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CONVERGENCE OF ESTIMATES UNDER DIMENSIONALITY
RESTRICTIONS!

By L. LECaMm
University of California, Berkeley

Consider independent identically distributed observations whose distri-

bution depends on a parameter §. Measure the distance between two pa-
" rameter points ¢y, f2 by the Hellinger distance 4(61, ).

Suppose that for n observations there is a good but not perfect test of
6o against 6. Then nth(fo, 6.) stays away from zero and infinity. The usual
parametric examples, regular or irregular, also have the property that there
are estimates @ such that n3h(6n, 6o) stays bounded in probability, so that
rates of separation for tests and estimates are essentially the same.

The present paper shows that need not be true in general but is correct
under certain metric dimensionality assumptions on the parameter set. It
is then shown that these assumptions imply convergence at the required
rate of the Bayes estimates or maximum probability estimates.

1. Introduction. Let 2" be a set carrying a ¢-field % and a family of proba-
bility measures {p,; 6 € ©}. Let %" be the product of n copies of % and let P,"
be the product measure which corresponds to the distribution of n independent
observations from p,.

It is a familiar phenomenon that, when © is the real line, a number of well worn
regularity restrictions imply the existence of estimates 6, such that ni(d, — 6)
stays bounded in P, probability. Another familiar phenomenon occurs if p, is
the uniform distribution of (0, §). There, the usual estimates are such that
n(@, — 6) stays bounded in P," probability.

In both examples the factors nt or n correspond to a certain natural rate of
separation of the measures P,” which can be described in terms of the Hellinger
distance of the measures. If P and Q are two probability measures on the same
o-field, their Hellinger distance H(P, Q) will be defined by

HXP, Q) = } § |(dP)} — (dQ)*f
=1- p(P’ Q) ’

where p(P, Q) is the affinity po(P, Q) = § (dP dQ)t.
Letting A(s, t) = H(p,, p,) the two factors n and n correspond now to the same
rate. In both cases the statement is that nih(f,, 6) stays bounded in probability.
For any two sequences {s,}, {t,} inequalities of the type 0 < a < nth(s,, t,) <
b < oo correspond to the fact that the best test between p; and p} has proba-
bilities of error which do not tend to zero or unity. Thus the two examples
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mentioned above have in common the feature that there exist estimates which
distinguish between the measures at the same general rapidity that best tests
distinguish between pairs.

The present paper is devoted to an elaboration of the fact that this cannot be
expected to hold generally but that a similar agreement of separation rates does
occur if the space © with the metric 4 is subjected to certain metric dimensionality
restrictions.

Let S be a set of diameter A in a metric space. For each ¢ > 0, let N(¢) be
the minimum number of sets of diameter ¢ which can cover S. Euclidean spaces
have the property that there is some number k such that N(¢)(¢/A)* stays bounded.
It will be shown in Section 3 that a condition of this nature is sufficient to imply
the existence of estimates such that nth(,, 6) stays bounded in probability.

Section 4 shows further that Bayes estimates will usually behave in this fashion.
Section 6 gives an analogous result for the “maximum probability estimates” of
Weiss and Wolfowitz.

Section 2 collects a number of preparatory lemmas. Also Section 2 contains
two propositions indicating that the n* rate cannot be improved and that it cannot
be expected to hold without restrictions.

Some of the arguments have been given in more detail than really necessary
for the proof of the formal statements. This is to indicate that the method used
provides actual bounds which can easily be transformed into statements about
the uniformity of the convergence of the estimates.

Many of the constructions used are related to those of Charles Kraft in [2].
The problem itself was brought to the attention of the author by considerations
on the translation family

CI1 + |x — O]*"] exp {—|x — 0]}

with an @ < §. For this family the apparent rate of convergence, in terms of
ordinary distance, is n/%. It was not entirely obvious at first that Bayes estimates
would achieve this rate.

2. Testing against remote alternatives. Let 22~ be a set carrying a o-field %" and
two sets of probability measures 4 and B. If ¢ is a test function, let 7(4, B; ¢)
be the number '

n(A, B; ¢) = sup{[§ (1 — ¢)dP + § ¢ dQ]; Pc 4, Q¢ B}.

