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THE CONDITIONAL PROBABILITY INTEGRAL TRANSFORMATION
AND APPLICATIONS TO OBTAIN COMPOSITE
CHI-SQUARE GOODNESS-OF-FIT TESTS!

By FEpERIcO J. O’REILLY? AND C. P. QUESENBERRY
North Carolina State University

It is shown that certain conditional distributions, obtained by condi-
iioning on a sufficient statistic, can be used to transform a set of random
variables into a smaller set of random variables that are identically and
independently distributed with uniform distributions on the interval from
zero to one. This result is then used to construct distribution-free tests of
fit for composite goodness-of-fit problems. In particular, distribution-free
chi-square goodness-of-fit tests are obtained for univariate normal, expo-
nential, and normal linear regression model families of distributions.

1. Introduction and summary. Let X, ..., X, denote a set of independent
random variables that are identically distributed with distribution P, and cor-
responding distribution function F, which is a member of a class &7 of univariate
distributions with absolutely continuous distribution functions. In Section 2
we establish results which show how, in some cases, certain conditional distri-
butions obtained by conditioning on sufficient statistics can be used to transform
the sample into a set of independently and identically distributed uniform ran-
dom variables on the interval (0, 1)-i.i.d. U(0, 1).

In Section 3 we use the foregoing results to construct chi-square type distri-
bution-free tests of fit for composite problems. In Section 4 we consider some
particular examples and set out the details of the tests. In particular, we con-
sider tests for the two-parameter univariate normal family, the scale parameter
exponential family, and the standard univariate normal regression model. In
Section 5 we consider generalizations to multivariate distributions, and in Sec-
tion 6 give a brief discussion of the foregoing results.

The major theorem of Section 2 relies upon the multivariate probability in-
tegral transformation of Rosenblatt [11]. Lilliefors [8], [9] has proposed a
Kolmogorov-Smirnov type statistic for testing composite null hypothesis classes
that can be characterized by location and scale parameters; that the statistic is
distribution-free follows from results of David and Johnson [4]. He also simu-
lated the distribution of this statistic for normal and exponential classes. Watson
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[14], [15] has shown how to construct a chi-square type statistic which is as-
ymptotically distribution-free. There is a rather large literature on minimum
variance unbiased estimation which is of general relevance here. We shall make
specific reference to papers by Lieberman and Resnikoff [7], Ghurye and Olkin
[5], and Sathe and Varde [12].

2. The conditional probability integral transformation (CPIT). Let (R", <#'*, P")

denote the probability space of the independent sample X, ..., X, from the
Borel parent space (R, <7, ). Let X;: R* — R denote the ith projection of R*
and denote by ¢(X;) the sub s-algebra of &2 induced by X;; i=1, ..., n.
Let T,: R* — Rfs(k, {1, - - -, n}) be a sufficient statistic for .2, and denote
by F,(x; - -» x,) the Rao-Blackwell distribution function estimator:
E{][Xléxl,---,Xa§za]| T,}, aefl, ..., n},
where here I denotes the indicator function, i.e., I, is one when (X;, -- ., X,) e 4

for A e <#", and is otherwise zero.

THEOREM 2.1. If F (x) is absolutely continuous a.s., then the rv F,(X,) is uni-
formly distributed on the unit interval for i =1, - .., n.

Proor. For a given T, = t, F,(x,) is the conditional distribution of X; given
T, evaluated at f, which is absolutely continuous (except for a set of ¢ values
of zero probability). Therefore

P(F(X)<y|T,=1) =y as.

by the probability integral transformation theorem. Observe that this condi-
tional distribution does not depend on ¢ a.s. The result follows.

In the sequel it will be assumed that T, is symmetric in X, - .-, X,. Thus
the ordering of the observations is immaterial in the next definition.

DEeFINITION 2.1. The maximum valueof @ = 1, - - ., nfor which F,(x,, - - -, x,)
is absolutely continuous a.e. .7 will be called the absolute continuity rank of
FPReT,-a.cr. FReT,.

THEOREM 2.2. The absolute continuity rank of <°Re the minimal sufficient sta-
tistic Z, is not less than that given any sufficient statistic T,.

Proor. Seheult and Quesenberry [13] have shown, essentially, that a neces-
sary and sufficient condition for the existence of an unbiased o(T,) measurable
estimator f(x,, - - -, x,) of the density function of (X, - - -, X,) is that F(x;, o, xp)
be absolutely continuous. But then the conditional expectation of f(x,, - - -, x,)
can be taken given Z, and an unbiased ¢(Z,) measurable estimator of the den-
sity results. Therefore, F,(x,, - - -, x,) obtained from Z, is absolutely continuous.

