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An Alternative to Traditional GPA
for Evaluating Student Performance

Valen E. Johnson

Abstract.

In response to the growing problem of grade inflation in Amer-

ican undergraduate institutions, alternatives to GPA and GPA-based stu-
dent assessment are discussed. One alternative summary, based on a
Bayesian latent trait formulation, eliminates many of the inequities as-
sociated with GPA-based measures and has been proposed as a replace-
ment for GPA-based class ranks at Duke University.

1. BACKGROUND

Grade point average, or GPA, is the most widely
used summary of undergraduate student perfor-
mance in our educational system. Unfortunately,
combining student grades through simple averag-
ing schemes to obtain GPA’s results in systematic
biases against students enrolled in more rigorous
curricula and has important consequences in stu-
dent course selection. It creates perverse incentives
for faculty to inflate grades and lower standards,
and it rewards students for selecting less chal-
lenging courses and majors (Larkey and Caulkin,
1992).

To understand the problems caused by the use of
GPA, consider the data illustrated in Figure 1. This
figure depicts boxplots of classroom mean grades for
all undergraduate classes with enrollments of 20 or
more students offered at Duke University between
the fall semester of 1989 and spring semester of
1994 for the 12 departments previously examined in
Goldman, Schmidt, Hewitt and Fisher (1974). Two
aspects of the grade assignment process are clear
from these plots. First, there is substantial vari-
ation in the median grades assigned in different
departments. Second, there are even greater differ-
ences in the grading patterns between instructors
within the same departments. As a consequence of
these differences, students taking a majority of their
classes in, say, Department 1 are likely to finish col-
lege with higher GPA’s than students who take a
majority of their classes in Department 2. In fact,
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the comparative advantage for Department 1 stu-
dents may be even greater than indicated in Fig-
ure 1, because there is evidence that departments
with high-ability students tend to grade more strin-
gently than those with lower-ability students (Gold-
man and Widawski, 1976).

What portion of the grade differences depicted
in Figure 1 can be explained by variations in stu-
dent achievement levels? Figure 2 is a scatterplot
of the mean grade assigned in each Duke depart-
ment (more precisely, department registration code)
against the mean student achievement index for
students taking courses in that department. Stu-
dent achievement indices are described in Section 2,
but for present purposes may be considered as an
adjusted GPA, adjusted for grading patterns of in-
structors. As predicted by Goldman and Widawski,
this figure suggests that the correlation between
mean student achievement and mean grade as-
signed within departments is quite low or even
negative.

Such differences in grading patterns have grave
implications for our educational system. Besides the
obvious inequities inflicted upon students enrolled
in “hard” majors, differences in grade distributions
result in a substantial reduction in the number of
courses taken by students in subjects like mathe-
matics and the natural sciences, as well as other
challenging upper-level undergraduate courses. In
fact, Larkey and Caulkin (1992) estimated that sev-
eral hundred thousand fewer mathematics and nat-
ural sciences courses may be taken each year in the
United States as a direct result of differential grad-
ing policies.

Of course, from a student’s perspective, avoiding
courses in which instructors grade severely is en-
tirely sensible. For those students whose primary



252 V. E. JOHNSON
Q —_— — —
T
- -
T = - Po= s T
i — ! - = i - i
T = 7 - TOT
1 = ~ 1 i w8
I — S N N
o H " : [
G _
Q- o
1 2 3 4 5 6 7 8 9 10 1 12

FIG. 1. Boxplots of mean classroom grades assigned in classes offered by 12 Duke University departments. The 12 departments coincide
with the 12 departments studied in Goldman et al. (1974): cultural anthropology, biochemistry, biology, chemistry, economics, engineering,
history, mathematics, political science, psychology, sociology and Spanish.

objective is to gain admittance to medical school
or law school, or to land a lucrative position on
Wall Street, it may be irrational to take any but
the required courses in hard departments, or from
instructors who grade severely. For such students,
“grade shopping” may represent an optimal career
strategy.

For similar reasons, inflating grades is a reason-
able strategy for faculty members, especially junior
faculty. By assigning higher than average grades,
course enrollments increase, student complaints
are minimized and students spend less time during
office hours negotiating for higher marks. Addi-
tionally, salary increases, promotions and tenure
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FiG. 2. Scatterplot of the mean of the mean classroom grades assigned by Duke course registration code versus the mean student
achievement index of students receiving these grades. Registration codes in which fewer than 100 grades were assigned were not plotted.
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decisions are often tied to student course eval-
uations, which in turn are positively correlated
with assigned grades. Practically speaking, there
seems to be little faculty incentive for not inflating
grades.

What then can be done to remove the disin-
centives for learning caused by differential grade
assignment? A number of alternate measures for
student performance have been proposed in the
educational literature. In this article, I briefly re-
view the more prominent of these, and propose a
Bayesian model for student assessment that incor-
porates the essential ideas from each. This model
represents a variation of the Bayesian ordinal data
models proposed in Albert and Chib (1993), John-
son (1996) and Cowles, Carlin and Connett (1996)
and may thus be regarded as a Bayesian extension
of the graded response models described in, for ex-
ample, Samejima (1969) and Young (1990). Graded
response models in turn find their roots in item re-
sponse theory (e.g., Lord and Novick, 1968), which
is now omnipresent in the quantitative psychology
literature (see, e.g., Fischer and Molenaar, 1995,
and van der Linden and Hambleton, 1997, for ex-
tensive reviews of research in this class of models).
By adopting this alternate measure of student per-
formance, penalties imposed on students for taking
challenging courses in their major fields of study
can be eliminated, and incentives for learning can
be reintroduced into the system.

The essential idea that motivates this adjustment
method is that the relative rankings of students
within classes, rather than absolute grades, should
be used to evaluate student performance. Under the
proposed model for ranking student performance,
an instructor who assigns A’s to all students in a
class provides exactly the same information as an
instructor who assigns C’s to the same students
when enrolled in another class. Because the model
adjusts for instructor differences in grading poli-
cies, much of the subjectivity involved in the in-
terpretation of assigned grades is eliminated. Fur-
thermore, the model automatically adjusts for the
achievement levels of students within a class, by
comparing the relative ranking of students as they
mix across classes. For example, though Students A
and C may not take any classes together, informa-
tion that Student A did better than Student B in
one class, and that Student B did better than Stu-
dent C in another, provides information about the
relative achievement levels of Students A and C.

Before describing this new proposal for student
assessment, it is useful first to review the earlier
proposals briefly. More complete reviews can be
found in Linn (1966) and Young (1993).

1.1 Pairwise-Comparisons Methods

Goldman and Widawski (1976) proposed a grade
adjustment method based on pairwise comparisons
of grades obtained by the same students across mul-
tiple departments. In their method, the difference in
a student’s grades for classes taken in different de-
partments provides information about the relative
grading standards between the departments. Gold-
man and Widawski averaged all such differences ob-
tained from the transcripts of 475 University of Cal-
ifornia at Riverside (UCR) students to obtain grade
adjustment factors for 17 academic fields. Based
on this analysis, Goldman and Widawski concluded
that there were systematic differences in grading
patterns across academic departments at UCR and
that departments with high-ability students tended
to grade more stringently than fields with less able
students.

Goldman and Widawski’s analysis was extended
by Strenta and Elliott (1987) and Elliott and
Strenta (1988) in studies of Dartmouth College
undergraduates. In Strenta and Elliot, pairwise
comparisons of departments were restricted to
introductory courses, and external measures of stu-
dent abilities (SAT and high school GPA) were used
for validation. The results corroborate the earlier
conclusions of Goldman and Widawski and confirm
a stable trend in differential department grading
standards over a 10-year period and between pub-
lic and private institutions. In their later article,
Elliott and Strenta incorporated both within and
between department course comparisons, and also
estimated grade adjustments for a larger number
of departments. Once again, resulting indices pro-
duced adjusted GPA measures that correlated more
strongly with both SAT and high school GPA than
did standard GPA measures.

1.2 Graded Response Models

In his 1989 doctoral thesis, Young adapted a
model derived from item response theory (IRT; e.g.,
Lord and Novick, 1968) called the graded response
model (GRM; Samejima, 1969) for application to
undergraduate grade data. In this model, it is as-
sumed that there are a total of K grades which
can be assigned to students and that these grades
are numbered and ordered from 1 to K. The grade
assigned to student i in class j is denoted by Y,
while the underlying variable representing the ith
student’s ability is denoted by B;. In the termi-
nology of IRT, let n; denote the discrimination
parameter of the jth class grade, and let {;, denote
the upper grade-cutoff for grade % in class j. With
this notation, the basic assumption of the GRM is
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that

o exp[n;(B; — L)l
T 14 exp[n;(B; — {p)]

An important feature of the GRM is that it explic-
itly parameterizes the grade-cutoffs for each class.
In theory, this allows the GRM to account for vari-
ations in instructor grading patterns.

Young applied this model to a cohort of Stanford
undergraduate grades and found that estimates of
student abilities obtained using this model corre-
lated better with external measures of student abil-
ities than did raw GPA (Young, 1990, 1993). For
example, the multiple correlation of student abili-
ties obtained from the GRM model with verbal and
mathematics SAT scores and high school GPA was
higher than it was for raw GPA.

From a technical standpoint, it is clear from (1)
that the parameters {7}, {8;} and {{;,} are not
identifiable. To see this, note that n;, B, and {j
may be replaced by sn;, (B; +c)/s and ({;; +c¢)/s
for arbitrary constants ¢ and s without affecting the
predicted value of ;5.

In order to make model parameters identifiable,
disciples of maximum likelihood estimation typi-
cally assume both a probabilistic constraint (prior
density) on student abilities, and fixed constraints
on two of the extreme grade-cutoffs (e.g., Young,
1990; Muraki, 1990; see also Bradlow, 1994, Brad-
low and Zaslavsky, 1996 and Nandram and Chen,
1996, for related discussion on Bayesian models
employing fixed grade-cutoffs). Unfortunately, fix-
ing grade-cutoffs can have deleterious effects when
the model is used to produce student rankings. To
see this, suppose that the lower cutoff for an A+ is
fixed at a constant value of, say, 3. Then the class-
room performance of students receiving an A+ in
any class must be estimated to have a value in ex-
cess of 3. But when all grades assigned to students
in a given course are A+’s, this assumption results
in an inflation of the class rankings of students in
the class relative to all other students, even if the
average achievement of students taking the class is
below average (assuming that average student abil-
ity is centered at 0). This effect is discussed in more
detail in Section 2, where a Bayesian variation of a
model similar to the GRM is proposed.

(1) Pr[Y, <k]=

1.3 Regression Models

More recently, Larkey and colleagues at Carnegie
Mellon University investigated linear techniques for
adjusting student GPA’s to account for the difficulty
of courses taken (Caulkin, Larkey and Wei, 1996;
Larkey and Caulkin, 1992; Larkey, 1991; see also

Young, 1992). In the simplest and perhaps most use-
ful version of their approach, an additive adjust-
ment is made to each student’s GPA based on esti-
mates of the difficulty of the student’s curriculum.
The difficulty of courses is estimated from a linear
regression of student grades on “true” student GPA
and course difficulty parameters. If Y;; again de-
notes the grade of the ith student in the jth class,
and g; and c; denote the ith student’s true GPA and
the difficulty of the jth class, respectively, then the
additive model used to estimate these adjustment
factors takes the form

(2) YU Zgi —Cj+eij.

In (2), e;; represents a mean zero, normally dis-
tributed error term. Numerical procedures for esti-
mating model parameters are described in Caulkin,
Larkey and Wei (1996).