This represents the maximum of the sum of the probabilities of error when ¢ is
used. Define a number 7(4, B) by

(A, B) = inf,P n(A, B; ¢)

where the infimum is taken over all available test functions. Let D(P, Q) be the
variation distance

D(P, Q) =} § |dP — dQ| .
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It has been shown in [2] that when A and B are dominated families of measures
the number (A4, B) is precisely equal to

7(4, B) = 1 — inf {D(P, Q); Pe 4, Q ¢ B}
where the sets 4 and B are the convex hulls of 4 and B respectively.
Consider now direct products {&2"", %"} and the corresponding product meas-

ures P* for measures P defined on .%. Define numbers z,(4, B; ¢)and 7, (A4, B)
as follows. For a test function ¢ defined on {27, .7}, let
74, B g) = sup{§ (1 — ¢) dP* + § 9 dQ"; Pe A, Q € B} .

Let 7,(4, B) be the infimum of this over all .7™ measurable test functions ¢.

To compute 7,(4, B) would amount to the computation of the L, distance
between the convex hulls of sets such as 4* = {P"; P e A}. This is usually dif-
ficult but bounds may occasionally be obtained through use of the Hellinger
distances. In fact, if 4 is reduced to the one element P and B is reduced to the
single element Q, then = = =(P, Q) is the L;-norm of the infimum P A Q. This
is related to the affinity p = p(P, Q) by the inequalities

n<pepsl—(1—a)=r2—mn).
We shall need repeatedly the following easy lemmas.

LeMMA 1. Let P and Q be two probability measures on (&, 7). IfntH(P, Q) <

y < 1 then
D(P*, Q") = y2 — ).
Similarly, if nH*(P, )=p=0 then
D(P", QM =1 —e?".

Proor. For the first inequality note that H*P, Q) = y*n is equivalent to

p(P, Q) = 1 — y*/n. This gives p"(P, Q) = (1 — y!/n)" = 1 — y*. Hence
pP, QY =1 —pm) =1 —(1—)y)y=yC-—)).

For the second inequality one can write p(P, Q) £ (1 — B/n). Thusp™(P, Q) =
(1 —B/m" = e-#. Since D(P", Q") = H*P", Q") =1— p*P, Q), the result

follows.
A rather immediate consequence of these inequalities is that estimates cannot

converge faster than the usual nt rate where the distance used is the Hellinger
distance. Since this may be needed to place the results in perspective, we shall
state it formally.

Let {p,; 0 € ©} be a family of probability measures on {77, 7). Leth(s, 1) =
H(p, p.)-

ProposITION 1. Let {0, ;}; i = 1,2 be two sequences of elements of ©. For each
n, let T, be a map from 2" to ©. Assume that for both values of i the quantities
n*h(T,, 0, ;) converge to zero in Pj . probability. Then the possible cluster points of
the sequence n*h(0,,, 0, ) are only zero and infinity.
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Proor. Suppose that nii(4, ., d,,) has a cluster point a € (0, co). One can
assume for simplicity of notation that in fact the whole sequence converges to a.
Test between 6, , and 6, , retaining as favored hypothesis the value of i for which
nth(T,, 6, ;) is minimum. By assumption, the probabilities of error will tend to
zero. However this is impossible since the affinity o(P; , Pj ) does not tend
to zero.

Necessary and sufficient conditions for the existence of uniformly consistent
tests were given in [4]. To express these, the following concepts may be used.
Let &° be the set of probability measures on %7, For each n let U, be the uni-
form structure defined on Z’by the vicinities of the diagonal of the type

{(P,Q): [ odP" — § ¢dQ"| < ¢}

for all ¢ > 0 and all %" measurable functions ¢ such that |p| < 1. Let U, be
the structure defined by all these vicinities for all n = 1,2, .... Let .7,

n’ nh =
1,2, ..., oo be the corresponding topologies.

LemMA 2. The condition lim,_,, 7,(A, B) = 0 is equivalent to the condition that
the function identically unity on A and identically zero on B is U, uniformly continuous
on AU B.

This is a very special case of Theorem 1 in [4]. In particular, if the set A4 is
reduced to a single element P, the condition z,(P, B) — 0 is equivalent to the
condition that P does not belong to the .77, closure of B.

PROPOSITION 2. Ler 1 be a finite nonatomic measure. Let &, be the set of proba-
bility measures which are absolutely continuous with respect to p. Then there exist
pairs (P, B) with P e &, and B C &, such that B is closed in &, for the distance
H and

(@) 7. (P, B) =1 forall n,
(b) inf{H(P, Q); Q< B} > 0.

