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Gustav Elfving’s Impact on

Experimental Design

Herman Chernoff

1. INTRODUCTION

During my visit at Stanford University in the
summer and fall of 1951, some problems proposed
by the National Security Agency (NSA) for an Of-
fice of Naval Research (ONR) applied research grant
led to two of my publications [1, 2] which had a
profound effect on my future research. Both papers
had relevance to issues in experimental design. One
of these concerned optimal design for estimation.
Among other results, it demonstrated that, asymp-
totically, locally optimal designs for estimating one
parameter require the use of no more than % of the
available experiments, when the distribution of the
data from these experiments involves 2 unknown
parameters. A trivial example would be that to es-
timate the slope of a straight line regression with
constant variance, where the explanatory variable
x is confined to the interval [—1, 1], an optimal de-
sign requires observations concentrated at the two
ends, x =1and x = —1.

Shortly after I derived this result, I discovered
a related publication by Gustav Elfving [3]. While
Elfving’s result is restricted to k-dimensional re-
gression experiments, it gives an elegant geomet-
rical representation of the optimal design accompa-
nied by an equally elegant derivation, which I still
find pleasure in presenting to audiences who are
less acquainted with this paper than they should
be.

In some problems, practical considerations make
it impossible to apply optimal designs. One beauty
of the Elfving result is that the graphical represen-
tation of his result makes it rather clear how much
is lost by applying some restricted suboptimal meth-
ods, and gives some guidance to wise compromises
between optimality and practicality.

By 1950, experimental design was a well-
established field of statistics. Major sources of
application were in agriculture and chemistry, and
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the analysis of variance played an essential role.
Combinatorial and number theoretic approaches,
including that of finite geometry, tended to be
efficient statistically and computationally for esti-
mating many parameters because of the implicit
tendencies to have balance, symmetry and orthog-
onality. One important consequence of the theory
that has been slow in penetrating other sciences
is that standard approaches of varying one causal
variable at a time is inefficient compared to tech-
niques where several variables are manipulated
simultaneously. The weighing schemes of Yates [10]
and Hotelling [5] made this point very clearly.

In spite of the activity in experimental design, a
general theory for optimal design for estimation was
lacking. The revolutionary impact of Elfving’s con-
tribution was due to the confluence of several fac-
tors. The problem he formulated was general in that
it applied to much of the known literature, but was
not too general. The results had a simple geometric
interpretation and were computationally easy be-
fore computer technology was highly developed. Fi-
nally they were illustrated in terms of two unknown
coefficients which made the results easy to compre-
hend.

2. THE ELFVING PROBLEM

Consider the regression

YL-:inBl—inZBZ—i-ui, i=1,2,...,n,
where x; = (x;1, X;5)7 may be selected by the ex-
perimenter from a set S, B; and B, are unknown
parameters, the residuals u; are independent with
mean 0 and constant, possibly unknown, variance
o? and the Y are observed. A particular level x € S
may be selected several times, yielding independent
values of Y. It is desired to estimate

0=aB;+afs

for a specified value of a = (ay, as)”. How should
one allocate the n choices of x so as to yield a most
informative estimate 6 of 6?
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Assuming that n; observations are selected at x;
Sfori=1,2,...,r, we wish to minimize the vari-
ance of the linear unbiased estimate

where Y is the average of the n; observations at x;
subject to

i=1
and the unbiasedness condition

r
Z bixi = a.
i=1

For large values of n, we obtain an approximate
solution by disregarding the integer nature of the
n;. An elegant argument where we first assume the
b; and the x; are given, and optimize the variance

Var(f) = o > b?/n;
i=1
with respect to the n;, provides an equally elegant
solution.

Let S be the convex hull of the set S U(—S). The
optimal design is represented by the point z where
the ray from the origin through a penetrates S. If
z is a weighted average of points x € S or x € —8,
then an optimal design consists of using those points
in frequencies proportional to the weights. Thus if
S is a compact set, we need at most two levels of
x € S. Moreover, for this optimal design

Var(f) = %2 (W)%

|z |

The variance does not depend on B and the opti-
mality of this design does not depend on the value of
o?. To distinguish between the parameters 8; and
B5 on one hand and o2 on the other, we shall refer
to the former as the coefficients.