Caulkin, Larkey and Wei report that predictions
obtained using the additive adjustment model pro-
duced estimates of student performance that corre-
lated more highly with high school GPA and SAT
scores than did estimates obtained using the GRM.
The performance of the additive adjustment model
on a cohort of Duke University students is examined
further in Section 4.2.

2. A BAYESIAN MODEL FOR GRADE DATA

Each of the grade adjustment methods described
above attempts to account simultaneously for the
two critical factors that affect grade assignment:
the achievement levels of students within a class,
and instructor-specific grade cutoffs relative to these
perceived achievement levels. To account formally
for both of these factors, I propose a synthesis of the
models described in Albert and Chib (1993), John-
son (1996) and Cowles, Carlin and Connett (1996)
for ordinal and multirater ordinal data.

The proposed model begins with the assumption
that an instructor assigns grades by first ordering
perceived student performance from best to worst,
possibly with ties for groups of students who per-
formed at approximately the same level. This rank-
ing is assumed to be based on an achievement index
that is implicitly defined by the instructor. The par-
ticular definition of achievement for each class is
arbitrary.

After ordering students according to their es-
timated classroom achievement, instructors next
group students into grade categories by fixing
grade-cutoffs between the estimated achievement
levels of students in the class. In some instances,
instructors base grade-cutoffs on a predetermined
notion of the knowledge levels required for each
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grade. In others, grade-cutoffs are determined using
a “curve,” whereby instructors attempt to assign
a certain proportion of students to each grade
level. Regardless of how grades and the corre-
sponding grade-cutoffs are assigned, it is important
to emphasize that the manner in which an in-
structor determines grade-cutoffs is not critical in
the calculation of the achievement indices in the
model described below. Only the relative ordering
of students within classes, as determined by as-
signed grades, provides information about student
achievement.

The following variables are used to model this
mechanism for grade generation:

1. The variable Y;; denotes the grade assigned to
the ith student in the jth class. For notational
convenience, the grades used at Duke were coded
sothat F =1, D- =2 D = 3,...,A+ = 13.
In general, there are K possible grades, ordered
from 1 to K.

2. The variable X, represents the mean classroom
achievement of the ith student, in classes se-
lected by student i. This variable is called the
achievement index (Al) of student i. It should be
noted that this definition of the “achievement in-
dex” differs from the standard definition of a la-
tent trait (e.g., Lord and Novick, 1968) in that
the achievement index is defined conditionally
for those classes selected by a student. In con-
trast, the usual definition of a latent trait is not
applicable in this setting due to the confound-
ing effect of student course selection (e.g., Wang,
Wainer and Thissen, 1995). A

3. Grade-cutoffs for class j are denoted by yé,
¥{s.-.,Yk- The upper cutoff for an F in class 3
is y3, for a D— it is y3 and so on up to y3,, which
is the upper cutoff for an A. The upper cutoff for
an A+, y{s, is 0o, and the lower cutoff for an F,
¥, is —o0.

4. Random variation in the performance of student
i in class j is denoted by ¢&;;. This term accounts

for the fact that student achievement varies from

class to class and that instructor assessment of
student achievement is also subject to error. It is
assumed that the distribution of each ¢;; is Gaus-
sian with mean 0 and variance (riZJ-. In addition,
the variation of observed student achievement in
class j is assumed to depend only on the instruc-
tor of class j, denoted by ¢(j). That is, it is as-
sumed that a-izj = a-f( j)» independently of i.

With these variable definitions, the model for
grade generation may be summarized as follows.
Student i gets a grade of Y;; = & in class j if and

only if
3) vl < X +e; <vi.

It follows from (3) that the probability that stu-
dent i receives a grade of % in class j is equal to
the area under the normal curve within category k.
Letting ®(-) denote the cumulative standard normal
distribution function (and ¢(-) the standard normal
density), this area may be expressed

(4) (D('Ylé_Xi)_q)(')’Iél_Xi).
Te(j) Te(Jj)

If we assume that the grades received by students
are independent given model parameters, the likeli-
hood function for a cohort of grade data is the prod-
uct over all probabilities of the form (4), or

J J
vy, — Xi Yy,-1— Xi
i jed; 0) )

The first product in (5) extends over all students,
while the second extends over the set of all classes
J taken by student i, denoted here by ¢;.

As in the GRM, the addition of a constant to all
category cutoffs and achievement indices does not
affect the likelihood function. Similarly, the likeli-
hood is unchanged if all quantities are divided by
a scalar constant. This is a consequence of the fact
that grades are ordinal and possess no natural scale.
One possibility for dealing with this dilemma is sim-
ply to fix the values of two of the category cutoffs:
this was the approach taken by Young (1990) in the
GRM model. However, this approach leads to the in-
consistencies in the model specification detailed in
Section 1.2.

A more natural way to establish an underlying
scale of measurement is to specify the marginal
distribution of the achievement indices, category
cutoffs and error terms. From within the Bayesian
paradigm, this is accomplished through the in-
troduction of prior distributions on the unknown
quantities of interest.

The prior distributions used in this model are

(6) Xi ~ N(O’ 1)’

(7 g;; ~ N(0, "t2(J))

and

(8) 0-752(1') ~ 1G(a, A) x (O'tZ(j))*(aJrl) exp(—g )
Tu(j)

Alternative prior densities are considered in Sec-
tion 4.2.2. In the baseline model, « = 1.5 and A =
1.5. Throughout, N(u, 72) represents a normal dis-
tribution with mean u and variance 72, and IG(a, A)
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denotes an inverse gamma distribution with shape
a and scale A. Recall that the subscript £(j) refers
to the teacher of class j.

The prior density on the achievement indices (6)
is standard in IRT literature and simply serves to
fix the scale of measurement.

Equation (7) states that the random error associ-
ated with the combination of interclass variation in
student performance and instructor assessment er-
ror follows a mean-zero normal distribution on the
scale of the achievement indices. It is further as-
sumed that the variance of the error depends only
on the instructor of class j. This variance is denoted
by a7

Assumption (8) describes the marginal distri-
bution on the variance of the random errors. The
particular parameters selected for the inverse
gamma distribution lead to a relatively vague prior
on the instructor variances and were chosen to
satisfy several criteria. Among these, the positive
value of A eliminates an irregularity in the pos-
terior distribution that occurs when all category
cutoffs, achievement indices and instructor vari-
ances assume values close to 0. For « = A = 1.5,
the priors on each instructor variance have mean 3
and mode 0.6, which seems consistent with the as-
sumption that the marginal distribution on student
achievement indices has variance 1. The parame-
ter estimates produced using these values of a and
A are similar to those obtained using both an em-
pirical Bayes approach for estimating « and A, and
those obtained by taking a uniform prior on « and
A and treating these parameters as random quan-
tities as well. Results from the empirical Bayes
and fully Bayesian approach for estimating a and A
are summarized in Section 4.2.2. From a technical
standpoint, the inverse gamma structure facilitates
sampling from the posterior distribution on the
achievement indices using the data augmentation
scheme described in Section 3.1.

Defining appropriate prior distributions for the
grade-cutoffs requires more careful consideration
of the mechanisms underlying grade assignment.
For example, if a locally uniform prior (subject
to the ordering constraint y, < yj;,;) is taken on
the grade-cutoffs, the joint posterior distribution
on the achievement indices concentrates its mass
above its prior mean of 0. This occurs because
unobserved grade categories, which usually corre-
spond to lower grades, are assigned nonnegligible
probability in the posterior. In other words, a uni-
form prior for the grade-cutoffs would assign equal
prior probability to all grades, while in practice,
grades below C are relatively rare. Thus, if a uni-
form (or other reference) prior were employed for

the grade-cutoffs, the posterior probability assigned
to below-C grades, particularly in small classes,
would be nonnegligible, forcing the posterior distri-
bution on the achievement indices to become highly
skewed. As a consequence, the MAP estimate would
assign zero probability to unobserved grades, while
samples from the posterior would assign positive
probability to the same grades. The nonnegligible
mass assigned to low grades would then force the
posterior mean of the achievement indices upward
toward the inflated grade-cutoffs that correspond to
the actual grades assigned.

In addition to the effect of unobserved grades on
the shape of the posterior, reference priors on grade-
cutoffs lead to posterior distributions that are not
invariant to shifts in class grades. That is, shifting
the grades of all students within a class down by
one letter grade (assuming no grades of D— or be-
low) does not change the ordering of students within
a class and so should not affect the rankings of stu-
dents. Yet the use of uniform or other vaguely spec-
ified priors on the grade-cutoffs lead to different es-
timates of student achievement indices after such
shifts.

Priors which lead to posteriors that concentrate
negligible mass in unobserved grade categories are
therefore needed. Such priors can be specified by in-
troducing binary random variables (i],...,t%) =t j
to indicate which grade-cutoffs correspond to unob-
served grades. By placing high prior probability on
the occurrence of unobserved grade-categories, the
posterior probability assigned to unobserved cate-
gories can be made arbitrarily small. One prior den-
sity that satisfies these criteria can be specified by
first assigning probability 1 to the event y;_; = v;
whenever Lé = 0, and then taking the prior density
on v; to be

eSi
— . ifS;>1,
Pr(i)=11-(1-¢)% /
9) 0, if S; =0,
K
Sj= 2 th
k=1
where £ « 1.

It follows that the prior conditional distribution
for a component of v}, given all other components is

. | .
Pr(d:ll > L221>= © )
|
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The constraint that > ¢, > 1 insures that —oo =
Yy # yx = oo, or in other words, that the lower
cutoff for an F cannot equal the upper cutoff for an
A+. Of course, whenever a grade of % is observed in
class j, the posterior probability that ¢] = 1 is 1.

Given v, a non-informative (Jeffrey’s) prior is as-
sumed for the unique elements of the grade cutoffs
in the jth class. Because the achievement indices
are assumed to have a N(0, 1) distribution, the Jef-
frey’s prior on the probability that a student receives
a given grade is transformed to this scale, resulting
in a prior density of the form

A . Y
p(v') 0<<I>(71m)‘1/2{ [ [‘P(v;’k)—q)(v;’kl)]}

Aikel
(11) lk>1min
{ [ ¢>(vfk)}-

iel

ik<Imax

Here I = {k: v}, = 1}, i}, denotes the (£+1)st largest
element of I, and I_;, and I, refer to the smallest
and largest elements of 1.

3. PARAMETER ESTIMATION

In practice, numerical strategies for both sam-
pling from the posterior distribution and for obtain-
ing point estimates of the achievement indices are
needed. Sampling strategies are critical for assess-
ing model fit and comparing models, while a method
for rapidly obtaining point estimates of the achieve-
ment indices is important for implementation by a
registrar’s office.

3.1 Posterior Simulation

Sampling from the posterior distribution of model
parameters can be accomplished using Markov
chain Monte Carlo (MCMC) techniques (see, e.g.,
Gilks, Richardson and Spiegelhalter, 1996). The par-
ticular sampler used here is based on a Metropolis—
Hastings (MH) algorithm that utilizes the Bayesian
data augmentation (BDA) scheme proposed by Tan-
ner and Wong (1987). This algorithm is similar to
the one employed by Albert and Chib (1993) for
probit models and the multirater ordinal data mod-
els described in Johnson (1996) and Cowles, Carlin
and Connett (1996).