Proor. Consider the topology .77, on . Itiseasily seen from the Dunford
Pettis Theorem (see [1]) that subsets of .Z°which are .77 compact are also .7,
compact. The topology .7, is obviously weaker than the topology induced by
the L;-norm. In fact it is strictly weaker since there are weakly compact subsets
of &, ¢ L, which are not strongly compact. Thus there are sets B > .7, which
are closed for the L,-norm and the equivalent Hellinger distance H but not for
7 - Take such a set and let P be a probability measure which is in the .7-
closure of B but not in its strong closure. This gives the desired pair.

In contrast with the result of Proposition 2, if B is a compact subset of Z”and
P ¢ B there is some integer » such that z,(P, B) < %.

However some condition, in addition to compactness, is necessary to enforce
a bound on the number of observations needed to achieve an inequality of the
type (P, B) < }. Indeed, take a pair (P, B) as described in Proposition 2.
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Then
inf{H(P,Q); Qe B} >¢>0.

However for every integer m one can find a finite subset F, C B such that
(P, F,) >1—1/m.

A specific example satisfying the conditions of Proposition 2 may be con-
structed as follows. Take for x the Lebesgue measure on [0, 1]. For each integer
k let p, be the measure whose density f,(x) for p is equal to twice the kth digit
in the binary expansion of x. Then y is the .7, limit of the p,, but D(p, p,) = %
for every k.

The preceding propositions and commentaries were intended to emphasize the
fact that inequalities of the type

inf {H(P, Q); Qe B} >¢>0

cannot by themselves imply any particular rate of separation of p from B. The
following results are intended to show, on the other hand, that when separation
occurs it proceeds exponentially fast.

LEmMA 3. Let A and B be two sets of probability measures on .57. Let A" be
the closed convex hull of the set A" = {P"; P¢ A}. Define B" similarly and let

p. = sup {p(p, v); pe A, ve B}

Then, for every pair of integers (m, n) one has

Aom+n § pmpn *

Proor. This is proved in [3] for a set 4 reduced to one element. The proof
extends immediately to the general case.

The next two lemmas are very similar.

LEMMA 4. Let nand k be two positive integers. Suppose that (A, B) = s. Then
Tl As B) < [52 — )]

PrOOF. Suppose first that there is a ¢-finite measure which dominates all the
elements of 4 U B. Then r,(4, B) = s means that for any two elements y, € A",
v, € B*onehas ||, A vy|| £ s, hence p*(g, v) < 5(2 — s5). By Lemma 3 this implies
|z A vl] < (1, v) < [s(2 — 5)]* for any two elements x ¢ 4%*", v € B*". There-
fore my,,(A, B) < [5(2 — 5)]* as claimed.

When 4 U B is not dominated, the final step in the preceding argument fails.
However z,(A4, B) = s > 0 implies that for each ¢ > 0 there is a test ¢, such
that z,(4, B; ¢,) < (1 + ¢)s. Hence there is a test ¢, which takes only a finite
number of values and is still such that z,,(4, B; ¢,) < (1 + ¢)s. The result is then
valid on the o-field generated by ¢,. Since ¢ is arbitrary the result is proved.

The preceding lemma is convenient to use when evaluating the numbers z,.
However one often needs other expressions with bounds which depend on the
parameter point. One such bound is as follows.
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LEMMA 5. Let ¢ be a test defined on {727, 7'} and such that

(i) §d—¢)dP=a<}
(ii) § ¢ dP, < a(f) < § for all 6 ¢ B.
Then there is a test w on {27%*, S7*} such that
(iii) § (1 — 0) dP* < [4a(l — a)]*
(iv) § wdP* < {4a(0)[1 — a(0)]}* for all 6 € B.

Proor. LetX;;j= 1,2, -..,2kbeindependent variables such that 0 < X, < 1
and such that EX; = « < {. The convexity of the exponential function implies
that for every j and every t+ = 0 one has Eexp {tX;} < a« + (1 — a)e’. There-
fore g(r) = Eexp{t X X; — kt}is smaller than {[a + (1 — a)e‘]e~*?}**. This last
expression has a minimum for a value 7, such that e¢'o = «/1 — a. This implies

9(1o) = [2(a(1 — a))i]*

and, according to Markov’s inequality
Pty 2 X; — ki, > 0} < g(1,) -

The result follows immediately by application to the variables X; = ¢(x;) gen-
erated by the test ¢.

