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LIMITING DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE
STATISTICS UNDER THE ALTERNATIVE!

By M. RAGHAVACHARI
Indian Institute of Management, Ahmedabad

Let X, Xp, - - - be a sequence of independent and identically distributed
random variables with the common distribution being uniform on [0, 1].
Let Y1, Yz, - - - be a sequence of i.i.d. variables with continuous cdf F(t) and
with [0, 1] support. Let F(t, w) denote the empirical distribution function
based on Yi(w), - - -, Ya(w) and let Gp(t, 0) the empirical cdf pertaining to
Xi(w), + -+, Xm(w). Let Supost<1 |F(¢t) — t| = Aand D, = SUpos<t<1 | Fu(t, w) —
t|. The limiting distribution of n#(D, — 2) is obtained in this paper. The
limiting distributions under the alternative of the corresponding one-sided
statistic in the one-sample case and the corresponding Smirnov statistics in
the two-sample case are also derived. The asymptotic distributions under
the alternative of Kuiper’s statistic are also obtained.

1. Introduction and summary. Let X,, X,, -.- be a sequence of independently
and identically distributed random variables on a probability space (Q, %, P).
Assume that X, has a uniform distribution over [0, 1]. Let Y,, Y,, - .. be another
sequence of independent and identically distributed rv’s with a continuous cdf
F(r). Assume further that 0 < Y,(w) < 1, @ € Q. This s actually no restriction
since one can realize this by a continuous transformation. Further let the X’s
and Y’s be mutually independent. The empirical (or sample) distribution func-
tion F,(¢, w) corresponding to the points Y,(w), - - -, Y,() is defined for 0 <
t <1, as n~! times the number of i < n for which Y,(w) < t. Denote the em-

pirical distribution function corresponding to the points X,(a), - - -, X, (w) by
G,(1). The following results are well known for the case F(r) =1, 0 < ¢ < 1.
(1) Plo: supygic [”H(F (1, 0) — 1)] < a}

Spew @) =1 — 2 32, (= 1)+ exp(—2ka®), a=0.
2) Plo: sup, ., n¥(F (1, ) — 1) < a}

e £(@) = 1 — exp(—2a%), «z0
-
) Plos supzea () (Pt 0) — Gutt, 0)| 5 a)
- m -+ n

tends to ¢(a) for « = 0 as m and n tend to infinity such that mj(m + n) — r,
01,

4 P {w: SUPyzen (m":’_’ n)é (Fot; ®) — Go(1, @) < a} SEa), a=0

as m and n tend to infinity in such a way that m/(m + n) >z, 0 < ¢ < 1.
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The result (1) was obtained by Kolmogorov [6] and was also later derived by
Doob [4] and Donsker [3] using the theory of weak convergence of probability
measures and the so-called “invariance principle.” Smirnov [8], Gnedenko and
Korolyuk [5] derived the distributions of (2), (3) and (4). The limiting distri-
butions of these statistics when F is not uniform has not been obtained before.
This paper is devoted to the investigation of this problem. It is shown that the
limiting distributions exist and it is shown that they are distributions of some
appropriate functionals of the Wiener Process. Section 2 deals with the one-
sample case and Section 3 the two-sample case. Another similar statistic usually
called the Kuiper statistic is also discussed in Sections 2 and 3. The proofs for
the theorems are given in Section 4.

2. One-sample case. Let
) D, = supy,<; |F,(t, ®) — 1 .

Unless otherwise stated we shall assume throughout that F(r) is not identically
equaltos, 0 <+ < 1. Let

(6) SUPyec [F(1) — 1 = 2

and let K be the set

™) K:{t:0<¢t<1 and |F(t) —t| = 1}.
Define

®) D,* = supyc,y |Fo(th 0) — 8] — 2.

D, is the Kolmogorov two-sided test statistic. Define

) D,* = supy.,<, (F,(t, ) — 1).

Let sup,g,<, (F(f) — 1) = 4*and K* bethe set {t: 0 < ¢t < 1 and F(f) — 1 = 2*}.