The BDA/MH scheme can be implemented by in-
troducing variables that represent the unobserved
classroom achievement of each student in each
class. To this end, define the classroom achieve-
ment for the ith student in the jth class to be
x;j = x; + &;;. It follows that the likelihood function
based on the parameter space augmented with the

vector {x;;} may be written

(12) 1_[ H ¢< )Ind(‘y{/ijl <X = ’y{;ij)

i je&;

xij — X;
91J)

In (12), Ind(-) represents the indicator function tak-
ing a value of 1 if the stated condition is true, and
0 otherwise. Note that integration of (12) over the
variables {x;;} leads to (5).

Based on the augmented parameter space, an
MCMC algorithm can be defined in a straight-
forward way using the steps detailed in Johnson
(1996) and Cowles, Carlin and Connett (1996).

3.2 Posterior Optimization

As in the case of related GRM’s, optimization over
the parameter space requires judicious choice of ini-
tial values. Although the prior densities (6)—(11) in-
sure identifiability, the form of the non-informative
priors on the grade-cutoff vectors and the instructor
variance parameters results in nonconcavity of the
log-posterior density.

Despite this nonconcavity, MAP estimates for stu-
dent achievement indices can be reliably obtained
using a variation of the ICM algorithm (Besag,
1986), provided that reasonable starting values
are used for parameter initialization. As in the
standard ICM algorithm, the optimization strat-
egy used here evolves by sequentially maximizing
the conditional distribution of each component
of the parameter vector, given current estimates
of all other components. Collapsed grade-cutoffs
are updated simultaneously to avoid premature
“freezing.”

Convergence of the algorithm is normally ob-
tained within 200 iterations when applied to data
sets with 1,500 students each taking approximately
35 courses from 2,000 instructors, and requires 4
hours on a midpriced Unix workstation.

4. CASE STUDIES

In this section, the Bayesian model for student
achievement is applied to two data sets. The first
is a stylized example borrowed from Larkey and
Caulkin (1992) in which the Bayesian achievement
indices are shown to produce student rankings that
are exactly opposite those obtained using GPA. Al-
though this particular example is extreme, the ir-
regularities in its grade assignments are not atypi-
cal of actual college transcripts. The example also
clarifies the underlying problems associated with
GPA-based student assessment.

The second example involves an analysis of
grades received by a recent class of Duke Univer-
sity undergraduates. The analysis begins with a
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TABLE 1
Larkey—Caulkin example

Student I Student IT Student III Student IV Class GPA

Class 1 B+ B- 3.0
Class 2 C+ C 2.15
Class 3 A B+ 3.65
Class 4 C— D 1.35
Class 5 A A— 3.85
Class 6 B+ B 3.15
Class 7 B+ B 3.15
Class 8 B+ B B- C+ 2.83
Class 9 B B-— 2.85
GPA 2.78 2.86 2.88 3.0

comparison of Al-derived student class rank and
class ranks obtained using unadjusted GPA and
additively adjusted GPA. Two performance mea-
sures are used in this comparison: one is based on
the multiple correlation of each index with exter-
nal measures of student performance; the second
on the predictive success of the indices in ordering
student performance within individual classes.

Following this comparison, the statistical prop-
erties of the Bayesian model are investigated in
greater detail. The primary questions addressed in
the subsequent analysis concern (1) the adequacy of
the Bayesian model in representing observed vari-
ation in assigned grades and (2) the sensitivity of
student rankings to underlying model assumptions.
Clearly, satisfactory resolution of these issues is a
prerequisite for adopting this model as a replace-
ment for traditional GPA.

The first question is explored through an exam-
ination of latent residuals. The second requires
more careful attention and focuses on two issues:
the validity of representing student achievement
with a univariate quantity, and the sensitivity of
student rankings to the particular priors employed
for the achievement indices, grade-cutoffs and in-
structor variance parameters. The former issue is
explored by comparing the one-component model
to a two-component model, the latter by modify-
ing prior assumptions and observing concomitant
changes to the posterior. The conclusions of this
analysis are that estimated student ranks are rel-
atively unaffected by moderate perturbations of
second-stage model assumptions.

4.1 Larkey-Caulkin Data

The data in Table 1 represents a slight modifi-
cation of data originally presented by Larkey and
Caulkin (1992). In their version of this example, the
letter grades of Table 1 had numerical values on a
100-point scale.

The important feature of this grade data is that
all instructors agree that the best ordering of stu-
dentsis I > II > III > IV. Yet, because of differences
in instructor grading policies, the observed ranking
based on GPA is IV > III > II > I, exactly the oppo-
site of the ranking intended by all instructors.

To illustrate the properties of the student achieve-
ment index, the Bayesian model was also applied to
this data. Output from the model is displayed in Ta-
ble 2. The columns in this table represent (1) class
number, (2) grade received, (3) mean grade assigned
in the class, (4) estimated classroom achievement
index of the student, (5) mean achievement index
of all students enrolled, (6) mean GPA of all stu-
dents in the class and (7) estimated category cut-
offs for the grade received. Student GPA’s appear at
the bottom of the columns labeled “Grade,” and stu-
dent achievement indices are listed at the bottom of
the column labeled “Estimated achievement.” The
values of 00 were coded as +9.99. All quantities
in the table were normalized so that the posterior
mean and variance of the achievement indices were
0 and 1, respectively.

The salient feature of Table 2 is that the rank
of students based on the achievement index is cor-
rect: I is ranked first, II second, III third and IV
fourth.

To gain further insight into the meaning of model
parameters, consider the grade of D received by Stu-
dent II in Class 4. The estimate of this student’s
achievement in this class was —0.08, which on the
probability scale corresponds to the 47th percentile.
The mean achievement index for all students taking
this class was 0.79, indicating that better than av-
erage students were enrolled in the course, and the
mean grade assigned in Class 4 was 1.35. Because
of the higher than average achievement level of stu-
dents enrolled in Class 4, and the lower than aver-
age grade assigned, the grade-cutoffs for a D were
estimated to be between —oco and 0.59. By compari-
son, the C cutoffs in Class 2 were (—o0, 0.24).
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TABLE 2
Analysis of Larkey—Caulkin example

Mean Estimated Mean Mean Grade
Course Grade grade achievement achievement GPA cutoffs
Student I: GPA-based rank, 4; achievement index rank, 1
CLS 001 B+ 3.00 1.25 —0.00 2.89 (—0.00, 9.99)
CLS 002 C+ 2.15 1.32 0.36 2.83 ( 0.24, 9.99)
CLS 004 C— 1.35 1.45 0.79 2.82 ( 0.59, 9.99)
CLS 006 B+ 3.15 1.25 —0.00 2.89 (—0.00, 9.99)
CLS 008 B+ 2.83 1.51 0.00 2.88 ( 0.71, 9.99)
2.78 2.50 1.15 0.23 2.86
Student II: GPA-based rank, 3 achievement index rank, 2
CLS 004 D 1.35 —0.08 0.79 2.82 (-9.99, 0.59)
CLS 005 A 3.85 0.69 —0.36 2.93 (—0.24, 9.99)
CLS 007 B+ 3.15 0.80 0.00 2.87 (—0.00, 9.99)
CLS 008 B 2.83 0.36 0.00 2.88 ( 0.00, 0.71)
CLS 009 B 2.85 0.80 0.00 2.87 (—0.00, 9.99)
2.86 2.81 0.43 0.09 2.87
Student III: GPA-based rank, 2; achievement index rank, 3
CLS 002 C 2.15 —0.69 0.36 2.83 (-9.99, 0.24)
CLS 003 A 3.65 0.08 -0.79 2.94 (—0.59, 9.99)
CLS 007 B 3.15 —0.80 0.00 2.87 (—9.99, —0.00)
CLS 008 B- 2.83 —0.36 0.00 2.88 (—0.71, 0.00)
CLS 009 B- 2.85 —0.80 0.00 2.87 (—9.99, —0.00)
2.88 2.92 —-0.43 -0.09 2.88
Student IV: GPA-based rank, 1; achievement index rank, 4
CLS 001 B- 3.00 -1.25 —0.00 2.89 (—9.99, —0.00)
CLS 003 B+ 3.65 —145 -0.79 2.94 (—-9.99, —0.59)
CLS 005 A— 3.85 -1.32 —0.36 2.93 (—9.99, —0.24)
CLS 006 B 3.15 —-1.25 —0.00 2.89 (—-9.99, —0.00)
CLS 008 C+ 2.83 —-1.51 0.00 2.88 (—9.99, —0.71)
3.00 3.30 -1.15 -0.23 2.91

4.2 A Class of Duke University Undergraduates

To illustrate the performance of the Bayesian
achievement indices for actual college transcripts,
and to compare its performance to raw GPA and
additively adjusted GPA, all models were applied
to the grades of a recent class of Duke University
undergraduates. Selected transcript summaries
from the Bayesian model are displayed in the Ap-
pendix (to safeguard the privacy of students and
instructors, the terms, years and final course digit-
designators of all classes were omitted). Transcripts
in which the student class rank based on GPA dif-
fered sharply from achievement-index-based rank
were chosen for display. Approximately 1,400 stu-
dents were ranked. Perusal of these transcripts is
left to the reader.

Figure 3 is a scatterplot of GPA rank against
achievement index rank for this cohort. As illus-
trated, the correlation between the two measures

of student performance is relatively high, and for
many students the differences in class rank ob-
tained from the two indices are not large. However,
for other students, the rank percentiles may differ
by as much as 40%, and so the effect of this reform
can be quite substantial.

Given the disparities between GPA rank and
achievement-based rank, an obvious question be-
comes “Which rank better represents student per-
formance?” Two criteria were used to address this
question. The first, which appears to be the most
commonly used statistic for assessing alternative
measures of undergraduate student performance
(e.g., Elliot and Strenta, 1988; Young, 1990; Larkey
and Caulkin, 1992; and Caulkin, Larkey and Wei,
1996), was based on the multiple R? of the re-
gression of high school GPA, math SAT and verbal
SAT scores on each competing measure of student
performance. Because the explanatory variables in
these regressions are measured independently of
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graduates.

college GPA and achievement-based ranks, the re-
sulting R? values provide an external measure for
model assessment. A potential problem with this
measure is that the student selection processes that
influence college GPA are also likely to influence
high school GPA, and so might favor models linked
to raw GPA adjustments.

For this cohort of undergraduate grades, the mul-
tiple R? for the regression of college GPA on high
school GPA and math and verbal SAT scores was
0.252. The regression of achievement indices esti-
mated from the ICM algorithm for the same covari-
ates was 0.346, a substantial increase over the value
obtained using raw GPA. For the additive adjust-
ment model, the R? value was 0.338. This appears
to be in general agreement with the value reported
in Larkey and Caulkin (1992) of 0.321 for a selected
subset of Carnegie Mellon undergraduates.

A second criterion for comparing performance in-
dices can be based on the power of the indices in pre-
dicting the relative performance of students. For ex-
ample, an effective index should accurately predict
the better of two students, or, equivalently, which
student is likely to receive the higher grade in a
class they take together. Of course, implementing
this criterion requires that the better student be
known, and no gold standard exists for making this
determination. Complicating the issue further is the
fact that there is natural variation in the classroom

performance of students, so the better student does
not always obtain the higher mark.

Fortunately, the predictive accuracy of achieve-
ment indices for pairs of students who receive dif-
ferent grades in each of two courses taken together
can be accurately assessed. Supposing that an ideal
performance index was available, let the probabil-
ity that the “better” student receives the higher
grade in a randomly selected course be denoted by
p. If grades in distinct courses are assumed to be
independent, then the probability that the better
student, according to the ideal performance index,
receives the higher grade in both courses is p?;
that the better student receives the lower grade in
both courses is (1 — p)?. Similarly, the probability
that each student gets one of the higher grades is
2p(1 - p).