3. Construction of a test for small compact sets. Let © be a set and let {p,; 6 ¢ ©)
be a family of probability measures on a space {27, %7'}. For convenience we
shall assume that § = 6" implies p, + p, so that © is metrized by the Hellinger
distance A(s, ) = H(p,, p,)-

It will be assumed that a particular element 6, € © has been singled out. For
simplicity, we shall write P" instead of P} and P or p instead of p, .

Let 3 be the number 8 = 2log 3. For each integer v = 3 let ©, be the set

0, = {0; A i}
v 21/—1
with k() = h(9, 6,).

In addition to the assumptions implied by the set up described here, we shall

make use of the following specific assumption.

AssUMPTION 1. Let . be the space of bounded measurable functions defined
on {&, %}. Each of the ©,; v > 3, is compact for the topology of pointwise
convergence on 7.

DEerFINITION. Let 4 and B be two sets of probability measures on {27, %/}
Let® = {p;;j=1,2, .-, k} be afamily of %" measurable test functions. We
shall say that ® half separates 4 from B if

inf (4, B;p;) < 1 — 242

(See Section 2 for notation. The fancy number on the right is the number s
such that 52 — 5) = 1.)
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Let K,’ be the minimum possible cardinality for a family @ of %% measurable
tests which half separates ©, from the ball

B, = {0; 1) < . }

- 2y+8
This K’ will be called the weak covering number of ©,.

Agree that a set S has radius 6 if it is empty, or if there is a “center” xe §
such that every element of S is at distance at most ¢ from x.

For each n = 2* one can cover ©, by a finite or infinite family of sets whose
radius for the Hellinger distance & does not exceed 2-*/*. The number of such
sets in the cover of minimal cardinality will be called the strong covering number
of ©, and denoted K, .

LEMMA 6. If Assumption 1 is satisfied, K’ is finite and K,! < K,.
Proor. Let n = 2*. By definition 6 ¢ ® implies p(p,, p) < 1 — B/n, hence
p(P,*, P*) < e# = }. For each r¢ ©, find a test ¢, on {7, %"} such that

§ (1 —¢)dP" + (o dP" < §.
Let A, be the set
4, ={0€0,:§ 0, dP + § (1 — ¢,)dP* < § + 21/16}.
Since O, is pointwise compact, these sets are open for the topology of pointwise
convergence on .7 Therefore a finite subfamily covers the whole of ©,. Ac-
cording to Lemma 1 each P,*, 6 € B, is at distance D(P*, P,") < 2¢/16 from P.
Therefore
(B, A p) < 3+ 28 <1 — 242

This proves the finiteness of K,'.

If K, is finite, let {®, ;;j = 1,2, ---, K,} be a family of sets of radius at most
2-/2+4 which covers ©,. For each j let 7; be the center of ©, ; and let ¢; be an
7" measurable test such that

(I — ;) dP" + S%dp?jéé'
The same arithmetic as before shows that
T['n.(Bu’ ®u,j; g;J) < 1 — 2&/2 .

This completes the proof of the lemma.

In Section 4 we shall use mostly the numbers K,. However there are important
cases in which a bound for K,/ is readily available. Thisis why the next statement
is worded in terms of K,’.

THEOREM 1. Let K.’ be the weak covering number of ©,. For a given integer m,
let K'(m) = Supyz, <., K,/ and let O(m) = Usg,<n ©,. Finally let B, be the ball

B, = {0; i¥(6) < 2-0+9}

and let k be an integer.
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Then for n = 2k2™ there is an '™ measurable test w such that
(i) for 6 € B,, one has § (1 — w) dP,” < 2K'(m)2~*
(ii) for 0 € ©, with 3 < v < m one has

[ @dP, < 2-km
< _" nye } .
= exP{ T

Proor. Fix a valuev < m. According to the definition of K./, there is a finite
family 4, ;;i = 1,2, ..., K of sets such that z,,(4, ;, B)) < 1 — 2}/2 and such
that |J; 4, ; = ©,. This implies =,(4, ;, B,) < 27", Therefore if n = 2k2™
there are K’ test functions ¢, ; such that

(1 —¢,.)dP" + § ¢, dP < 27W"
forall 6 e B,and all re A4, ;. Let
o=inf{¢, ;i=1,2,..--,K/;3 v < m}.
Then for 6 ¢ B,, one has

§ (1 — @) dPy" < K'(m) 3,5 279"
< 2K'(m)27*.
Also for v < m and 6 € O, one has #*(f) < /2*~* and
{ wdPr < 2-mm7

= exp {_;_ 2-v log 2}

n
< exp { —— log 2A*(0 } .
< exp |~ {5 10g 2K(0)
The result follows.