This first result is easily generalized in several
ways. If the regression involves k coefficients lin-
early, that is, S is in k-dimensional space, the same
geometric interpretation holds, and an optimal de-
sign requires at most % levels or values of x € S. If
the variance of Y is 02h(x) and the cost of selecting
x is g(x), where g and & are known functions, and
optimality requires minimum variance for a given
total cost, a simple modification of the solution ap-
plies.

The variation of this problem where we are in-
terested in estimating both coefficients rather than
a single linear function of 8; and B, raises a more
complex issue. How should we evaluate a design for
this problem? Elfving suggests the minimization of

the expectation of a nonnegative quadratic function
of B — B, that is,

q= Ezaij(.éi - ﬁi)(.éj - .BJ') = tr(AY),
i J

where A =| a;; || is nonnegative definite and % is
the covariance matrix of the vector of estimated co-
efficients B. This criterion fits in naturally with a
decision theoretic view of the estimation problem. If
A is positive definite and 2 = 2, a linear transfor-
mation of B would lead to the use of

q = Var(B;) + Var(B,).

Here Elfving shows that the relevant levels of x
must lie on an ellipsoid as far as possible from the
origin. One consequence is that at most three values
of x € S are required if the number of coefficients
k = 2. More generally we may need k(k+1)/2 levels
of x.

Given the primitive state of computing technol-
ogy in 1952, Elfving suggested that the analytic
and computational aspects could become nasty for
values of %k larger than 2, although he was aware
that classical applications involving symmetry and
orthogonality tended to be efficient.

3. RELATION BETWEEN MY RESULTS AND
THOSE OF ELFVING

We recall that for the Elfving restriction to linear
regression problems, the efficiency of a design is in-
dependent of the unknown coefficients. If we assume
normal disturbances, the Fisher information matrix
corresponding to a design D using X, Xy, ..., X, in
proportions wy, Wy, ..., w, is nM(D), where n is the
total number of observations, and

r
M(D) =Y wxx!.
i=1
The problem formulation which I proposed was
based in part on a mistaken interpretation by M. A.
Girshick and myself of the practical problem pro-
posed by the NSA. For our interpretation it seemed
natural to ask how many experimental levels were
required to get good estimates, since each such level
involved the construction of a measuring device.
A regression formulation was inappropriate, but
a large-sample asymptotic approach seemed rea-
sonable. Thus, it was natural to think of a design
consisting of a collection of independent elemen-
tary experiments ey, eq, ..., e, with e; € & and with
information matrices J(e;). For such a design the
total information is

nM(D) = Xn: J(e;).

i=1
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Consider the cases where the distribution of the
outcomes of the elementary experiment e € & de-
pends on 2 = 2 unknown parameters B8; and B,
and we wish to minimize the asymptotic variance of
the maximum likelihood estimate 3; of 3;. Then we
are led to minimize

n MY =n"N (Mg — MygMyg My;) ™

if M is positive definite. Discarding the integer con-
dition on the frequency with which each experiment
e may be performed, the set .# of possible M (D) is
the convex hull of T' = {J(e): e € &} which can
be represented as a set of points (M;;(e), Ms(e),
Myy(e)) in three-dimensional space. Thus we wish
to maximize

(M™)y ' =M — MyMy3 My,

defined on a convex set .# in three-dimensional
space. But then it follows that every point of .# can
be expressed as a convex combination of at most
four points of 7. However, M!! is clearly monotone
in M; and any optimal design must correspond to
a boundary point of .# and be expressible as a con-
vex combination of at most three points of 7T'. This
implies immediately, with no analysis, that an opti-
mal design can be constructed using at most three of
the available experiments in & in appropriate pro-
portions. With some analysis of the effective infor-
mation for estimating 8; when B, is unknown, that
is, My, — M1, M3 Mo, it can be shown that two ex-
periments will suffice for an optimal design. More-
over, this result can be generalized so that for the
quadratic criterion of minimizing

q=tr(AM™),

where A has rank r, we need at most 2+ (2 — 1) +
oo+ (k—r+1)=r(2k —r+1)/2 of the elements
eecd.