In view of Theorem 2.2, we shall call thea.c.r. Z’Re Z,, the minimal sufficient
statistic, simply the a.c.r. .. The quantity a.c.r. & is, in general, a function
of n. For many families & it is of the form n — ¢, for ca fixed integer. This
is the case if Z, is a vector with ¢ components for an exponential class & of
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continuous distributions. If the class &7 is not dominated by Lebesgue measure,
then the a.c.r. & is zero for all sample sizes (making the convention that for
a =0, E{lix <., ... xysz,1| T} is an absolutely continuous df).

Next, let F’;(xj | Xy, - -+, x;_,) be given by:
Fo(xj|xy, ooy x50) = E(E(ly 50| To = 0| Xy = x5 -+, X, = x;)
We shall use 7 in place of 7, in the next lemma and proof.
LEMMA 2.1.  F,(x;]x, -+, X;_))
=E(liy,copl T=06LX =%, -+, X;, = x;,) a.s.

Proor. We will show only for j = 2. The general case is done similarly.
Denote by F(x,) the marginal df of F(x,, x,) computed for each T = 1, i.e.,

Fxy) = lim, ., F(x,, x)) = lim, .. BTty 0. ryzen| T) -

By the monotone convergence theorem for conditional expectations the last
term in the above expression is equal to E(I;y <,,|T) a.s.

Therefore, F(x,) = E(Ix <, T) a.s. From its definition, for each value of
T, F(x,| x,) obeys the relationship:

(2.1) F(x,, x;) = V2, F(x,|u) dF(u) a.s.

Now, F(x,, x,), being a conditional expectation, must obey, for every B, € o(T),
the relationship:

(2.2) $ar F(x,, x;) dP, = P([X, < x;, X, < x,]By) -
Also, E(Iiy,,,| T, X,) obeys, for every B, € o(T),
(2.3) $2, § 7% E([[X2§x2]] T, X)) dPT,Xl = P([X, £ x, X, £ x,]B;) .

From (2.1), (2.2), (2.3), and the fact that dP,, = dP% dP,, where
PT, (— oo, u) = F(u); we have it that for every B, ¢ o(T), and any x, € R,

§2, §2% F(x,|u) dPg'l(”) dP, = {5, (% E(I[nglel T, X; = u) dPZ\"l(”) ap,,

therefore
F(x,|x;) = E(I[Xzézﬂ] T, X, =x,) as.

THEOREM 2.3. If the a.c.r. Z? Re T, is a(> 0), then
Fo(X), F(X,| X)), - s Fu(X | X, 00 Xooy)
are i.i.d. U(0, 1).

Proor. By hypothesis, F,(x,, - - -, x,) is an absolutely continuous distribution
function a.s. The result follows by applying the multivariate probability inte-
gral transformation given by Rosenblatt [12].

DEFINITION 2.2. The sequence of statistics (T,),, is said to be doubly transi-
tive if for each n = 1; o(T,, X, 1) = (T 11> Xuir)-
Berk [2] and Bahadur [1] have considered transitive sequences. When the
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sequence (T,),,, is doubly transitive the transformations in Theorem 2.3 can
be simplified.

THEOREM 2.4. If the a.c.r. &’ Re T, is a(> 0) and (T,),s, is doubly transitive,
then
Fn(xn—d l xn) = Fn—l(xn—l) a.s.

Fn(xn—Z l xn’ xn—l) = Fn-—?(x'n—2) a.s.

F’n(xn—a | Xps * s xn—a+1) = Fn—a(xn—a) a.s.

Proor. By Lemma 2.1

Fi(xi ] Xps 20" xj+1) = E([[Xjézj] | Tn’ Xn = Xpy t s XJ'+1 = xj+1) a.s.

forj=n—a+ 1, --.,n Since X; is independent of X, ,, ---, X, and double
transitivity of (7T,),,, means that o(T,, X,) = o(T,_,, X,), it follows that the
r.h.s. of the last equation is equal to

E([[ngxj]] T;) = Fj(xj) a.s.
forj=n—a+1,..-,n

CoroLLARY 2.1. If the a.c.r. FRe T, is a(> 0) and (T,),, is doubly transi-
tive then

Fn—a+1(Xn—a+1)’ T Fn(Xn)
is a set of a i.i.d. U(0, 1) rv’s.

From Theorem 2.2 it follows that the maximum number of i.i.d. U(0, 1)
rv’s is obtained in Corollary 2.1 when T, is the minimal sufficient statistic.

The approach of this section can be used to transform a set X, ..., X, of
rv’s when the assumptions of identical distributions and independence of com-
ponents is not fulfilled. The following theorem clearly holds.