Based on this observation, a simple estimate of
p can be obtained by equating 2p(1 — p) to the ob-
served proportion of times students in such matched
pairs each received one of the higher marks. That
proportion was 0.227 for the Duke cohort, which
suggests that an ideal performance index would
have an error rate of at least p = 0.131. Thus,
0.131 provides an estimate of the baseline error
rate for any index, and we can compare the pre-
diction errors of other indices to this figure, within
this subset of student grades. For the Bayesian
achievement indices, additively adjusted GPA and
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raw GPA, the corresponding error rates were 0.168,
0.174, and 0.206, respectively. Thus, the error rate
attributable to model inadequacy was bounded by
0.037 for the Bayesian achievement indices, while
the model-based error for the additively adjusted
GPA model was bounded by 0.043. Raw GPA yielded
a model-based error of 0.075, twice that incurred
using the Bayesian achievement indices. As in the
case of the R? criteria, the Bayesian indices appear
to provide the most accurate estimates of student
achievement.

4.2.1 Residual analyses

Aside from examining the predictive power of stu-
dent achievement indices, and their correlation with
external measures of student performance, it is also
important to assess the adequacy of the model in de-
scribing the observed variation in the data: in other
words, to assess model fit. Assessing model fit from
within the Bayesian framework is often straightfor-
ward, and in the present case model fit was evalu-
ated through an examination of latent residuals for
unobserved classroom achievement. These residu-
als were defined for each assigned grade according
to the prescription

(13) ri; = Ty T
1)

Here, x;” is the estimated posterior mean of the

ith student achievement index, excluding the con-

tribution from Y ;. The quantity x;; represents a

randomly sampled value of the latent classroom
achievement of student i in class j, as defined in
(12), but based on x;”’ instead of x;. Numerical
techniques for computing the components of x;’
within the full BDA/MH scheme appear in Gelfand
(1996).

The definition of these residuals is similar to the
definition of latent residuals for binary regression
models presented in Albert and Chib (1995). Given
x;” and atz(j), the distribution of x;; is N(x;, atz(j)).
Ignoring the dependence in the posterior distribu-
tion of 0'? on Y, it follows that the conditional dis-

tribution of r;; should be approximately N (0, 1).

In order to estimate the quantities x; / numeri-

cally and to sample values of xj; and o), 70,000
iterations of the BDA/MH algorithm were per-
formed. The initial sample of 20,000 iterations was
discarded to allow for burn-in of the chain. Values
of x;’ were obtained by averaging sampled values
obtained in the last 50,000 iterations, and sampled
values for X7 and o, ;) were obtained by generat-
ing an additional sample of 30,000 iterations and
subsampling every 2,000 iterations.

A normal quantile—quantile plot for the last sub-
sampled set of residuals is displayed in Figure 4.
Deviations of the data from the model are reflected
through departures of the sorted residuals from the
indicated line of slope 1 and intercept 0. The lack
of departures from the line suggests that the model
provides an adequate representation of observed
variability in the data. The appearance of this plot

Sorted latent residuals

T T T
0 2 4

Quantiles of Standard Normal

FiGc. 4. Normal scores plot of sampled latent residuals.
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F1G6. 5. Normal scores plot of sampled latent residuals.

is typical of the appearance of the plots obtained
with other residual samples. For comparison, sam-
pling theory residuals from the additive model are
displayed in Figure 5.

4.2.2 Alternative models and sensitivity analysis

In order to investigate the relative importance of
the prior assumptions (6)—(11) in determining final
student rankings, several alternative models were
examined by varying the prior assumptions and as-
sessing consequent differences in posteriors.

One-component achievement index or two? Per-
haps the most controversial assumption made in
the baseline model is that student performance
can be adequately summarized through a single
achievement index.

In regard to this issue, I note that standard GPA
measures and GPA-based class rank are them-
selves univariate quantities, and so replacing a
flawed univariate summary of student performance
with a less-flawed univariate summary measure
seems entirely reasonable. Of course, the value of
measuring student performance with any univari-
ate quantity is often questioned, and it is worth
examining the loss of information incurred through
such summaries.

As a first step toward examining this question,
the baseline model was expanded so that the prior
distributions on student achievement indices were
modeled as bivariate normal random variables hav-

ing the form

(0] 1)

The value of the prior correlation between compo-
nents of the achievement indices was assumed to be
p = 0.43, based on observed correlations between
SAT math and verbal scores. Results obtained us-
ing a prior correlation of 0 are quite similar to those
reported below for p = 0.43.

To incorporate the bivariate achievement index
into the model for grade generation, each academic
department listing in the Duke Registrars coding
of courses was assigned a weight wy, 0 < w,; <
1. In the expanded model, student i is assumed to
receive a grade of % in class j in department listing
d whenever

(15)  yi_y < way X; + (L —wai) X7 < v

where w( ;) denotes the department offering course
J- Beta priors proportional to w;(1 — w;) were as-
sumed for each department weight, except in the
case of the undergraduate writing course require-
ment. In order to make the weights and the com-
ponents of the student achievement indices identifi-
able, a beta density proportional to w?l(l — wg) was
assigned to the department weight for the under-
graduate writing course, which is taken by nearly
all incoming Duke students.

Given the department weighting wy ;) for a par-
ticular class, the marginal distribution of student
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achievement indices within a class is no longer
N(0, 1), but is instead N(O, 0'3(]-)), where
i) = Wag) + 2wa (1 = wae) + (1= wag;)*

To reflect this change, the prior distribution on the
grade-cutoffs in the two-index model, given ¢ and
again motivated by the Jeffrey’s prior for assign-
ment to observed categories, becomes

p(¥ V) & vy, /Tq))

J J ~1/2
1 (o) G
iyel 9a(j) 94d(j)

(16) i1 Iin
{ 1 d’(')’ijk/‘fd(j))}
inel 9d(J)
ik<lmax

The bivariate student achievement indices ob-
tained from a suitably modified ICM procedure
were compared to those obtained in the baseline
model using the criteria described above. Class
ranks were computed for each student from the
bivariate index by weighting the two components
assigned to each student according to that student’s
selection of courses. The weighted achievement
index for student ; was thus defined as

Y- (waj Xi + (1= wa(;))X7).
jet

17  Xv=

1
€]

Class ranks based on { X'} are plotted in Figure 6
against the corresponding ranks obtained from the
baseline model. As illustrated, the correlation be-
tween the two rankings is quite high (0.996), and
for all but two or three students the difference be-
tween class rank computed under the two models is
relatively small.

The weighted achievement indices were also re-
gressed on high school GPA and verbal and math
SAT scores. The multiple R? for this regression was
0.352, somewhat higher than that obtained for the
baseline model. In addition, the proportion of or-
derings correctly predicted for students enrolled in
common classes under the two-component model
was 0.148 (using estimated weights and achieve-
ment components appropriate for each class), which
was just 0.017 units above the ideal rate of 0.131.
Recall that for the baseline index the error rate was
0.168, or 0.037 units above the best obtainable rate.

In terms of accuracy of ranking, the two-
component achievement index clearly outperformed
the baseline index. However, the gains realized
with the two-component index are offset by the
additional complexity involved in explaining the
two-component index to students, employers, col-
lege administrators and faculty. For this reason, the
proposal now before the Arts and Sciences Coun-
cil at Duke University (see Section 6) is based
on the one-component index, though multicompo-
nent models continue to be investigated. Further
understanding of multicomponent models, in con-
junction with an increased “comfort level” with
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the baseline model, may make it possible to intro-
duce multicomponent models for adoption at Duke
University in the future. Of course, evaluating the
number of components needed to describe student
performance adequately, and correlating these com-
ponents with specific academic fields, is itself an
interesting topic and one on which I hope to report
in a future article.

Normality of student achievement indices. An-
other important assumption made within the
baseline model is that student achievement indices
are distributed a priori according to a standard nor-
mal distribution. In reality, a better prior model for
student achievement indices, given that intraclass
variation is assumed to follow a normal distribu-
tion, would likely involve a mixture distribution
on the marginal distribution on achievement in-
dices. However, if such a model were employed,
achievement indices would be shrunk toward dif-
ferent values on the achievement scale, depending
on the mixture component to which they fell clos-
est. By positing a standard normal distribution on
the achievement indices, the prior distribution ef-
fectively shrinks all indices toward a common value
of 0, which seems more palatable than shrinking
student achievement indices towards disparate val-
ues. Furthermore, should a more complicated prior
model be assumed for the achievement indices, it
would likely not have a significant effect on the
ranking of students, only the spacing between their
estimated indices.

Empirical Bayes estimation of prior densities. The
remaining model assumptions concern the partic-
ular inverse gamma distribution employed as the
prior density on the instructor variances and the
form of the prior density specified for the grade-
cutoffs. To investigate the impact of these assump-
tions on final student ranking, alternative estimates
of achievement indices were obtained using empir-
ical Bayes methodology and more standard “uni-
form” priors.

From an empirical Bayes viewpoint, a prior den-
sity on the distribution of grade-cutoffs can be ob-
tained by letting 7 ; denote the probability vector de-
scribing the multinomial probabilities that students
in class j are assigned to different grade categories,
and assuming that @; is drawn from a Dirichlet dis-
tribution with parameters o = (wq,..., wg). That
is, assume that

K .
(18) p(m;) o [,
1
independently in j. Equation (18) provides an

achievement-index-free model for each class’s
multinomial probability vector describing grade

assignments. Using the observed number of grades
assigned in all classes, it is straightforward to
obtain the maximum likelihood estimate for w, de-
noted here by ®. Transforming to the standard
normal scale, the resulting empirical Bayes prior
on grade-cutoffs is

K . . @p—1
por) | TT@(r) - 2, )
(19) =
K-1 ,
: { [ ¢(%~Jk)}-
i=1

With this prior on grade-cutoffs and the standard
normal prior on the achievement indices, it is pos-
sible to generate sample transcripts of students for
any chosen value of instructor variance parameters
(a, A). By simulating student transcripts, an empiri-
cal Bayes method-of-moments approach can also be
used for estimating values of the instructor vari-
ance parameters. More specifically, both the sam-
ple mean of the within-student variance of assigned
grades and the variance of this mean student vari-
ance between students can be calculated directly
from sampled student transcripts. By appropriate
choice of @ and A, sample transcripts can be gen-
erated to mimic the observed values of these quan-
tities. Implementing this moment-matching proce-
dure yielded approximate values for « and A of 6.0
and 5.7, respectively.

The sample correlation between the ICM es-
timates of student ranks based on achievement
indices estimated from the model employing empir-
ical Bayes priors and the baseline model was quite
high—0.986. However, for a small minority of stu-
dents the differences in class rank were as great
as 20%, which again raises the question of which
model should be preferred. For the empirical Bayes
estimates, the multiple R? of the regression of the
indices on SAT and high school GPA was 0.302, and
the error in predicting the grades of paired students
in common classes was 0.170. Both measures sug-
gest that the baseline model was the more accurate,
and further evidence of this assertion was obtained
through residual analyses of the type performed for
the baseline model.

The comparatively poor performance of the em-
pirical Bayes estimates of student achievement is
somewhat surprising, although a partial explana-
tion for this failure may be found by examining the
relationship between grading policies of instructors
and classroom attributes. For example, a scatter-
plot depicting the relationship between class size
and mean grade is provided in Figure 7, and sug-
gests that the failure of the empirical Bayes model
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might be caused in part by its failure to account for
decreasing trends in mean grade with class size. It
is likely that similar trends exist with other course
attributes. Apparently, partially misspecified empir-
ical Bayes priors are less effective in modeling grade
generation than the relatively vague prior employed
in the baseline model. These observations support
the hypothesis that interval grade information can-
not easily be incorporated into student assessments.