Although the conditions of Theorem 1 may appear excessively restrictive, it
turns out that many common families of distributions do satisfy them. To give
an example we shall introduce the following definition.

Let & be a continuous strictly increasing function defined on [0, «) and such
that £(0) = 0. One says that & varies regularly at zero if for every r > 1 one
has
§(re)
£(e)
DEFINITION. Let O be a set carrying two metrics 6 and 2. We shall say that

the pair (9, #) has a regular relation if there are numbers a, 5, 0 < a < b < oo
and a function & such that

(i) ad(s, ) < E[A(s, )] < bi(s, 1)
for every pair (s, f) of elements of ©
(ii) the function & varies regularly at zero.

lim sup, ., < 0.
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The most common regularly varying functions & are powers &(r) = . This
would be sufficient for most examples except for the fact that transitions from
one rate of convergence to another often involve functions of the type

§(z) = re|log 7| .

LeEMMA 7. Let © be a compact set in a Euclidean space. Let d be the Euclidean
metric and let h be the Hellinger distance h(s, t) = H(p,, p,). Assume that 6 and
h have a regular relation. Let K, be the strong covering number of ©,. Then
sup, K, < oo.

Proor. The definition of ©, implies that A%, 6,) = h*0) < 25/2* for each
6e®,. Let a, b and & be the numbers and the function assuring the regular
relation of (9, #). This gives 9(¢, §,) < A, with

b2 e[2)]

Similarly, the inequality A(s, f) < 2-¢/**% is implied by the inequality d(s, /) < ¢

if .
sy () |

By assumption, as v — oo the ratio d,/A, stays larger than some ¢ > 0.

IA

In a Euclidean space of dimension / the unit ball can be covered by a certain
number C(I)e~! of sets of radius e. This implies the desired result.

Note that the inequality sup, K, < oo does not by itself imply that @ is totally
bounded at least if it refers to a single element 6, ®. However if the strong
covering numbers K are uniformly bounded, whatever may be 6,¢c ©, then ©
must be totally bounded. We do not know what additional assumptions are
needed to insure that © be imbeddable in a Euclidean space with a regular re-
lation between the metrics.

To terminate this section let us note that even when the numbers K, or K,’ do
not remain bounded, the argument of Theorem 1 still yields some information.
For this purpose let S, = {f; #*(f) = f/m}. Let N,, be the smallest integer such
that » > N,, implies = (P, S,) < 1.

Unless the successive differences §,,,\S, become empty one must have
lim inf N,,/m > 0. The restriction sup K, < oo implies that lim sup N,,/m < co.

It is conceivable that rapid growth of the numbers K,’ may lead to a situation
in which N,, increases much more rapidly than m. In this case it is perhaps
worth mentioning that rapid growth of the K,’ reflects itself only logarithmically
on the ratio N, /m.

In particular, suppose that © has, for the Hellinger metric, a finite exponent
of entropy. That is to say the number of sets of radius ¢ necessary to cover ©
is roughly like exp (¢7) for some finite 7. Then N,, will grow at most like m!+7/2.
Estimates will be such that (n)*h(f,, 6) is bounded in probability for some a
such that « = (1 + 7/2)7.
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4. An application to the behavior of posterior distributions. Consider a set © and
a family of probability measures {p,; ¢ € ©} with a particular element 6, singled
out as in Section 3. In the present section we shall use assumptions as follows.

(Al) The equality p, = p, implies 6 = 6'.
(A2) Metrize © by the Hellinger distance A(s, 1) = H(p,, p,). There is a com-

pact subset ©, C © such that z,(p,, ©,°) — 0 as n — oo.
(A3) Forv = 3 let ©, be the set

e, = {0e@0, B < mo,0,) < 251}.

Let K,’ be the weak covering numbers of the sets ©,. Then K = sup,.; K, < oco.

In addition it will be assumed that one is given on © a certain ¢-field <% whose
trace on O, is the Borel field of ®,. This o-field is assumed to be large enough to
insure measurability of all the maps § ~» p,(4) for 4 e 7.

The other assumptions refer to the behavior of probability measures z, to be
used as prior distributions on ©. To state them, consider the following sets.