THEOREM 2.5. For any set X,, - - -, X, of real-valued 1v’s, if F,(x,, -+, x,) is
the df corresponding to a Rao-Blackwell estimating distribution P, that is dominated
by 2% (a-dimensional Lebesgue measure) for a > 0, then the a rV’s

Fn(Xl)’ Fn(XZ | Xl)’ R} Fn(Xa ] > GEEEN Xa-—l)
are i.i.d. U(0, 1).

In many cases when some of the conditions of identical distributions, inde-
pendence, transitivity, etc., are satisfied it is possible to write particularized
versions of Theorem 2.5 which may be more useful or convenient. In Example

4.3 we shall use a version for which the identical distributions condition is not
satisfied.

3. Distribution-free chi-square goodness-of-fit tests for composite hypotheses. In
this section the results of Section 2 are applied to obtain tests for hypotheses of
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the form H: Pe Svs. K: P¢ & The general strategy is to apply either The-
orem 2.3 or Corollary 2.1 to obtain a set of a i.i.d. U(0, 1) rv’s under H. Under
K this set of rv’s will, in general, not be i.i.d. U(0, 1). Any statistic which mea-
sures distance from uniformity in the transformed sample can be used as a test
statistic. If a Kolmogorov-Smirnov statistic is used for the a transformed rv’s,
its distribution will be distribution-free (i.e., the same for any P e &”); and,
moreover, will be that given by Birnbaum [3].

If a chi-square type test statistic is considered, the statistic has an exact X*
distribution (see (3.4) below), and, moreover, a significant additional advantage
is that it turns out that the test statistic can be identified with a chi-square type
statistic computed from the beginning sample, i.e., without actually performing
the transformations. In the sequel it will be assumed that T, is the minimal
sufficient statistic. If any other sufficient statistic is used the result will some-
times be to waste some observations.

THEOREM 3.1. Let the a.c.r. & be a(> 0), and let p;, - - -, p, be fixed positive
numbers with p, + .- + p, = 1. Then there exists a random partitions of R:

(3.1) ) {(é(i—l)j’ C’ij]}i'czl > where
_Oozéoj<é1j< <ékj= “+oo,

such that forj = n — a + 1, - .., n the random vector (N, N,, - - -, N,) defined by

Ni = Z?=n—a+1 [[a(i—l)j<Xj§Eij] 4 i = 1’ Tt k

has a multinomial distribution with probability parameters p,, - - -, p,; Y%, N; = a.

Proor. Apply Theorem 2.3, taking the transformations in reverse order. For
eachj=n—a+1,.-..,nletY, = F,(X;|X,, - - -, X,,,), and define C;; by:

(3.2) F(Cis| X -+, Xyin) = Xicapss i=1,.- k—1.
Then
(3.3) (TP <Y, < Xiapy) Mt (Cayy <X 2Cy).
The result follows since Y,_,,,, ---, Y, are i.i.d. U(0, 1).
If we put
(3.4) Xt = Sy (N — ap)fap,

then this has the distribution of the X* statistic often used for testing simple
hypotheses.

CoROLLARY 3.1. If the minimal sufficient statistic in Theorem 3.1 is doubly tran-

sitive, then the X*® statistic of (3.4) converges in distribution to a y*(k — 1) rv as
n— oo.

We advocate choosing p, = .- = p, = 1/k as has been proposed for the
simple problem by Mann and Wald [10], and more recently by Good, et al. [6],
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so that
(3.5) X? = (kja) L N — .

Tables that are useful here have been given by Good, et al. [6], and by Zahn
and Roberts [16].

4. Examples. The results of the foregoing sections will here be applied to
some problems of practical importance.

ExaMPLE 4.1. Test of normality. Let & be the class of univarite normal dis-
tributions with unknown parameters ¢ and ¢?. The minimal sufficient statistic
is T, = (X,,S,)) = (5 X,/n, ¥,7 (X; — X)*/n), and is clearly doubly transitive.
By Theorem 2.4 we can use the functions F,(x,) to construct the C;;’s of Theorem
3.1. The estimator F,(z) is given (cf. Lieberman and Resnikoff [7]) for r > 2 by:

F(2)=0, if z—-X, < —(r— 1)tS,,
=1, if r—1S, <z —-X,, and
= G,_{(r — 2)¥z — X,)/[(r — DS,* — (z — X)), elsewhere,
where G,_, is the Student-¢ distribution with » — 2 df. Forr =1, 2, F,(z) is not
continuous.

Since F,(z) is absolutely continuous for r = 3, thenforj=n—a 4+ 1, ---, n,
using the double transitivity property, the transformation for x; is given by
Fy(x;). Thus, « = n — 2.