Locally uniform priors. Locally uniform priors
can be stipulated for both the grade-cutoffs and the
instructor-variance hyperparameters « and A. Un-
fortunately, independent uniform priors on « and
A cause the posterior distribution to take its maxi-
mum value near the origin, making ICM estimation
futile.

As an alternative to full ICM estimation for such
models, one may instead fix the values of the vari-
ance hyperparameters near their posterior mean,
and maximize the remaining model parameters as
before. The posterior mean of («, A) can be approx-
imated in a straightforward way by modifying the
BDA/MCMC algorithm so that values of these pa-
rameters are sampled along with all others.

Two models employing locally uniform priors
were studied. In the first, denoted U1, the grade-
cutoffs were assumed to have the prior distributions
specified in (11), but independent uniform priors

were assumed for both @ and A. In the second
model, U2, uniform priors on both the grade-cutoffs
(subject to the ordering constraint y,i < y,é +1), and
the hyperparameters « and A were employed. For
numerical stability, grade-cutoffs were assumed
to be uniformly distributed within the interval
(—10, 10).

The posterior mean of («, A) under these two mod-
els were (3.8, 4.6) (U1) and (9.7, 2.8) (U2).

Interestingly, the inverse gamma prior employed
in model U2 led to a posterior that concentrated its
mass closer to 0 than did the other models consid-
ered. This was due to the interaction between the
priors on the achievement indices and the grade-
cutoffs. Because of the nonnegligible posterior prob-
ability assigned to the unobserved grade categories
under model U2, A and B categories were forced to
take cutoffs well above 0, while the N (0, 1) prior
on the achievement indices pulled the achievement
indices toward 0. As a consequence, the posterior
mean of achievement indices was approximately 0.8,
and the posterior variance were 0.2. Instructor vari-
ance parameters decreased accordingly. In contrast,
the posterior mean and variance of the achievement
indices under model Ul were 0.2 and 1.2, respec-
tively.

The multiple R? statistics for Ul and U2 were
0.342 and 0.351; the prediction errors for paired stu-
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dents and classes were 0.168 and 0.171. The correla-
tions of the student ranks obtained from models Ul
and U2 with the baseline model’s ranks exceeded
0.999 and 0.998, respectively.

The high correlation of ranks obtained under
the various models of this section indicate that
estimates of student achievement are robust to
minor variations in model assumptions. Indeed,
differences in student ranks obtained using these
differing model assumptions is small compared to
the posterior uncertainty of the same ranks ob-
tained using any particular model. This point is
illustrated in Figure 8, which depicts the poste-
rior standard deviation of each student rank from
the Duke cohort in the baseline model versus the
absolute difference of ranks that were obtained us-
ing the baseline model and model U2. This figure
demonstrates that the posterior standard devia-
tion associated with each student’s rank is larger,
and in most cases much larger, than the differ-
ence attributable to model specification. In fact,
on average the two ranks obtained from the base-
line model and model U2 were less than 1/5 of a
standard deviation apart. This shows that the pos-
terior variance associated with achievement indices
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FiG. 8. Posterior variability of Al-based class rank: this figure
depicts the posterior standard deviation of the rank of each Duke
student under the baseline model versus the absolute difference
of the ICM ranks obtained under the baseline model and model
U2. The area under the line contains those points at which the
differences in rank were smaller than the posterior standard de-
viation of the rank under the baseline model. No points fell above
the line.

dwarfs the uncertainty associated with the specific
choice of prior hyperparameters and that the rel-
atively vague priors chosen in the baseline model
likely provide nearly optimal estimates of class rank
among one-component models.

5. DISCUSSION

From a technical standpoint, the primary in-
novations of the Bayesian model over previously
proposed GRM-type models are the introduction
of prior distributions on instructor variances and
grade-cutoffs, and the use of the binary random
variables v to model unobserved grade categories.
The priors on the instructor variance parameters
and grade-cutoffs replace the hard constraints on
grade-cutoffs employed in earlier models and al-
low model parameters to adjust more accurately to
observed grading patterns. Combined with the ef-
fect of the auxiliary variables v, the proposed model
for grades is essentially able to discard all extra-
neous interval information contained in observed
grade data, and instead relies on only the rankings
of students within classes. As a result, shifting all
grades assigned to a class of students up or down
has no effect on estimated student achievement
indices. An instructor who assigns A’s to every stu-
dent in a class is no longer doing the students in
his or her class a favor; such a grading policy has
no effect on the achievement indices of any of the
students in the class. Likewise, instructors who
assign grades that are significantly below the uni-
versity average no longer penalize students in their
classes.

The proposed model offers educators an alterna-
tive to GPA-based methods for evaluating student
performance. The critical features of this model
are that it reduces the subjectivity associated with
the interpretation of instructor grade assignments
and largely eliminates incentives for students to
enroll in less rigorous courses. Expected long-term
effects of adopting this evaluation scheme include
increased enrollments in upper-level undergradu-
ate classes, increased enrollments in mathematics
and natural science classes, reduced pressure on
instructors to inflate grades and a greater desire on
the part of faculty to reward excellence in the class-
room through differential assignment of student
grades.

6. POSTSCRIPT

A grade-reform proposal based on the method de-
scribed in this article is currently being considered
as a replacement for GPA for all undergraduate stu-
dents at Duke University. At printing, this proposal
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TABLE 3
Mean Estimated Mean Mean Grade
Course Grade grade achievement achievement GPA cutoffs

Student 1: GPA-based rank, 296; achievement index Rank, 822

CHM 01—— B- 2.90 —0.42 0.02 3.23 (—0.61, —0.25)
MUS 05-— B+ 3.74 —1.46 0.00 3.46 (—9.99, —0.89)
PHL 04—— B 2.88 —0.58 —0.36 3.26 (—0.86,-0.31)
UWC 00-- B+ 3.72 -2.01 0.04 3.30 (—9.99, —1.25)
BIO 04—— A 4.00 -0.23 0.33 3.43 (-9.99, 9.99)
CHM 01-- B 2.95 0.00 0.08 3.25 (-0.26, 0.30)
ECO 05—— B+ 2.86 0.36 0.16 3.35 ( 0.16, 0.57)
MTH 03—- B- 2.67 -0.27 -0.02 3.23 (—0.35, —0.20)
ECO 14—- B+ 3.30 -0.23 -0.23 3.59 (-9.99, 9.99)
GER 01-— A 3.85 1.11 -0.13 3.29 (-0.16, 9.99)
STA 11—— A— 3.28 0.68 0.05 3.33 ( 0.43, 1.00)
CPS 01-— A 3.71 —-0.05 -0.29 3.22 (-0.59, 0.56)
CST 14—— A 3.04 1.65 -0.18 3.24 ( 0.95, 9.99)
ECO 14—- B 3.47 -1.21 0.22 3.45 (-9.99, —0.35)
GER 06-— A— 3.80 -0.36 0.51 3.49 (-9.99, 0.94)
PE 10-- A 4.00 -0.62 -0.34 3.14 (-9.99, 1.05)
ECO 06—— A— 3.70 -0.23 -0.23 3.59 (-9.99, 9.99)
GER 11-- A 4.00 -0.23 -0.23 3.59 (=9.99, 9.99)
GER 11-- A— 3.70 -0.23 -0.23 3.59 (=9.99, 9.99)
PS 10-- A— 3.70 -0.23 -0.23 3.59 (=9.99, 9.99)
GER 15-- A 4.00 -0.23 -0.23 3.59 (=9.99, 9.99)
GER 15-- A 4.00 -0.23 -0.23 3.59 (-9.99, 9.99)
HST 10—- A 4.00 -0.23 -0.23 3.59 (-9.99, 9.99)
PS 10-- A 4.00 -0.23 -0.23 3.59 (—9.99, 9.99)
3.59 3.55 -0.23 —-0.08 3.41
Student 2: GPA-based rank, 822; achievement index rank, 350
CHM 01-— A+ 2.90 2.54 0.02 3.23 ( 2.38, 9.99)
LAT 06—— A 3.65 2.01 0.65 3.46 ( 042, 9.99)
MTH 10— A 2.76 2.01 0.79 3.48 ( 1.59, 9.99)
UWC 00—— A 3.27 1.66 -0.69 2.97 ( 0.97, 9.99)
BIO 12—— B+ 3.10 0.48 0.63 3.44 (—0.15, 1.08)
CHM 01—— A 2.95 1.44 0.08 3.25 ( 1.11, 2.56)
LAT 06—— B+ 3.57 -1.36 0.17 3.22 (—9.99, —0.47)
MTH 10— C+ 3.14 0.04 1.05 3.61 (—0.34, 0.32)
CHM 15—— A 2.83 0.86 0.09 3.12 ( 0.09, 9.99)
CA 14—— A— 3.70 0.62 0.62 3.21 (—9.99, 9.99)
LAT 10— B 3.00 0.16 0.07 3.12 (-0.37, 0.61)
PHY 05—— B- 2.85 0.17 0.37 3.35 ( 0.05, 0.28)
STA 11—— D 2.47 -1.16 0.24 3.25 (—-9.99, —0.74)
BIO 16—— D+ 2.98 -1.67 0.48 3.36 (-9.99, —1.44)
CA 14—- C+ 2.30 0.62 0.62 3.21 (-9.99, 9.99)
LAT 10-- D- 1.00 0.62 0.62 3.21 (-9.99, 9.99)
PHY 05—-— D 2.56 -1.09 0.51 3.39 (—-9.99, —0.85)
ARB 00-— A 4.00 0.62 0.56 3.42 (-9.99, 9.99)
BIO 15— B- 2.86 0.28 0.41 3.32 ( 0.03, 0.51)
BIO 18-- A 2.62 1.85 0.36 3.24 ( 1.47, 9.99)
SP 00—— B 3.00 0.62 0.62 3.21 (-9.99, 9.99)
ARB 00-— A 4.00 0.62 0.62 3.21 (-9.99, 9.99)
BIO 19-- A 4.00 0.62 0.62 3.21 (-9.99, 9.99)
REL 15—— A+ 3.74 1.65 -0.09 3.25 ( 1.00, 9.99)
SP 00—— A— 3.37 1.14 .35 3.36 (-0.32, 9.99)
BIO 15—— A 3.89 1.45 44 3.38 (—0.04, 9.99)
BIO 27— A— 3.70 0.62 .62 3.21 (-9.99, 9.99)
ARB 06—— A— 3.70 0.62 .62 3.21 (-9.99, 9.99)
ARB 19-- A 4.00 0.62 .62 3.21 (=9.99, 9.99)
BIO 22—— A 3.43 1.12 .46 3.41 ( 0.67, 9.99)
SP 06—— B+ 3.80 —1.44 .10 3.33 (—9.99, —0.79)
ARB 19-- B 3.50 -0.57 .64 3.35 (-9.99, 0.50)
BIO 19-- C— 1.70 0.62 .62 3.21 (—9.99, 9.99)
SP 07—— C— 2.20 -0.50 .18 3.07 (—9.99, 0.15)
SP 13—— A 4.00 0.62 .62 3.21 (—9.99, 9.99)
SP 13—— A 4.00 0.62 .62 3.21 (—9.99, 9.99)

3.21 3.18 0.62 0.42 3.27
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had gained unanimous approval of the Committee
on Grades, a subcommittee of the Academic Affairs
Committee, itself a committee of the Arts and Sci-
ences Council. With the exception of a student rep-
resentative, the Academic Affairs Committee also
unanimously approved the proposal. A vote before
the Arts and Sciences Council is scheduled for early
1997. Should the proposal pass the Arts and Sci-
ences Council, a five-year phase-in of the achieve-
ment index would begin in the 1997-1998 academic
year.