(a) For e > 0, W ,(¢) is the set

W () = {0 h() < 16’1&}

(b) For each r > 0 let V() be the ball
V() = (004 h(f) < 7).
(c) The ball Vis
={0:0e0,; r@l) < p/4}
with 8 = 2 log 3 as before.
The measures 4, defined on <% will be subjected to the following requirements.
(A4) There is a number b such that
[ V(z2H)] < b, V(7)
for all values of n and all = > 0.
(AS) For every ¢ > 0 one has

lim sup,Hoo logw =

LW (e)]
Take independent identically distributed observations from one of the p,. For
each sequence x = x;, x,, - -+ let F, , be a conditional distribution of ¢ given the
first n observations x,, x,, - - -, x, and for the prior distribution z,.

Such conditional distributions need not be well defined as probability measures
on the whole o-field <Z. However on the trace of <z on the compact ©, no es-
sential difficulty can occur. Furthermore we shall be interested only in the
posterior probabilities of a few specific sets so that calling F, , a conditional
distribution is only a matter of loose terminology.
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THEOREM 2. Let conditions (Al) to (A5) be satisfied. Then for every e > 0 there
is a number z such that

lim sup, .., P {F, [V(z/n)] <1 — ¢} <e.

Proor. Even though this entails some repetition we shall carry out the proof
intwosteps. Let V = {0 € ©,; h*(0) < $/4}. Accordingto Assumption (A2) there
exists a uniformly consistent test of 6, against . Also, according to [4] there
exists a uniformly consistent test of 6, against ®, n ¥V°. Thus, there exists a
uniformly consistent test of #, against V°. In other words, there is no loss of
generality in assuming that O, and V are the same sets.

Define measures Q,, M, and M,’ by the integrals

. 1
1 = - P, do
0= ey e 0
(11) Mn = SV Pﬂnlan (dﬁ)
1
iii) M, = e Pyru, (d0) .
( ) n #n(Vc) SV oM ( )
The posterior probability F, ,(V°) is given by the Radon-Nikodym density

.= 1 (Vo) dM,’
T dIM, + (VM)
This is smaller than unity, and, on a set which has null measure for Q,, this is
also smaller than the ratio
o (V) dM,

W a(e)] dQ,,
By assumption (P, ¥°) — 0. Therefore, according to the computations of
Section 2 there is some number g, < oo and some number a € (0, 1) such that if
0 é € § 1’ ﬂn(Wn(e)’ Vc) é ﬂn(Wn(l)’ Vc) é aoa”'

Let ¢, be a test such that

§(1 —¢,)d0, + §¢,dM, < aya.

One can write

Ve)
< a0 + L2V _5 o am
A AB)

< e {14 10O ]
Sae 4 L

In addition |§ f, dP" — § f, dQ,| < D(P", Q,) < 2}/16. Thus, fixing the value
of ¢ and applying Assumption (A5) we obtain the existence of an n, such that
n = n, implies § f, dP, < e. An application of Markov’s inequality shows then
that there is no loss of generality in assuming that in fact »,(V°) = 0. This will
be assumed henceforth for the rest of the proof.
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Let K be an upper bound for the covering numbers of the rings ©,, v > 3.
Select an integer k such that 8K2-* < ¢. For each n, let m be the integer defined
by the inequalities 2k2™ < n < 2k2™+'. Let O(m) = U;<,<, ©, and let M, , be
the measure

M, . = Soim Po"ttn (dﬁ) .

Under the assumption that p,(¥°) = 0 the posterior probability of O(m) is given
by the density

aM,,, _ 1 M, ,

dM, — p[W.(e)] 40,

Let w, be the test described in Theorem 1, and write § g, dP" < D(P*, Q") +
{(1—w,)d0Q,+ §w,9,dQ,. Since D(P", Q™) < ¢2%/16 and since { (1 — »,) dQ, <
2K2-* it is obviously sufficient to show that given ¢ > 0, one can find an integer
k such that eventually § w,g,dQ, < ¢.

For a fixed k consider the ring ©, with 3 < v < m. According to Theorem 1
for 0 € ©, one has

9 =

{ w,dP,” < exp{—k2™—*log2}.
This gives
S wn dMn,k é ZSé»ém Aun(e)») exp {_k2m—» lOg 2} *
Let V, = {6: h*(#) < B/2*7'} so that ©®, C V,. According to Assumption (A4)
one has also #,(V,_,) < bu,(V,).