Let #(i/k, j — 2) be the (i/k)th quantile of a Student-r distribution with j — 2
df; j = 3, ..., n. Obviously, this selection is for equiprobable cells.

The estimated quantiles Cw i=1, ...,k —1, for the jth variable are given

by the solutions to the equations:

(J = 2HCy; — XD/ — DS? — (Ci; — Xp)'1 = t(ifk, j — 2)
which gives:
@ ¢, = (U = DG =200tk j =2)S; | g

(I + 22(ifk, j — 2)/(j — 2))*

Note the sequential nature of the computational procedure, that X, S;* are
computed first, then X,, S2, etc.; and, also, if the cells are computed for a sample
size n,, and additional observations are then obtained, the formulas for the first
cells are unaltered.

The case of testing normality when ¢* is known can be obtained in a
straightforward manner. The expression for F,(z) in this case is the df of a
NX,, ((r — 1)/r)¢® distribution.

EXAMPLE 4.2. Test of exponentiality. It is desired to test the composite null
hypothesis that the parent has density Ze~*, 2 > 0. The sample mean X, is the
minimal sufficient statistic and is clearly doubly transitive. The Rao-Blackwell
estimating distribution function is:

Fi2) =1 —[1 = 2l (D)X )] + Iz,,e0(2) -
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The absolute continuity rank is thus » — 1 and in this case no tables are needed
to select the estimated quantiles, C;;, i=1, .-,k —1;j =2, .-+, n.

159
The C;;, are obtained by solving:

L—[1 = Cy/(JX)Y = ilk
which yields:

(4.2) C;; = [1 ~(1- %)W_”} %, .

Following the same steps as in the above examples, the random selection of
cells can be easily obtained for the following cases given by Sathe and Varde [12]:

Incomplete Gamma; I?;p)e—"/“’x"—1 for p known.
P

Weibull; (p/@)xr—le=="/7 , p known.

In both cases, the absolute continuity rank is n — 1, and in both cases, also,
the corresponding minimal sufficient statistic is doubly transitive.

ExXAMPLE 4.3. Testing the fit of a normal regression model. Fory,” = (yy, -+, y,)
a vector rv consider testing the hypothesis:

(4.3) H:y, ~ NX,B, o*l),

where X, is some n X p matrix (n > p) of full rank, and (8, ¢%) are p + 1 un-
known parameters. This is the well-known univariate multiple regression model.
In this section, a test is given for testing the hypothesis (4.3).

For the family N(X, 8, ¢%I), clearly (y,'y,, X,'y,) is the minimal sufficient sta-
tistic, and is equivalent to the statistic

(XYoo ¥ (I — X (X, X,) T X,)Y) -

Since the family is defined with the knowledge of X,, then for x;” the ith row
of X,, the statistic (y,’y,, X,'¥,> ¥..1) is known iff (¥],,¥,41> X41¥,115 Vs4a) is known,
which shows that the minimal sufficient statistic is doubly transitive.

Ghurye and Olkin ([5], page 1268, 4.2) give the MVUE of a related density
which in the particular case considered here can be written as in the following.
The conditional density of y, givent, = X,’y,and S, =y,'(I — X (X,/X,)"'X,)y,.,
exists iff X,_, is of full rank, and in this case it is given by the expression:

Sn—(n—p—2)
B(E: (n —p — 1)]2)

T XX,

( 1 - X'n,()('n,/‘/'rb)_lerb)_i

where ¥(z) = zif z > 0, and is otherwise zero. Therefore, forj=p + 2, ---,n,
the conditional density of y; given t; = X)’y;, and §;* = y,/(I — X;(X;/X)7'X}")y,
exists if the first p 4+ 1 rows of the matrix X, form a full rank matrix. It is as-
sumed that this is the case. This result enables the writing of the conditional



THE PROBABILITY INTEGRAL TRANSFORMATION 81

distribution function of y, given t; and S;* as a Student-s distribution function
with j — p — 1 degrees freedom evaluated at:

U, = (U —p — DAy; — x,/(X/X;)7't)) )
{(1 — x,/(X;X;)7%,)S — (y; — X,/(X/X)7't,)" P

Under the assumption that the ordering of the observations is given as above,
then the conditional distribution of the jth observation (j = p + 2, ..., n) given
Sand t; is G,_,_,(U,), for U; € (— o0, o), or, equivalently, for

ly; — %/ (X X;) 7] < {(1 — X,/ (X X;)7'%;)S 7}
The formulas for the quantiles C;; (for k equiprobable cells); i=1, ...,k — 1;
j=p+ 2, -, n; are given by
¢, = 10 = X/ X) ) = p = DPuGikj=p = 1) | oy,
{1+f”(1/k1—1’—1)/(!—1’—1)}"’ B
which clearly particularizes to the formulas given for the normal distribution
of Example 1 by putting p = 1. See the remark at the end of Section 2.