In the first year of phase-in, the proposal stipu-
lates that undergraduates at Duke will receive
a letter at the end of each semester inform-
ing them of their Al-based class rank and an
Al-adjusted GPA. The adjusted GPA will be ob-
tained by matching each student’s achievement
index with the corresponding percentile of the
observed, unadjusted GPA from that class. By
scaling the Al-adjusted GPA in this way, the dis-
tribution of Al-adjusted GPA is identical to the
distribution of unadjusted GPA. This fact appears
to be very important to students, who are con-
cerned that use of the Al-adjusted GPA will affect
their chances of entering professional schools and
graduate schools. Under this proposal, the in-
terpretation of Al-adjusted GPA for admissions
officers should be largely transparent. A short
explanation of the Al-rank and AI-GPA will accom-
pany each letter, and a more detailed explanation
will be offered electronically (a draft web site
containing this information currently resides at
http:/www.phy.duke.edu/~gauthier/grades/grades.
html). In the remaining years of the phase-in,
Al-based class rank and AI-GPA will be reported
on student transcripts, along with unadjusted GPA
and GPA-based class rank. A brief summary of the
achievement index will appear on student tran-
scripts, and Duke University will make a concerted
effort to educate graduate and professional schools
on the interpretation of the achievement index val-
ues. Following yearly reviews of the reform during
the phase-in, GPA and GPA-based class rank will
be removed from student transcripts in the sixth
year of implementation.

The expressed goals of the Academic Affairs Com-
mittee in recommending this reform are to elim-
inate the inequities inherent in unadjusted GPA
measures; to reduce the increasingly common prac-
tice among students of selecting courses on the basis
of expected grade; to combat grade inflation by en-
couraging faculty to assign grades differentially on
the basis of student performance; and to further en-
hance the intellectual environment within the Duke
University community.

APPENDIX: SELECTED TRANSCRIPTS OF
DUKE UNIVERSITY UNDERGRADUATES

The columns in the transcripts shown in Table 3
represent (1) course designator, (2) grade, (3) mean
grade in class, (4) estimated classroom achievement
index of the student, (5) mean achievement index
of all students enrolled in the class, (6) mean GPA
of students in the class and (7) estimated category
cutoffs for the grade received. Approximately 1,400
students were ranked.
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Comment: Adjusting Grades

at Duke University

Patrick D. Larkey

The Duke University project described in Valen
Johnson’s paper, “An alternative to traditional GPA
for evaluating student performance,” was very ex-
citing because it was the first serious attempt to
diagnose and solve important problems with extant
grading practices. Unfortunately, since Johnson’s
paper was completed, the Arts and Sciences Coun-
cil at Duke voted 19 to 14 against experimenting
with the “achievement index” in parallel with tra-
ditional GPA. The opposition apparently came from
the social sciences and humanities professors on the
Council (Gose, 1997). The initiative is apparently
dead at Duke for the moment.

Patrick D. Larkey is Professor of Public Policy and
Decision Making, H. J. Heinz III School of Public
Policy and Management, Carnegie Mellon Univer-
sity, Hamburg Hall 242, Pittsburgh, Pennsylvania
15213 (e-mail: pl15@andrew.cmu.edu).

The issue will not, however, go away in higher ed-
ucation because the incentives problems with cur-
rent grading practices are very serious, because the
technical means for solving the problems exist and
because it will prove impossible to maintain, much
less improve, the quality of education with the pre-
vailing incentives. Grading practices in conjunction
with other flawed performance measures (e.g., ap-
praising the quality of courses and instructors pri-
marily, if not exclusively, through the responses of
a subset of students who have just sat through 80%
of a course) are responsible for a lot of mischief in
higher education.

There are, however, significant obstacles to replac-
ing GPA. The first important obstacle is that the full
extent of the problem has not been established. Ob-
viously GPA is wrong (see Johnson, Figure 1); some
A’s are harder for most students to get than other
A’s. Obviously students, to the extent that they are
motivated by GPA rather than substantive consider-
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ations, have incentives to avoid courses and instruc-
tors where greater skill and/or effort is required to
achieve a satisfactory grade or where the grading
is simply below the institutional norm. However,
we do not yet have the careful empirical studies of
how students choose courses to know the full extent
of the problem. The casual evidence is compelling.
Many students freely admit that the difficulty of
courses and instructors is an important considera-
tion in selecting their schedule. At Duke, for exam-
ple, one student noted that adoption of the achieve-
ment index might have induced him to take quan-
tum mechanics, one of the more difficult courses
(Gose, 1997).

The second obstacle is communicating the diag-
nosis and the designed solution to audiences includ-
ing members who have difficulty understanding an-
alytic arguments and whose interests may be to not
understand them. The source of opposition at Duke
is not surprising. The few studies that have been
done all indicate that there has been relatively more
grade inflation in “softer” subjects. While there has
been inflation in the physical sciences and mathe-
matics, there is apparently more resistance to infla-
tion in domains with more sharply and logically de-
fined right and wrong answers. Grade inflation has
been an important edge for some fields in compet-
ing for students as core curricula have waned and
student choices have waxed. It is a perverse form
of price competition; they have been able to offer
higher grades for equivalent or lesser amounts of
work. Not incidentally, they also get higher levels of
student satisfaction and better external appraisals
of their “teaching quality” which increasingly influ-
ence promotions and salary adjustments in elite re-
search institutions.

The general analytic problem of which correcting
grade point average is a specific instance is:

Rank competitors in terms of their perfor-
mance across nonequivalent tournaments
where individual competitors compete in dif-
ferent, nonrandom subsets of all possible
tournaments.

This problem is surprisingly common. It is found
in professional golf (Larkey, 1991), airline perfor-
mance evaluations (Caulkins et al., 1993) and a va-
riety of other situations where there is a need to
compare dissimilar performers performing in dis-
similar circumstances. Any large organization, for
example, hiring new employees with a procedure
that does not allow all interviewers to see all inter-
viewees or assign interviewees to interviewers ran-
domly should not aggregate and/or average inter-

view scores without some correction for differences
among interviewers.

The general consequences of not recognizing and
solving this problem are (1) the rankings are im-
proper and whatever rewards and punishments
may attach to rank are improperly assigned and
(2) where competitors have discretion in choos-
ing the tournaments in which they will compete,
they have incentives to choose strategically rather
than improving their performance on the prover-
bial “level playing field” to improve their rank. In
professional golf the top 125 players on the uncor-
rected money list at the end of each year get a full
playing exemption—the right to play in any of the
regular tour events they choose—in the next year.
In the airline industry, some airlines (e.g., Alaska
Airlines) that are superior to their competitors but
that are disadvantaged by the subset of airports
they frequent are shown to be inferior in terms of
on-time statistics because of the uncorrected mea-
sures of on-time performance widely reported by
the Federal Aviation Administration.

Nowhere are the specific consequences of not rec-
ognizing and solving this problem more serious
than in grading. Professional golfers and airlines
are probably not strongly motivated to choose their
subsets of “tournaments” to maximize the improper
performance measure. Students probably are.

The improper incentives for students in choos-
ing programs and courses are the most important
consequence of the flawed grading practices rather
than grade inflation. Grade inflation results from
a larger dynamic in which the flawed grading
practices interact with flawed course or instructor
evaluations, namely, a positive correlation between
more generous grading and levels of student satis-
faction.

The primary obstacle to solving the grade point
average problem is not technical. There are many
possible measures of aggregate performance for
comparing students that are superior to GPA. They
are superior in that they better represent com-
parative performance and remove incentives for
students to choose courses and instructors based on
their relative difficulty.

Given multiple alternatives to GPA and the ab-
sence of any source for “correct” measures of stu-
dent performance, model choice is a serious prob-
lem. There are two bases for preferring one model
to another. First, we can compare the face validity
of the resulting rankings. This may be easiest to
do on contrived problems, complex versions of John-
son’s Figure 1. Second, we can appraise the logic
of the models. This approach is probably not conclu-
sive when comparing models that both provide max-
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imum likelihood estimates of how students would
have performed in courses they did not take. Given
the difficulty of the intended audience, the ease of
communicating the model should also play an im-
portant role; simplicity is probably much more im-
portant than technical virtuosity if the models pro-
vide roughly equivalent results.

Faculty members are often ill-equipped to un-
derstand the problem. Many faculty members had
very little difficulty with courses over their student
careers. Many had sufficient capacity relative to
their student peers to choose courses on the basis of
career interests and personal development rather
than on the basis of their relative difficulty. Faculty
find it difficult to understand, much less empathize
with, the less capable or lazy students who actively
strategize on how to survive the curriculum rather
than how to benefit from it.

One department head at Duke who opposed the
GPA correction initiative is reported to have said,
“Unless you understand what is driving the grades
up, you shouldn’t be driving the grades down.” This
is a fundamental misunderstanding of what was
proposed. The proposal was to reinterpret and re-

distribute grades. Some would be higher and others
lower than the unit weight in the traditional GPA
assignment.

A key element in an eventually successful strat-
egy to reform grading practices must be to get the
primary consumers of grade information to insist on
better information about student performance than
grades provide. Professional and graduate schools,
all manner of employers, and parents are the pri-
mary consumers. Many of the schools and employ-
ers have already adapted to the increasing mean-
inglessness of grades over the past 20 to 30 years.
There is greater reliance on the overall reputational
quality of the institution (the selection effect), on
performance in specific courses where grades can be
calibrated and on personal interviews. Each of these
adaptations is flawed. The collection is no substitute
for meaningful information from the most complete
sample on performance, all courses in an undergrad-
uate or graduate career.

Duke has raised consciousness on an important
set of issues. Now we need the thorough empirical
work and clever marketing strategies that will lead
to the needed reforms.

Comment: Grade Inflation, A Pervasive
Problem—A Commentary on Johnson’s

Achievement Index

John W. Young

GRADE INFLATION

Grade inflation is, at present, a pervasive problem
in secondary schools and in higher-education insti-
tutions throughout the country. Data in the form of
anecdotes, local surveys and national studies have
documented the relentless upward trend of grades
during the past three decades. None of this would
be of concern if other indicators of student achieve-
ment or performance also demonstrated consistent
increases over time. Unfortunately, other external
indicators such as national standardized test scores

John W. Young is Associate Professor, Graduate
School of Education, Rutgers University, 10 Sem-
inary Place, New Brunswick, New Jersey 08903
(e-mail: jwyoung@rci.rutgers.edu).

do not show a corresponding rise when grade infla-
tion has been most evident. Historically, the study of
grade inflation as an educational phenomenon and
attempts to eliminate it date back as far as the be-
ginning of the 20th century (Young, 1993).

What is the evidence on grade inflation? At the
high school level, more than twice (32% versus 15%)
as many first-year college students reported in a
1996 national survey that their overall high school
grade point average (GPA) was an A-minus or bet-
ter as compared with 30 years earlier (Hornblower,
1997). Yet if students are doing better in schools,
why are there now more complaints about the poor
quality of schools? In many school districts, it is
not uncommon for top-ranking students to flaunt
GPA’s of 4.2 on a grade scale that supposedly ranges
from O to 4. One has to wonder what interpretation
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to attach to such GPA’s. GPA’s over 4 are possible
because grades in honors or advanced placement
courses are calculated using a multiplier greater
than 1.