If k is taken so large that 52-% < } the successive terms in the above sum
decrease at least by a factor 1 when passing from v to v — 1. Therefore

S @y, dMn,k é 21”1»(Vm)2-k °
Another application of Assumption (A4) yields an inequality

RUAETAESWALAC)

with b, = b"b log, fand b, = log, b. (The notation log, means logarithm of base
2.) This gives
k

L jw,dM,, <26, (&

o,
§ 00,0, S i <2,(5) "2+

It is now clear that, for fixed ¢ > 0, this last quantity can be made as small
as one wishes by taking k sufficiently large.
This concludes the proof of the theorem.

REMARK 1. The proof does not use any mutual absolute continuity of P* and
Q. If this was assumed a slight simplification could be made.

REMARK 2. One can, of course, carry the proof in one step, but the present
split into two steps is intended for reference in the next section.
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REMARK 3. Assumption (A4)allowsa rather rapid exponential rate of decrease
of the prior masses of neighborhood of §,. Even though (A4) is a serious restric-
tion, it is likely to be satisfied in many contexts. However it does imply by itself
a restriction on the ‘size’ of ® which seems to need further investigation.

It remains to show that the territory covered by Assumptions (Al)-(AS) is not
empty. The special Assumptions (A2) and (AS5) do not need any particular
comment. For the rest one can give examples as follows.

Consider the following conditions.

(B1) The set © is a Lebesgue measurable subset of some /-dimensional Eu-
clidean space R' and 6, = 6 ¢ ©.

(B2) There is a neighborhood U of 6, such that on U the Euclidean distance
dand the Hellinger distance 4(s, f) = H(p,, p,) are regularly related. (SeeSection 3
for definition.)

(B3) Let U, be the Euclidean ball U, = {#: (¢, 6,) < ¢} and let 1 be the
Lebesgue measure on R'. Then

. AU n U
lim inf,_, _W >0.

(B4) When restricted to U, the prior measures g, have densities dp/d2 such
that for some number a,, a,, 0 < g, < a, < oo independent of n one has a, <
dyp,/d2 < a, on all of U.

(BS) Condition (A2) holds for some compact 0,.

PROPOSITION 3. Assume that the conditions (Al) and (Bl) to (B5) are satisfied.
Then the same is true of (Al) to (AS).

Proor. One can assume without loss of generality that the compact O, is
contained in the neighborhood U of Assumption (B2) and also in the set V =
{6: B(0) < B/4}. If so, Lemma 7 implies that condition (A3) is satisfied. For
the conditions (A4) and (AS5) let us use the notations of Lemma 7. Then A(f) <
r2t implies the relation ad(f) < §(z2%). Similarly A(0) < « is implied by 5d(8) <
&(r). Thus V(r) contains the intersection with U of the ball U, = {#: bd(0) < &(7)}
and V(r2%) is contained in the ball U, = {6: ad(0) < &(r2}}.

The assumptions (B3) and (B4) and the homogeneity of Lebesgue measure on
R' imply immediately that (A4) is satisfied. Similarly the set W,(¢) contains the
intersection of U with U, = {0: bd(f) < &(¢/16nt)}. According to (B3) and (B4)
the p, measure of U n U, is larger than some constant times [6~*6(¢/16n%)]. To
verify (AS5) it is enough to show that n~!log é(e/16n?) tends to zero for each
¢ > 0. This is, however, an immediate consequence of the ‘regular variation’
of &.

5. Maximum probability estimates. The convergence of posterior distributions
proved in the preceding section implies a rate of convergence of Bayes estimates
for a variety of loss functions. The present section is concerned with a modi-
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fication of Section 4 in which very particular loss functions are used but where
the assumptions on the prior distributions y, are modified in a way which in-
troduces other technical difficulties. Assumption (AS5) of Section 4 will be re-
placed by an assumption that the measures y, are all equal to a particular p but
that p need not be finite.

Infinite measures y are often used for convenience. They occur also in the
description of the maximum probability estimates proposed by Weiss and
Wolfowitz [6].

These estimates occur as follows. Suppose that the conditions (A1), (A2), (A3)
of Section 4 are satisfied and that one has selected a o-field <%’ as explained there.
Assume also that <Z carries a particular finite or ¢-finite measure g. Finally,
for each 6 € O, let S,(0) be a measurable set S,(6) — ©. Let Q, , be the measure
defined by the integral

Qpn = Ss”w) P p(dr) .

The maximum probability estimates are obtained by applying the maximum
likelihood technique to the family {Q, ,; 0 € 6}.