Let inf_,., (F(f) —f) = 2~ and let K- be theset {: 0 <+ <1 and F(r) — r = 2"}
The following two theorems give the limiting distribution of n*D_* and the

limiting distribution of n*(D,* — A*): Throughout the paper W denotes the

Gaussian random element of <70, 1] with E(W /) = 0 and Cov(W "W %) =
F(s)(1 — F(1)), s < 1.

THEOREM 1. lim, ., P{n¥(D,* — A*) < a} = P{sup, .+ W, < a}

THEOREM 2. lim, ., P(n*D,* < a) = P(sup,.,, W < a;inf,., W, = —a)

n—00

where the sets K, and K, are defined by (23) and (24).

Kuiper [7] proposed a modification of Kolmogorov statistic as follows. He
defined

(10) Vi = SUPogzy (F(1, 0) — 1) — inf_,., (F (1, 0) — 1)

and obtained the limiting distribution of n*V, when F(r) =+, 0 <t < 1. The
following theorem gives the limiting distribution of V, when F(r) = ¢.
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THEOREM 3. lim,_, P{n¥(V, — 2* 4+ 17) £ a}
= P{(sup,c g+ W, — inf, .- W) < a}.

3. Two-sample case. Let

(11) D,, , = SUPyc;<y |F,(t, ©) — G, (t, @) — 2,
(12) D3, = supy.,<, (Fu(t, ) — G,(t, w)) — 2F,
(13) Vi = SUPogizy (Fou(1, @) — G,(1, 0))

- infoétsl (Fn(t’ (I)) - Gm(t7 (0)) — 2t + .
(11) and (12) are the usual Kolmogorov-Smirnov two-sample statistics and (13)
is the Kuiper’s two-sample statistic. Let K, K*, K~, 2, 2* and 1~ be defined as
in Section 2. Let us assume throughout this section that m and n tend to infinity
in such a way that m/(m 4+ n) >t with 0 < = < 1.

We state the following theorem which gives the limiting distribution of (11),
(12) and (13).
THEOREM 4.
3
14) (i)  lim,_. ,H,,P{( mn > D,,< }
14 @ e P ) Pansa
= P{sup,c, (cW," — (1 — )W) < a;
SUP;e &, (1 = oW — o) < a}
b
15) (i) lim WM,P{( mn )D,‘;ng }
(15) (i)l P () DL S @
= P{sup,.x+ (¢}W " — (1 — o)W, ") < a}
3
16) (i)  lim, . ,..P {( mn ) V,.< a}
: m 1 n :
= P{[sup,cx+ (¢ — (1 — o)W )
—inf,, oo (AW — (1 — )W )] < a}

where W is the Brownian bridge and W and W are independent.

Kuiper [7] obtained the limiting distribution of V,, , (i.e., the case m = n) in
the “null” case (F(7) = t) and the following Theorem obtains the limiting distri-
bution for general m, n. An adaptation of the proof of Theorem 5 also shows
directly the equality of limiting distributions in (1) and (3) and the equality of
limiting distributions in (2) and (4).

THEOREM 5. For the case F(1) =1, 0 <t < 1,

3
(Y 2

= P{(supys;; W, — inf_, ., W) < a}, az=z0

with W% the same as in Theorem 4.
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4. Proofs. The following lemma is needed to prove some of the theorems.

LEMMA 1. Let ¢ and & be any two positive numbers and t* ¢ (0, 1), then for all
sufficiently large n we have
(17) Plo 1 8P, piy—pimiss MFL(1 ©) — F(1) — F(t*, 0) + F(t%)| = ¢} < co?
where c is a constant independent of 3, n and t*.

Proor. This follows easily from Billingsley [1] pages 106-108.