The results from national tests do not mirror the
rise of grades in schools. Scores from the National
Assessment of Educational Progress, a biennial as-
sessment of student achievement in elementary and
secondary schools mandated by Congress, have been
constant in reading proficiency from 1971 to 1992
and have shown only modest increases in mathe-
matics proficiency (National Center for Education
Statistics, 1995). Scholastic Assessment Test (SAT)
scores declined over a 20-year period starting in the
late 1960’s and have risen only slightly since. Longi-
tudinal changes in SAT scores are more difficult to
interpret due to demographic changes in the com-
position of the test-taking population and because
of self-selection factors in choosing to take the test.
However, it is clear that the trend in SAT scores
has not been commensurate with the corresponding
rise in grades. Furthermore, because of less rigor-
ous grading standards and grade inflation in high
schools, the advantage of high school GPA over SAT
scores in predicting college GPA has essentially van-
ished (Bejar and Blew, 1981). The correlation of high
school GPA with college GPA has declined while
the correlation of SAT scores with college GPA has
held constant so that both are now equally good
predictors.

Data from colleges and universities are no less
convincing about grade inflation. For example, the
average undergraduate grade at Harvard rose from
the midpoint between a B— and a B to better than
a B+ during the 25-year period from 1967 to 1992
without a corresponding rise in test scores (Lam-
bert, 1993). In addition, grades in the humanities at
Harvard rose much more than in the social or nat-
ural sciences. The so-called gentleman’s C is now at
least the “gentleman’s B” if not higher. Other first-
tier universities, such as Stanford, report equally
dramatic increases in the average grade assigned.
With continuing grade inflation, one unfortunate
impact is that admissions to graduate and profes-
sional schools will be made primarily on test results

rather than on grades since students can no longer
be distinguished on the basis of grades.

Solutions to the problem of grade inflation such
as the one developed by Professor Johnson are much
needed. All of the pressures on grading are upward,;
remediating grade inflation cannot be accomplished
individually but must be carried out collectively.
Some institutions are attempting to deal with grade
inflation by reinstating low grades; for example, af-
ter a long absence from students’s transcripts, the
F grade is again part of the Stanford grading sys-
tem (Fetter, 1995). However, this approach is likely
to have an impact only at the bottom end of the
grade distribution without materially affecting the
average grade assigned. An alternative approach at
Dartmouth, begun two years ago, is to report the
median course grade along with the student’s grade
so that some context is available for interpreting
student transcripts. Though worthy of considera-
tion, both the Stanford and Dartmouth solutions
are crude instruments being applied globally.

The implementation of Johnson’s achievement in-
dex at Duke will lead to fairer comparisons among
students. Grading differences among instructors,
courses and departments will impact students’s
GPA’s to a much lesser degree than is true now.
Students who major in departments with rigorous
grading standards (typically, in the natural and
mathematical sciences) will not be at so large a
disadvantage in the competition for employment,
for admissions to graduate school and for fellow-
ships and scholarships. Furthermore, the incentive
system for instructors will be converted to one of
assigning high grades to deserving students in a
course rather than the present system of assigning
high grades to everyone.

Grade inflation is a serious and pervasive prob-
lem throughout education today. In the course of
time, we will learn if Johnson’s achievement index
has served its purpose or whether further refine-
ments are necessary, but this solution moves us in
the right direction. In conclusion, Professor Johnson
is to be commended for developing his achievement
index and the faculty at Duke is to be praised for
their courage in implementing it.
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Comment: Achievement Index

Richard A. White

1. BACKGROUND: THE IMPETUS
FOR DISCUSSION

During 1995-1996, Duke, along with other insti-
tutions across the country, engaged in dialogue con-
cerning two issues central to the quality of under-
graduate education: academic rigor in courses and
grade inflation. This discussion arose from two ini-
tiatives which, it is important to note, arose sepa-
rately and independently. The first was a concern
expressed by the Provost, John Strohbehn, about
grade inflation. Following campuswide discussion
(and rejection) of the “Dartmouth model” of assign-
ing a mean class grade beside letter grades on stu-
dent transcripts, the Provost asked the College to
consider how best to address this issue and respond
to related issues of academic rigor. At the same time,
Professor Valen Johnson of the Institute of Statis-
tics and Decision Sciences developed and publicized
a new concept for expressing student performance:
the achievement index. Together, this peaked in-
terest in the administration in examining grading
practices at Duke and this innovative proposal for
calibrating or recalibrating achievement made lively
topics for a series of important campuswide discus-
sions.

2. THE CONCEPT OF THE ACHIEVEMENT
INDEX: THE PROCESS OF CONSIDERATION

During 1996-1997, Professor Johnson met with
faculty and administrators and presented the
principles of the AI to several key University com-
mittees, including the Academic Affairs Committee
of the Arts and Sciences Council, the Undergrad-
uate Administrative Group and the Directors of
Undergraduate Studies within Trinity College.
Augmenting these discussions were presentations
and conversations with key student groups, includ-
ing the Duke Student Government. As a result of
these discussions, the primary focus of discussion
shifted from concerns over grade inflation to con-
cerns about “fairness” with regard to the GPA and

Richard A. White is Dean, Trinity College of Arts
and Sciences, and Vice Provost for Undergraduate
Education, Duke University, 104 Allen Building,
Box 90042, Durham, North Carolina 27708-0042
(e-mail: rwhite@acpub.duke.edu).

rank in class; the traditional GPA evaluates stu-
dents taking completely different kinds of courses
as if all were equally rigorous and equally rigor-
ously graded. Discussion about the introduction of
the Al attempted to address several central ques-
tions: Do students choose courses on the basis of
expected grading (so-called easy A courses)? Do stu-
dents avoid risk-taking and fail to experiment with
courses that are viewed to be extraordinarily rig-
orous or graded more rigorously or unknown? Is it
fair to develop a GPA based upon such variation
in courses (this is a mixture of rigorous courses,
nonrigorous courses, technical or applied courses,
experiential learning, cooperative grading)? Given
the fact that class ranking is based upon GPA, is
class rank under the current system a true indicator
of academic excellence?

3. CURRENT STATUS AND DIRECTIONS:
WHERE WE GO FROM HERE

Faculty in Arts and Sciences discussed the adop-
tion of the Al at a “town meeting” in January 1997
to which all members of the University community
were invited. In-depth discussion followed at the
February meeting of the faculty council, with fi-
nal vote to be taken on March 13. In these ses-
sions, concerns have focused on such issues as how
the AI-GPA would impact Duke students vis-a-vis
other institutions? For example, will the Al-modified
GPA or class rank handicap admission to profes-
sional schools and graduate school? While our infor-
mation indicates that professional schools compute
their own data directly from the transcript grades,
we are making inquiries about how this proposal
might impact admission to graduate schools and the
use of the transcript by employers in the workforce.

In addition, two primary internal concerns have
arisen. The first relates to independent study and
small seminars, where many students may receive
high grades (i.e., A’s). As originally proposed, where
there is no differentiation among the grades in these
classes, grades received do not affect the Al There is
currently, however, a strong sense among the faculty
and students that it is “unfair” for the high grades
“not to count” and/or that there are no differences in
the AI between all A-grade and all C-grade classes.
Because better students may elect more indepen-
dent studies and small seminars (and receive better
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grades), this lack of differentiation seems inappro-
priate. Because of this independent study/seminar
issue, the algorithm will likely be modified.

Another issue that students have raised is a pos-
sible increase in competition among students within
the same class. This notion seems to be driven by
the perceived need for more rigorous grading, and
some question how the altered classroom climate
might work against individuals helping each other,
working in small groups and team projects. An anal-
ysis, however, indicates that mentoring helps all
students involved, and, therefore, the negative ef-
fect on the mentor may be largely offset.

4. CRITERIA FOR EVALUATION: MEASURES
OF SUCCESS AND IMPLEMENTATION

If the Arts and Sciences Council adopts the Al
“experiment,” immediate attention must be paid to
its evaluation and to the development of criteria to
determine the AI’s “success” or “failure.” Such cri-
teria, for example, might include patterns of course
selection. Do students become more adventuresome
in their course selection? Do they accept more “risk”
and take challenging and diverse courses? Do stu-
dents take more upper-level work?

According to current plans, we anticipate four
years of transition between the current GPA system
and a final decision of whether to adopt an AI-GPA
alone. In the first year of the experiment, students

Comment

Brian W. Junker and Eric T. Bradlow

Val has nicely synthesized two areas—modern
applied Bayesian statistics and item response
modeling—to provide a novel analysis in a third
area that needs modern and sensible thinking:
the evaluation and comparison of college students
based on their reported performance in the courses

Brian W. Junker is Associate Professor, Depart-
ment of Statistics, Carnegie Mellon University, 232
Baker Hall, Pittsburgh, Pennsylvania 15213 (e-mail:
brian@stat.cmu.edu). Eric T. Bradlow is Assistant
Professor of Marketing and Statistics, Wharton
School of Business, University of Pennsylvania,
Suite 1400 SH-DH, Philadelphia, Pennsylvania
19104-6371 (e-mail: ebradlow@wharton.upenn.edu).

will be informed individually of their AI-GPA by
letter, but no formal indication will appear on their
transcripts. Next, the AI may apply to incoming
students, and current students will have the choice
between the standard GPA and the Al-adjusted
GPA. In subsequent years, both systems may ap-
pear, with a final determination to be decided at
the end of the transition period.

Always in proposals of this sort, there are an-
ticipated as well as unanticipated consequences.
Although this proposal was not developed in di-
rect response to concerns related to grade inflation,
we expect that it may well have at least an indi-
rect effect on this problem. We may see that faculty
members may differentiate more rigorously among
the students in the class in order for the grades
to affect the AI, because, as noted above, where
there is no differentiation, the grades do not im-
pact the AIl. There may be indirect pressure for
both students and faculty to want a broader grade
distribution within a class, and we look forward
to the discussion and campus reaction with keen
interest.

Note added in proof. On March 13, 1997, the Arts
and Sciences Faculty Council voted not to pursue
implementation of the Achievement Index at this
time. Discussion will continue in the Fall Semester
1997.

they take. We have chosen to focus our discussion
of his article on (1) how the model is motivated and
(2) some technical choices and general comments.
Our comments are intended to be friendly to Val’s
work, of which we think highly. We also take the
opportunity to discuss in this forum (3) the richness
of applications and interesting problems available
to statisticians in educational statistics, which Val’s
research well exemplifies.

1. MODEL MOTIVATION AND HISTORY

Val motivates his likelihood (5) for GPA ad-
justment by referring to the relative rankings of
students within classes. An important fact omitted
from Val’s discussion is that, in addition to ranking
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students on their estimated achievment X;, the pa-
rameters vy; in the model serve to locate the classes
with respect to one another on the same scale as the
X ;. Like other item response models (Fischer and
Molenaar, 1995; van der Linden and Hambleton,
1997) this model simultaneously scales “subjects”
(college students, in our case) and “stimuli” (the
classes they take). This enables us to discuss not
only the rankings of students within classes, but
also the relative position of classes to each other
and, most important, of students to classes—so that
a high grade in an easy class may be more compara-
ble to a low grade than a high one in a harder class.
This is what makes Val’s adjusted GPA more at-
tractive from a fairness standpoint than the usual
unadjusted GPA.

