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ON THE INEQUALITY FOR BIBDs WITH
SPECIAL PARAMETERS

By SaNPEI KAGEYAMA
Hiroshima University

For a p-resolvable Balanced Incomplete Block Design (BIBD) with
parameters v, b = mt, r = ut, k and 2, Kageyama (1973) obtained an ine-
quality 5 = v + ¢ — 1. The main purpose of this note is to improve b >
v+t —1tob=max {v+t—1,(m% + m)/y?}. This inequality is also im-
proved further for a g-resolvable BIBD which is not affine p-resolvable.

1. Introduction and summary. For a BIBD with parameters v, b, r, k and 4, if
the blocks can be separated into ¢ sets of m blocks each such that each set con-
tains every treatment exactly p times, then the design is called p-resolvable.
Moreover, if any pair of blocks belonging to the same set contain g, treatments
in common, whereas any pair of blocks belonging to different sets contain ¢,
treatments in common, then the design is called affine p-resolvable. Then we
have the following relations (cf. [3], [5]):

(11) vr = bk, 2(v—1)=r(k—1), b=, b=mt, r=pt,
G=(@—Dkjm—-1)=k+2—r, g, = pkjm = k*v .
Shrikhande and Raghavarao [5] proved that the necessary and sufficient condition
for a p-resolvable BIBD to be affine p-resolvable is b — v = r — 1. Kageyama
[3] and Raghavarao [4] showed that if there exists a p-resolvable BIBD with
parameters v, b = mt, r = pt, k and 2, then b > v 4+ ¢+ — 1. Further, when
v < r, this inequality was improved to b > 2(v — 1)/p + r without the assump-

tion of p-resolvability, but with the assumption of b = mr and r = pt [3]. In
this note these inequalities are improved further.

2. Statement. A BIBD with parameters v, b = mt, r = pt, kand 2 is considered
throughout this section. From (1.1), since (ur — ma)k = p(r — 2) > 0, we
obtain

2.1 pur —mi = 1.

Further, we have |

2.2) b = vrlk = {v(ur — m2) + ma}/p
= (ur —md)(v— 1)jp +r.

Multiplying (2.1) by m, we obtain b > (m®2 + m)/y*. Moreover, (2.1) and (2.2)
imply b = (v — 1)/p + r. It follows from (2.2) that & > (m*2 4 m)/u* is equiva-
lent to & = (v — 1)/¢ + r and both the equality signs hold at the same time. As
a comparison of these two inequalities, we have
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LemMA 2.1. In a BIBD with parameters v, b = mt, r = pt, k and 2, the follow-
ing relation holds:

bz (M3 + mE = (0 — D +r.

Proor. Let F = (m?2 + m)/y* — (v — 1)/Jp — r. Then p*F =m?A 4+ m —
#(v — 1) — pr. From (1.1) and (2.1) we have pi(v — 1) = (m2 + 1)(k — 1).
Hence mA = pd + k — 1, ie., if yr — mA =1, then mi = pA + k — 1. Thus
©F = p(mi + 1 — pr) = 0 provided pr — ma = 1. Therefore (m*A + m)/p? =
(v — 1)/ + r provided pr — ma = 1. Inthe case of ur — ma > p for a positive
integer p, it is sufficient to consider ur — m2 = p + 1. From (1.1), ur — ma >
p+ lleadstomd = pd + (p + Dk — (p + 1), i.e., if ur — mi = p + 1, then
mA = pd + (p + Dk — (p + 1). Thus /F = mp{k — (1 + pjm)} > Oby k = 2
and m > pprovided ur — mi = p + 1. Therefore (m*A + m)/p* > (v — 1)/ +r
provided ur — mi = p 4 1 for a positive integer p. Repeated applications of
this procedure completes the theorem.

Further, from the result that for a p-resolvable BIBD with parameters v, b =
mt, r = pt, k and 4, an inequality & > v + ¢ — 1 holds, we have

THEOREM 2.1. For a p-resolvable BIBD with parameters v, b = mt, r = pt, k
and 2, an inequality

b=max{v 4+t — 1, (m2 4+ m)/p?}
holds.

Note that (v — 1)/g + r = v + t — 1 provided v < r. Then from Lemma 2.1
we have b > (m*2 4 m)/p* for v < rin Theorem2.1. In particular, when p = 1,
for a resolvable BIBD with parameters v, 6 = mr, r, k and 1 an inequality b >
m*2 + m, which is more stringent than Bose’s inequality 6 > v + r — 1 [1],
always holds from Lemma 2.1.