PROOF OF THEOREM 1. Let Z,* = sup, x4+ (F,(f, ®) — F(f)) and define D, *+ =
D,* — 2t — Z,*. First we will show that ntD,** —_0 as n — co. From the
definition of K+, it follows easily that K+ is a compact subset of [0, 1]. For
any positive integer k, there exist points ¢, ¢, - .-, t, in K* (y < k) such that
K+ < UL, S(¢;, k) where

St k) ={r: 0=t <1 and |F(r) — F(1,)| < k7'} .
Denote by M, , the set I, S(t,, k), its closure by 47, . and its complement by
M; .. Choose any ¢ > 0. We have
P{niD,** = ¢} = P{n}(sup,,, (Fult, 0) — 1) = 2F — Z,*) = ¢}
(18) < Pink(sup,ei, , (Fu(t, 0) — 1) — 2% — Z,7) = ¢)
+ P{n(Sup,eyy (Fo(t, @) — 1) — 2* — Z,%) = ¢} .
Now - '
P{nt(sup,c i, , (Fu(t, 0) — 1) — 2t — Z,*) = ¢}

(19a) < Do P{SUPesmm m(Fu(t, ) — 1) — 2 — Z,%) = ¢}

S 2o PSUpesm m((Fu(t; @) — 1) — 2F

— Fu(t, ) + F(1;)) = ¢} .

Writing F (1, 0) — t = F,(1, 0) — F(t) + F(f) — t and noting that F(r) — r <
F(t) — t;, = 2*, we have

= 2o P{SUpesim n(Fo(t, 0) — F(1) — Fo(1;, o) + F(t,)) = ¢}
(19b) = 2l,ck™?, for all sufficiently large n, by Lemma 1

< c/k, for all sufficiently large n.
Note that on Mg , F(r) — ¢ is bounded above by a number p with 0 < p < 2*.
This follows from the continuity of F(r), compactness of K+ and the fact that
K*c M,

Choose an > 0 such that » < 2+ — p. By the Glivenko-Cantelli Theorem

we have for all sufficiently large n,
SUD;c g (Fu(t, ) — ) — 2
<SUPewg (F() —0) =2 +7<p—2"+7<0
with probability one. Thus it follows that
lim,_,, P{suptwi,r n(F(t,w) — 1) — Z,* —2*) = ¢} =0.
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Hence
(20) lim sup,,_,,, P{n!D,** = ¢} < c/k .
Since k is an arbitrary positive integer, P{n*D,** > ¢} — 0 as n — co. Further

D, = SuPyzyzy (Fo(ts @) — 1) — 2F — Sup, v (Fo(ts @) — F(1))
= SUP, e+ (Fu(f, @) — ) — A% — sup,. g+ (F,(t, ®) — F(1))
= SUP;c g+ (Fo(t, @) — t — F(t) + 1) — sup,. g+ (F, (1, ) — F(1))
=0.
Thus (20) implies that n!D,*+ —_,0. niZ,*, however, has a limiting distri-
bution as n — oo and the limiting distribution is the same as the distribution of
sup, . .+ W,". Thisisa consequence of Donsker’s Theorem [2] and the well-known

convergence of the empirical distribution process to the appropriate Wiener pro-
cess. See, for example, Billingsley [1]. This completes the proof of Theorem 1.

PROOF OF THEOREM 2. For"brevity, we give only the main ideas of the proof. Let

(21) Z, = SUp,.x |Fu(t, ) — t]| — 2
so that
(22) D,* — Z, = sup, <, |F.(t, o) — t| —sup, . |F,(t, 0) — 1] .