5. Multivariate classes. The results obtained in earlier sections generalize to
multivariate distributions in a natural manner. Indeed, this is a major appeal
of the approach used in this paper.

Let X, - -+, X, denote an independent sample of k-component vectors dis-
tributed according to pe &, and assume that the absolute continuity rank of
. (here absolute continuity refers to domination by 4*) is @ (> 0). We can then
obtain immediately multivariate analogues of Theorems 2.1, 2.3, 2.4, 2.5 and
Corollary 2.1. The following generalizes Corollary 2.1 which is the most easily
used in practice.

THEOREM 5.1. If the above assumptions are met, and if the minimal sufficient
statistic is doubly transitive, then the k - a 1V’s
FyX;| Xogs -5 Xiyyg) » =1, kj=n—a+l,...,n;
are i.i.d. U(0, 1), where Fi(x;;| Xy, -+, X;_y;) denotes the df of the conditional
distribution of X,; obtained from the distribution with df F(x;) for fixed X,; =
Xijs + o0y oy = Xaonge /
Proor. Consider F,(X,_,41, * - +»X,), and note thatforj =n —a + 1, ..., n:
Fo(x;|X,, oy X;0,) = Fi(x;) aus.,
which is the df of a distribution dominated by 4*. Therefore each of these can
be conditioned using the multivariate probability integral transformation to es-

tablish the theorem.
We give one example to illustrate this theorem.

ExaMpLE 5.1. Let X, - -, X, be a sample from the k-variate normal family
N(g, V) where V is known, The minimal sufficient statistic is the vector of
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sample means X,, which is clearly doubly transitive. Ghurye and Olkin [5]
give the conditional distribution of any one term in the sample given X,,, which
distribution is N(X,, (1 — 1/m)¥). The absolute continuity rank of the family
isn — 1. Forj=2,...,n arbitrary, consider the sample mean X computed
from the first j observatlons, and let x;/ = (x;, - - -, X;;) denote the ]th observa-
tion vector.

From the conditional distribution F;(x;), which is the distribution N(X;,
(1 — 1/j)¥), evaluated at x;, the k conditional distributions

Fj(xij), Fi(xg5] x15)s F (X | Xugs o s X(p—1)7)
are obtained in the following manner.
For any s =2, .- -, k, let ¢ be the sth diagonal element of V, V,_, be the

sub-matrix of ¥ obtained by considering the first (s — 1) rows and columns,
and let v,_, be the vector for which the following relation holds:

v, = [V-‘v-‘} ,
’ H 2
vx -1 i gy

Let X/ = (X,;, - - -, X,,); and then F].(xlj) is that of a N(X,;, (1 — 1/j)a;?) dis-
tribution evaluated at x;;; and for s = 2, - .-, k; Fi(x,;| Xijs + v X(g);) is the df
of a N(,;, (1 — 1/j)a2,,... ,-,) distribution, where

’ v 7 ’
fy; = X + Vi VA((egs v e s Xmng) — (Xags o5 Xomns))
and
2 — 2 ’ 1
gsll,-“,x—l - os - vs lV lvs 1°

These are the usual conditional means and variances.

If sufficiently accurate tables are available; the transformations can be carried
out, obtaining (n — 1) - k independent and uniformly distributed random vari-
ables in (0, 1). If a chi-square test statistic is to be used, the use of only some
prescribed percentiles of the normal tables will be needed. In this latter case,
suppose M cells are to be selected with equal probability. The expression for
each of the (n — 1) - k - (M — 1) percentile estimators is given by:

ézjs == {(1 - 1/.].)0'.3I1,~-~,s—1}i *Z; + ﬂsj ;
where z, is the (i/m)th percentile of a N(0, 1) distribution, i =1, .-, M — I;
j=2,--,nands=1,---, k.

6. Remark. In applying the tests of the foregoing sections caution must be
exercised to insure that the observations are not systematically ordered; other-
wise the distribution theory may be disturbed, in that, in general, a different
set of values of the transformed observations will be obtained for different per-
mutations of the observations; and, therefore, different values for the test sta-
tistic. This does not, however, in any way affect the validity of the tests set
forth here.

Finally, we would like to point out that the general approach to composite
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testing problems set out here constitutes an attractive alternative approach to
presently used methods, particularly to likelihood ratio procedures.
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