ExampLE 1. Consider an affine 4-resolvable BIBD with parameters v = 169,
b=182, r=56,k =52and A = 17 where t = 14 and m = 13 [3]. Thenbd =
v+ t— 1and b = (m*A + m)/p* imply 182 > 182 and 182 > 181, respectively.

ExampLE 2. Consider a 2-resolvable BIBD with parameters v = 6, b = 15,
r=10, k =4 and 2 = 6 where t = 5 and m = 3 [3]. Thenb>v + t— 1and
b = (m’A + m)/y® imply 15 = 10 and 15 > 15, respectively.

ExaMmpLE 3. Consider an affine 2-resolvable BIBD with parameters v = 9,
b=12,r=8,k=6and 2 =5 where r =4 and m = 3 [3]. Then b > v +
t — land b = (m*2 + m)/p? imply the same 12 > 12.

ExaMPLE 4. Consider a resolvable BIBD with parameters v = 12, b = 44,
r=11,k=3andA=2wherem =4. Thenb>v+r— landb>m?A + m
imply 44 > 22 and 44 > 36, respectively.

As a generalization of Lemma 2.1, we obtain
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THEOREM 2.2. For a BIBD with parameters v, b = mt, r = pt, k and 2, if pr —
m2 > p for a nonnegative integer p, then

b2 {md + (p+ \mi = (p+ Do — g+ 7.

The proof of this theorem is similar to that of Lemma 2.1 and hence it is
omitted. When p = 0, from (2.1) Theorem 2.2 implies Lemma 2.1.

Note that from (2.2), 6 = {m*2 + (p + 1)m}/p*® is equivalent to b = (p +
1)(v — 1)/p + r, in particular, the equality sign & = {m?A + (p + 1)m}/¢* holds,
if and only if the equality sign b = (p + 1)(v — 1)/# + r holds. Theorem 2.2
also shows that if & > (m°2 + pm)/p?, then b = {m*2 + (p + 1)m}/p?. That is
to say, we can improve the bound of 4 in turn.

CorROLLARY 2.1. In a BIBD with parameters v, b = mt, r = ut, k and 2, if b >
v+t — 1, thenb = (m2 + 2m)[p* = 2(v — 1)/p + 1.

Proor. Casel, i.e., v < r. Then from Theorem 4.2 of Kageyama [3], b >
2(v — 1)/ + r holds without the assumption & > v + ¢t — 1. From (2.2), b =
2(v — 1)/p + r implies pr — mA = 2. Hence from Theorem 2.2, we obtain
b= (m2 4 2m)/p* = 2(v — 1)/pp + r. Casell, i.e., v > r. From (2.1), assume
on the contrary that ur — m2 = 1. Then (2.2) implies b = (v — 1)/ + r which
is less than or equal to v + ¢t — 1 provided v > r. This is a contradiction since
b> v+ t— 1. Hence we have ur — mi = 2, i.e., from Theorem 2.2, we have
b= M2+ 2m)/p* = 2(v — D/p + r.

As an implication of Corollary 2.1, we have the following corollary from a
necessary and sufficient condition for a p-resolvable BIBD to be affine p-
resolvable:

COROLLARY 2.2. For a p-resolvable BIBD with parameters v, b = mt, r = put,
k and A which is not affine p-resolvable, a relation

b= M+ 2m)pr = 2(v— 1)/p + r
holds.

ExampLE 5. Consider a 4-resolvable BIBD with parameters v = 9, b = 12,
r=28, k = 6 and 2 = 5 which is not affine 4-resolvable for t =2 and m = 6.
Then b = (m?2 4+ 2m)/p* implies 12 = 12.

When p = 1, Corollary 2.2 shows that & > m*4 + 2m is more stringent than
b = 2v 4 r — 2 [2] for a resolvable BIBD with parameters v, b = mr, r, k and
2 which is not affine resolvable. As an example of this result, one should be
referred to Example (iii) of [2]. Finally, it is interesting to note that when # = 1,
since from (1.1) and (2.1) wehavemi = 2 + k — 1,from 2 = 1 we have mA = k,
i.e., 2 = k/m, which implies that for an affine resolvable BIBD with parameters
v, b = mr, r, k and 2, the number of treatments common to any two blocks
belonging to different sets is not greater than 4.
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