In summary, my results were more general than
those of Elfving in two respects. They dealt with
experiments that were not necessarily of the re-
gression type. Where Elfving’s results applied to
r =1 and r = k, mine applied to the cases where
l1<r<ek.

In both approaches, the problems of singular in-
formation matrices had to be and were dealt with.
Where Elfving’s optimal designs were independent
of the values of the coefficients, the optimality of the
designs for the more general problem do often de-
pend on the unknown values of the parameters. For
this reason my results are asymptotically locally op-
timal, and a prior estimate of the values of the pa-
rameters is often required to derive good designs.

As more information is accumulated, these designs
can be improved.

Finally, Elfving presented an easily computed
method of producing optimal designs. His approach
is especially useful in those cases where practi-
cal considerations restrict the choice of designs. In
such cases the geometric character of his solution
clarifies how to deal with such restrictions.

There is a class of problems which are not of the
regression type, but for which the Elfving solution
applies. If the distribution of the outcome of an el-
ementary experiment depends on one function of
the & parameters, the information matrix J(e) is
singular, of rank 1, and therefore of the form xx”.
But then the problem is asymptotically equivalent
to a regression problem, and the Elfving solution ap-
plies. In the probit problem of estimating u — 2.87¢
(0.002 dose response level) where there is a response
at dose level d with probability ®(o~1(d — u)) and
® is the standard normal c.d.f., the asymptotically
optimal design is easily shown to involve dose lev-
els u £ 1.57¢. Clearly this design is local since it
depends on the values u and o of the unknown pa-
rameters of the probit model.

4. LATER RESULTS

In 1959 Elfving [4] summarized the current state
of research on the design of linear experiments in
an article in the Cramér festschrift [4]. Here he dis-
cussed minimax designs and admissibility.

Two kinds of minimaxity were considered. In
one, labeled s.p., one attempts to find the design
for which the maximum of the variances of the es-
timates of each of the % coefficients is minimized.
The second, labeled st.f., minimizes

ﬁnal)ﬁ Var(c”B).

In these cases theorems, due to Moriguti and
Ehrenfeld and Gustafson, which present sufficiency
conditions invoking symmetry and orthogonality,
are described. Also there is some consideration of
the case where minimax is applied to a limited
subset of r of the % coefficients.

An experimental design D is regarded as admissi-
ble if there is no alternative design D* which yields
smaller variances for every linear function of the pa-
rameters. This implies that, for each D*, M(D*) —
M(D) is not nonnegative definite. It is pointed out
that admissibility is a property of the spectrum of
D, that is, the elementary experiments from which
D is formed, and not to the proportions in which
they are used. A characterization is given of the
elementary experiments involved in an admissible
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design. These must lie on a positive-definite quar-
tic centered at the origin. In this section, Elfving
refers frequently to unpublished notes of L. J. Sav-
age. Elfving has been generous in his attribution to
other workers, and it would require some effort to
disentangle his contributions from those of the oth-
ers from his presentation of the current state of the
subject.

At the end of this paper, there is a note added in
proof in which he mentions that he had recently had
access to a very interesting paper by Kiefer and Wol-
fowitz, “Optimum designs in regression problems,”
which was to appear in the Annals of Mathematical
Statistics. In fact he was a referee for that article,
which represented the first step in the next revolu-
tionary development stemming from his work.

5. THE KIEFER-WOLFOWITZ FORMULATION

Around 1959, based in part on Elfving’s re-
sults, another revolutionary development appeared
in experimental design for estimation in regres-
sion experiments. In a series of papers by Kiefer
and Wofowitz, and then by Karlin and Studden,
further insights and extensions of Elfving’s re-
sults appeared using game theoretic and minimax
ideas.