We will show first that n¥(D,* — Z,) — 0 as n — co. Define the sets K, and K,,
(one of them possibly empty)
(23) K,={t:teK and F(t) —t =1}
(24) K,={t:teK and F(t) —t= —1}.
By the Glivenko-Cantelli Theorem sup,,, |F,(¢, ®) — F(r)] — 0 with probability
one as n — co. Thus by Egoroff’s Theorem, for any given small ¢ > 0 and 7 > 0,
there exists a set 4 with P(4) = 1 — 6 and a positive integer N such that for all
n= N, |F,(t, ) — F(t)] <  for all te [0, 1] and all @ ¢ 4. Choose any ¢ > 0.
Now forn = N
(25) P{n¥(D,* — Z,) = ¢} = P{[n*(D,* — Z,) = ¢] n A}
+ P{[n¥(D,* — Z,) = ¢] n A} .
As in the proof of Theorem 1, define the sets M, ., and M, ., corresponding to
K, and K, respectively. Note that, by choosing k large, we have for all sufficiently
large nand all w e 4, F,(t,w) — t > 0 for all re M, ., and F (¢, ») — t < O for
allte M, . ,. Thus
P{[n¥(D,* — Z,) = ¢] n 4}
< P{ni[sup,ejn,, ., (Fu(t, @) — 1) — SUP,cx, (Fo(t; ©) — 0)] Z ¢}
(26) + P{ni[suptez;{k,T,Z (t — F,(t, v) — SUP,e , (f — F,(1, )] = ¢}
+ P{n&[suptemk’m’ UMy 000 |F.(t, ) —
— SuUp,x |F.(t, w) — t|]] = ¢} .
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Using arguments similar to the ones employed in the proof of Theorem 1, we
can show (details omitted) that (26) — 0 as n — oo. Since P(A4°) < 0 and d is
arbitrary, we have that P{n}(D,* — Z,) = ¢} - 0asn — oo. Since D,* = Z,,
it follows that n}(D,* — Z,) —,0as n — oco. We have for n > N,

(27) P{Z, < a} = P{(Z, < a) N A} + P{(Z, < a) n A} .
Consider
P((Z, < a) n A} = P{[max (n? sup,. ., (F,(1) — F(1));
(28) nt SUp, e, (F(1) — F,(1)) < a] n 4}
= P{(Z,* < a) n 4}, say.
It follows from (27) and (28) that

lim,_, sup P{Z, < a} < P{sup,cx, W," < a, sup,., (—W,") < a} + P(A°)

= P{SuPtexl W< a, SUpP;ex, (=W =a)+9.

Further
P(Z, < a} 2 P((Z, S @) N 4)
= P{(Z* < a) n 4)
= P(Z,* < a) + P(A) — P{(Z,* < a) U 4}.
Hence

lim,_,, inf P{Z, < a}
= P{sup,ex, W, < a,sup, e, (= W,") < a} + P(4) — 1
= P{sup,. W, < a,sup,cg, (—W,") S a} — 0.
Since ¢ is arbitrary, we have
lim,_, P{Z, < a} = P{sup,. n W = a,8upeg, (W) < a} .
This completes the proof of Theorem 2.

Proor oF THEOREM 3. The proof of this theorem is omitted as the proof
parallels closely that of Theorem 1.

INDICATION OF THE PROOF OF THEOREM 4. Define
Z, ., = sup,.x |F.(t, ®) — G (t, 0)| — 2
Z} = sup, g+ (F(t, ) — F(t) — G, (t,w) + 1)
Vi . = sup,. g+ (F(t, ®) — F(t) — G, (t, ) + 1)
— inf, x- (F,(t, 0) — F(t) — G,(t,w) + 1).

Using ideas similar to the ones used in proving Theorems 1 and 2 we can show
first that

(mn/(m + n))¥D,,, — Z,,)—p0
(mnj(m + n))X(D;, , — Z} ) —50
(mn/(m + n))%(Vm,n - V::,n) —p 0 .
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The equality of the limiting distributions of (mn/(m + n))tZ,, ., (mn/(m + n))}Z}, ,
and (mn/(m + n))tV#  and the distributions given on the right of (14), (15) and
(16) respectively follows immediately.

ProoF oF THEOREM 5. We have for the case F(r) = 1,0 < t < 1,

Vi = SUPogizy (Fu(f, ) — t + 1 — G (1, ))
—infy.,, (F,(t,w) —t +t — G,(t, w)),
so that

< mn >5an
m4n '

— SUPyesay ((mLJrny ni(F (1, @) — 1) — (ﬁ;f mi(G (1, w) — t)>

— inf,,_, ((Tn_’;'__nf ni(F (1, ®) — 1) — <7n_%>&m5(Gm(t, 0) — r)) .

Thus we have

b
P {(Jﬂ> Voo < a} s P{SUPyeear (2T — (1 — )W)
m-+4 n T

—inf_,o, (AW, 2 — (1 — )W, %) < a}

where W and W® are independent Brownian bridges. It can be verified that
W — (1 — 7)}W® is also the Brownian bridge. This proves the theorem.
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