.3 711.3
642.3 646.0 647.8 654.9 669.2 675.4 688.6 710.7

6 650.6 655.7 660.2 667.8 671.1 678.9 694.7 718.4 1
650.2 656.2 659.7 666.5 672.0 679.3 693.3 720.2
651.3 655.5 659.4 666.7 671.7 679.1 696.8 716.6
650.1 656.0 658.9 666.6 671.4 678.6 692.1 717.0

7 639.9 644.1 647.6 656.3 664.8 675.3 693.1 709.9 1
640.2 644.6 648.0 656.0 665.2 674.7 692.8 711.4
640.3 645.0 648.2 656.4 665.1 674.9 691.9 712.2
640.1 644.7 647.8 656.7 665.5 675.2 692.4 711.6

8 637.7 642.9 647.3 651.1 665.0 673.2 689.6 710.9 1
638.1 643.4 647.3 655.4 664.7 672.8 689.9 709.3
638.2 643.0 646.8 655.4 664.5 673.4 690.7 708.6
638.4 642.9 647.0 655.2 664.8 672.8 690.2 709.1
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Table A1 (continued)

Signal factor levels

Run 650 700 750 800 850 900 950 1,000 XN

1 639.7 642.3 645.5 653.9 666.6 672.1 692.2 711.6 −1
640.5 641.7 644.8 655.1 665.8 670.8 690.6 710.8
636.2 643.6 646.1 654.7 667.1 673.3 689.7 711.1
637.2 644.0 644.3 654.2 665.4 671.1 689.8 710.5

2 634.4 639.9 642.6 650.2 659.9 666.8 678.4 708.3 −1
632.9 640.8 640.4 651.6 660.3 660.3 682.6 710.1
633.7 641.1 643.1 650.9 657.9 659.8 681.8 707.7
635.8 642.4 641.9 653.2 662.1 661.5 683.2 706.6

3 640.2 646.1 647.2 655.5 666.2 671.0 688.6 708.9 −1
638.1 644.4 646.0 654.0 667.3 673.6 687.5 710.0
637.3 644.4 647.5 653.8 669.1 672.4 691.0 711.3
639.1 641.2 644.3 652.8 664.7 672.2 693.1 708.4

4 641.1 644.5 647.2 652.0 665.3 669.2 688.7 709.8 −1
642.1 647.3 644.8 654.6 661.0 671.1 690.4 710.1
642.0 642.8 646.0 653.8 659.7 670.1 686.3 707.7
641.8 643.9 646.3 651.7 662.4 671.1 685.8 706.4

5 640.8 644.7 647.6 652.3 661.1 673.0 685.7 706.4 −1
641.1 645.3 646.8 654.5 662.8 673.2 686.7 707.7
641.2 644.6 647.3 653.9 659.2 672.5 686.2 706.9
641.6 645.0 647.5 653.6 659.9 673.7 686.1 706.3

6 650.4 655.4 659.7 665.8 671.0 677.7 695.6 716.5 −1
650.8 655.0 660.2 665.9 670.8 677.5 696.8 717.0
651.2 654.6 660.3 665.9 671.2 678.2 694.3 718.3
650.7 654.9 659.3 666.4 670.5 677.8 696.1 717.6

7 639.6 643.8 648.2 655.7 665.2 674.8 691.7 710.1 −1
639.4 644.2 647.3 656.0 664.8 675.3 691.4 711.4
639.9 644.1 647.2 655.5 664.3 675.0 691.8 710.3
640.0 644.4 647.8 656.2 663.9 675.1 692.3 711.1

8 636.5 641.8 645.2 653.8 662.8 671.8 689.4 709.7 −1
636.2 640.6 646.1 653.9 662.3 671.6 689.1 709.6
635.7 640.5 645.5 653.9 662.1 671.6 689.6 709.7
636.1 640.3 645.0 653.6 662.4 671.6 689.3 709.3
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