In cases where we are interested in estimating
a linear function of the %2 unknown coefficients,
the computational problem implied by the results
of Elfving and Chernoff requires the minimization
of a function of the 2k — 1 variables consisting of
the %k elementary experiments and of the 2 — 1 fre-
quencies allocated to these experiments. Kiefer and
Wolfowitz [7] indicated how this problem can be
divided into two lesser problems of k2 and % — 1 di-
mensions. The choice of elementary experiments or
levels was reduced to a Chebyshev approximation
problem which was already solved in some special
cases of interest.

In cases where we are interested in estimating all
of the % coefficients, a remarkable result by Kiefer
and Wolfowitz [8], later elaborated by Karlin and
Studden [6], establishes the equivalence of two op-
timality criteria. These are D-optimality, where we
minimize the determinant of the covariance matrix
of the least squares estimates of the coefficients,
and A-optimality, where we minimize the maximum
variance of the estimated regression. Note that, for
each level, the variance of the estimated regression
depends on the level x € S, and our criterion ap-
plies, for each design, the maximum of the variance
of Byxy + -+ Bpxy, forx € S.

This minimax criterion seems generally more nat-
ural and relevant for problems where extrapolation

is not an issue, than the two minimax criteria dis-
cussed by Elfving in [4]. On the other hand, when
we are interested in r < & of the coefficients, the ex-
tension of the equivalence result equates the design
which minimizes the determinant of the covariance
of the estimates of the r parameters to a minimax
variance which does not seem especially relevant as
a natural criterion.

Incidentally, Studden [9] later described a natu-
ral, if rather complicated, extension of Elfving’s geo-
metric results to the selection of experiments which
minimize the expectation of a quadratic function of
B-B.

These results were revolutionary and insightful
and led to a rich literature and many applications
using the developing computer technology. However,
I have some criticisms of the direction in which
these results pointed.

My main objection is to the concentration on
D-optimality. I much prefer the quadratic criterion
of minimizing tr(A%) for some nonnegative-definite
symmetric A. The latter criterion makes sense
from a decision theory point of view where the
costs of error are approximated by a nonnegative
quadratic function. The rank of A determines the
number of linearly independent coefficients of con-
cern. One of my objections to D-optimality is the
sensitivity of the determinant to the variance of
the estimates of the individual coefficients. More
important is that the invariance property of this
criterion, which is regarded by some as a desirable
property, is undesirable. It is a surrender of the de-
cision maker’s ability to measure the cost of error
to the mathematical structure of the problem. To be
more specific, if * = CB is a linear transformation
of the coefficients, the D-optimal criterion applied
to B* leads to the same solution as that applied to
B. The experimenter’s costs, considered in A above
nowhere enter into the application of this criterion.

Interestingly enough the equivalence result
shows that the D-optimal criterion makes sense for
the minimaxer who is not concerned with extrapola-
tion, that is, interested in estimating the regression
only for x € S. But this equivalence result degener-
ates to something less natural for the experimenter
if not all of % coefficients are of interest.

A minor quarrel that I have had with this stream
of papers is a strange use of notation. Rather than
take

Y=x"B+u forxesS,
where S is compact, the notation used is

Y =f(x)'B+u forxe,



ELFVING’S IMPACT ON EXPERIMENTAL DESIGN 205

where 2" is compact and f is a continuous vector-
valued function of x. This notation is presumably
derived from an interest in the application

Y =Bg+B1x+-+Bpqx* ! fora<ux<b,

where Chebyshev approximations are standard.
Personally, I like the standard notation in regres-
sion and find this new use of f disconcerting and
regret its prevalence.

6. SUMMARY

Experimental design is one of the major keystones
of statistical theory and application. Its develop-
ment is one of R. A. Fisher’s major contributions
to science. The work of Elfving introduced a funda-
mentally new direction in this field. It provided im-
portant insights into the efficiency of good designs
and served as a stepping stone for later develop-
ments which have exploited computer technology.
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