The model (5) has a long history in educational
statistics and is currently in wide use. As Val notes,
it is essentially Samejima’s (1969, 1997) graded re-
sponse model (GRM), modified to account for the
fact that not all students take the same classes.
Similar models can be found in statistical analy-
ses of educational assessment surveys with complex
survey designs, such as the National Assessment of
Educational Progress (NAEP): see, for example, Al-
gina (1992), Johnson, Mislevy and Thomas (1994),
Patz (1996) and Zwick (1992). In fact, this identical
model has appeared in research on general methods
for ordinal data structures (e.g., grades) using la-
tent variables in a Bayesian framework: see, for ex-
ample, Albert and Chib (1993), Bradlow (1994) and
Bradlow and Zaslavsky (1996). Hemker, Sijtsma,
Molenaar and Junker (1997) provide a comparative
review of such models that explores the relation-
ship between total score (unadjusted GPA) rank-
ings and latent variable (adjusted GPA) rankings
in some generality.

2. SOME TECHNICAL ISSUES
AND GENERAL COMMENTS

2.1 The Missingness Process

The fact that not all students take the same
classes results in a great deal of missing data.
Comparing students using GPA’s (adjusted by Val’s
model or not) is an instance of what is called the
equating problem in the educational statistics liter-
ature (see, e.g., Holland and Rubin, 1982). Equating
problems also arise when SAT scores are compared
from one year to the next; when students’s scores
on sequentially designed tests such as the current
computerized version of the GRE are compared; and
when scores in complex educational surveys with
incomplete block designs for administering test
questions are analyzed. How do we compare per-

formances of different students based on different
stimuli?

Equating is clearly an experimental design ques-
tion. In the examples above, the experimenter has
enough control over the design to make the miss-
ingness plausibly ignorable (in the sense of Rubin,
1987; summarized in Gelman, Carlin, Stern and Ru-
bin, 1995, Chapter 7) or modelable (e.g., Chang and
Ying, 1996). When Val distinguishes his X; from the
latent traits usually defined in item response mod-
els, calling it the “mean classroom achievement of
the ith student, in classes selected by student i,” the
point is that there is a missingness process, in con-
trast to most general treatments of item response
models, and it is not ignorable: clearly, students’
self-selection process as well as the grades is infor-
mative for student rankings. A model such as Val’s
which treats this missing data mechanism as ignor-
able or missing at random is vulnerable to severe bi-
ases in estimation of the X, as illustrated recently
by Bradlow and Thomas (1997). Mislevy and Wu
(1996) provide general conditions needed for ignora-
bility in various inferences from educational testing
data, and Wang, Wainer and Thissen (1995) explore
this problem in the context of equating exam scores
when students are allowed to choose among several
essay questions to answer.

2.2 Multidimensional Extensions of the Model

We were surprised that Val’s one-component la-
tent variable model for GPA adjustment did not
provide much improvement over a simpler additive
linear model tried by Larkey and Caulkin (1992).
On the other hand, Val can and did expand to a
multicomponent model, which is not possible with
the Larkey—Caulkin approach. Such expansions are
interesting substantively (we even found ourselves
wondering if a single composite of “math” and “ver-
bal” ability would adequately capture performance
across the spectrum of undergraduate courses our
statistics departments offer) as well as pragmati-
cally; and we are happy to see that Val is explor-
ing further possibilities along these lines as well.
Stricker et al. (1994) considered a related multicom-
ponent model for GPA.

On a pragmatic level the multicomponent model
provided a meaningful improvement in the correla-
tion of adjusted GPA ranks with other predictors.
So it was disappointing to us that such extensions
are apparently being dismissed in the initial pro-
posal for the adjusted GPA at Duke as being too
hard for clients and users to understand. Though
Val writes that a multicomponent model may be in-
troduced later, after a certain “comfort level” with
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the one-component model has been achieved, we are
reminded of the maxim “nothing is as permanent
as an interim solution”; and we hope that the one-
component model does not become so enshrined in
administrative habit, registrar’s computer programs
and the like that the opportunity for later improve-
ment is lost.

There is a larger issue concerning education of
clients and collaborators. If the multicomponent
model does a better job and is substantively sensi-
ble, then this is the model that should be promoted.
To report merely a total score (unadjusted GPA) or
unidimensional domain score (one-component ad-
justed GPA) is to imply to clients and users that
there really is a total ordering of students that we
are trying to estimate. However much clients and
collaborators may dislike partial orders, if that is
the reality, then we must find a way to express it in
such a way that they can use the information.

A compromise that has been explored in the
educational statistics literature is to work with
a “dominant” unidimensional trait, but be very
explicit that ignored “minor” traits introduce de-
pendence into the likelihood that typically increases
uncertainty and biases in inferences for the latent
trait (Stout, 1990; Junker, 1991; Junker and Stout,
1994). Val’s weighted-average achievement index
based on the two-component model is a model-
based version of this compromise; perhaps this
would provide an opportunity to make room for
the multicomponent model as it becomes more well
understood.

2.3 Computation

We thought the data augmentation approach and
corresponding prior for collapsing grade categories,
discussed at the end of Section 2, was clever and
interesting. The related discussion in Section 1.2
indicates the delicacy of the problem; for example,
Bradlow (1994) shows that changing the grade cat-
egory cutoff you fix can have dramatic effects on the
MCMC convergence rates.

We want to raise two concerns about this prior
choice, however. First, while suppressing unob-
served grade categories works well for fitting
observed data for one cohort of students, it may
be necessary, for the related problem of predict-
ing future grades, to allow for the occurrence of
such grade categories by putting nonnegligible
prior probabilities on them. Second, it appears that
classes in which all students are assigned the same
grade will be ignored by the model; there is little
comparative information from which to assess the
class’s difficulty. It may be possible to use histori-
cal grade data to supply prior information on the

difficulty of such classes, as long as the problem of
equating across years can be overcome.

Turning to a different matter, when Val shows in
Section 4.1 that the achievement index gives the cor-
rect ranking in the Larkey—Caulkin data, we would
like to have seen posterior probabilities for all rank-
ings. The beauty of obtaining Monte Carlo poste-
rior samples is that simple counts can give inter-
esting insights: was the “reverse” order—or some
other order—a close competitor in posterior proba-
bility, for example?

2.4 Poor EB Performance

We were troubled by the poor performance of the
empirical Bayes (EB) model, at least as predicted
by SAT and high school GPA. If anything the EB
model should be guilty of “capitalization on chance,”
that is, overfitting in some direction. Val’s argument
concerning the inability of the EB model to capture
the negative relationship between mean grade and
class size was not entirely convincing, but it made
us realize that the EB model he is considering is
more constraining, not less, than the fully Bayesian
baseline model: as Val points out in specifying the
priors for the baseline model, it is important to de-
sign the model so that unassigned grade categories
are given negligible posterior probability. The struc-
ture of the baseline model developed in Section 2
elegantly guarantees this, but it appears that the
structure for the EB model changes so that this is
no longer guaranteed. Thus it is not just EB es-
timation of hyperparameters but also a change in
the structure of the model that distinguishes the
EB model from the baseline model, and the par-
ticular structural change appears to be one that
Val has identified as inimical to good inferential
performance.

3. CONCLUSIONS

Despite our friendly criticisms—the most impor-
tant of which are shared by unadjusted GPA—we
think Val’s implementation of a GRM-adjusted
GPA is a real improvement over unadjusted GPA,
because it more fairly compares students’s perfor-
mances.

Val’s work is an excellent example of the appli-
cation of modern statistical methods to educational
research. We find this domain, educational statis-
tics, an exciting area to think about. Educational
measurement data, whether from grades or tests,
provide rich data structures where individual level
covariates and heterogeneity are likely to allow for
interesting statistical models. Typically educational
data is continuously collected on large subject pools,
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which affords the possibility of predictive and in-
ternal validity studies not available in other types
of research. Perusal of the papers and journals ref-
erenced in this discussion, and in Val’s article, will
lead the reader to a vast number of interesting
statistical problems, easily competitive with the
best problems in biostatistics, for example. Also, as
shown by the large influence at Duke and in the pop-
ular press (e.g., Pedersen, 1997) that this work has

Rejoinder

Valen E. Johnson

I would like to begin by thanking all discussants
for the many insightful comments received. Larkey
and Young have provided an excellent overview of
the problems associated with undergraduate grad-
ing, and I agree with essentially all of their remarks.
As a postscript to Larkey’s comments concerning the
status of the reform proposal at Duke, I would add
that since receiving his discussion, the Committee
on Grades has been officially reconstituted and may
be rechartered as a provostial committee early next
fall. In addition, new motions are expected before
our Arts and Sciences Council early next semester,
and these new motions will likely include provisions
to collect the type of data required to substantiate
the problems outlined by both White and Larkey.

In regard to the penetrating discussion of Junker
and Bradlow, I have only a few technical observa-
tions to make.

The relationship of the achievement index to
more standard latent trait models is a subtle one.
Perhaps the best way to connect the two concepts
is to suppose that a high- or infinite-dimensional
trait vector is associated with every student and
that a student’s expected performance in each class
is determined by some weighting of these traits.
The performance of each student in all classes—
whether observed or not—can then be summarized
by a weighted trait vector with dimension equal
to the number of classes. In standard latent trait
analysis, one might attempt to estimate every com-
ponent of the underlying student trait vector from
the partially observed vector of weighted classroom
traits.

In contrast, the achievement index represents the
mean weighted classroom trait for those classes ac-
tually taken by a student. In estimating the achieve-

already had, statistical research with educational
data and is likely to have great real-life impact.
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ment index, we are concerned only in estimating
the average weighted trait for these classes. We are
not interested in estimating the weighted classroom
traits for classes not taken, nor are we attempt-
ing to estimate the underlying latent traits them-
selves. Thus, a mathematics major’s achievement
index represents an entirely different weighting of
traits than does an art history major’s. By defin-
ing the achievement index in this way, the missing
data and selection problems alluded to by Junker
and Bradlow are largely avoided. Of course, as more
components are added to the achievement index,
the components of the index become more closely
related to standard latent traits.

Junker and Bradlow also comment on the effects
of varying the grade-cutoffs that are fixed to MCMC
convergence rates. In regard to these remarks, I
think it is important to note that no grade-cutoffs
are fixed in the proposed model. Indeed, this is one
of several aspects of the model that makes it distinct
from other models proposed in the item response
and ordinal data literature (e.g., Albert and Chib,
1993; Bradlow, 1994; and Bradlow and Zaslavsky,
1996). As noted in the text, fixing any of the grade
cutoffs makes the model unsuitable for analyzing
undergraduate grade data, and I suspect the same
is true for many other multirater ordinal datasets
as well.

Finally, Junker and Bradlow’s comments regard-
ing EB models are well taken. As White notes, the
model was criticized at Duke for not “counting” in-
dependent study courses or small seminar courses
in which only one grade was assigned (90% of in-
dependent study grades at Duke are either an A+,
A—, or A; the median grade in classes containing
fewer than five students is an A). In response to
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this criticism, the model may be revised so that EB
priors are used to model grade-cutoffs in classes
with fewer than, say, 10 students. In order to avoid
the difficulties encountered with the EB priors that
were used in the article, the hyperparameter val-
ues for these priors will be fitted hierarchically by
instructor, shrinking toward departmental means.
This strategy will eliminate the adverse effects
caused by differences in grading patterns associ-
ated with class size, instructor and department,
and will hopefully improve the accuracy of the
model by incorporating what information is avail-
able from small classes into the estimation of the
achievement indices.
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