Another possible description is that they are ‘Bayes estimates’ for the prior
measure u and for a loss function W,(0, f) equal to zero if the true value @
belongs to S,(f) and equal to unity otherwise.

In several cases described by Weiss and Wolfowitz, the set © is a Euclidean
space, the measure p is the Lebesgue measure, and the sets S,(0) are translates
of each other. The fact that g[S, (#)] does not depend on @ is aesthetically pleas-
ing, but it also carries various more technical implications, including the lack
of finiteness of p. More specifically the sets S,(f) may be balls S,(60) =
{t:8(0, f) < n~*?} for a suitable choice of a.

The assumptions used below are intended to eliminate two difficulties. One
type of problem occurs if the loss function structure is such that it is not eco-
nomical to try to get estimates close to the true value 6. This will be prevented
by restrictions on the size of the sets S,(6). The other difficulty is the infinite
character of ¢ which will be dismissed by a strengthening of Assumption (AS5).
Specifically we shall make the following assumptions.

(C1) Assumptions (Al) to (A4) of Section 4 are satisfied except that the meas-
ures p, are identically equal to a fixed o-finite p.

(C2) There is a compact subset ©, C © with §,¢ ©,, an integer m and a test
¢, such that

(i) § (1 — ¢n)dPF < 3

(ii) §o{§ om dPy"}p(d0) < o0

(i) (8,) < oo.

(C3) Let ZZ(0, ¢) be the ball {t: H(p,, p,) < ¢}. There are two numbers z;,
0 < r, £ r, < oo such that §,() is a measurable set subject to the restrictions

%(a EL) C S,0) C 93?(0, 2)
nt nt
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(C4) For each ¢ the measure u[S,(#)] is finite.

Define measures G, and Q, , by the integrals
Qyn = 5,00 P"p(d?) and G, = §o Py 1(df) .

According to (C4) the measures Q, , are finite measures. On the contrary,
whenever p is infinite so is G,. However condition (C2) will imply the existence
of sets having finite G, measure and a probability under P as close to unity as
one wishes.

The argument used here as well as in Section 4 is partially due to Lorraine
Schwartz [5].

Let g, , beadensity of Q, , with respect to the measure G,. Consider estimates
T, such that

94,0 Z [SUPs 90,a)(1 — 277)
and call those maximum probability estimates.

PROPOSITION 4. Assume that conditions (C1) to (C4) are satisfied. Let T, be
maximum probability estimates. Then for each ¢ > 0 there is a z(c) and an N(¢) such
that n = N(s) implies

Py {n*h(T,, 0,) > 2(e)} < ¢

Proor. The assumptions involve two compact sets ©,and ©,. It is easily seen
that one can assume that they are the same and contained in the set V =
{6 h(0) < B/4} of Section 4.

In addition one may assume that the test ¢,, is such that a(0) = § ¢,, dP,™ < 1
for all § € ©. According to Lemma 5, for every n > 2(k + 1)m there is a test
w, such that § , dP," < {4a(0)[1 — a(0)]}r** < 4a(0)(3)* forall 0 e OF. Let L,
be the measure L, = (o Py"(df). Then § w, dL, tends to zero exponentially fast
as n — oo.

Let 7/, be the subset of 2°* where w,(x) > 0. The finiteness of L, implies
that on this set the measure G, is either finite or at least ¢-finite. Thus the
densities ¢, , may be defined on Z/,.

Let Q, be the measure

L
FUAC R
asin Section 4. If ¢ is small enough, then W (¢) C S,(6,) and Qopn = LW (e)]Q0-
Take a number k > 7, and consider the set S,”” = {0: h(0, 6,) > 2k/n*}. Then
for all # ¢ S,” we have S,(0)  S,’ = {0: a(0, 0,) > k/nt}.
One can bound the measures v, Q, , for 6 € S,” by the sum

o,{L, + sSnnsn(ﬂ) P, p(dt)}

where S, = S, n ©,. The proof proceeds then exactly as the proof of Theorem 2.
Another procedure is to reduce the whole situation to that of the proof of
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Theorem 2, using instead of the measures p,” the measures [a(6)],*P" for 6 € Oy
and replacing similarly p by du, = a(f) du.

The averaging which leads to the estimates of Proposition 4 was performed on
the product measures themselves. It is sometimes convenient to proceed dif-
ferently. For instance, if all the p, are absolutely continuous with respect to a
measure ¢ and dp, = f, do one may be tempted to look at the function @ (6) =

»_, log fy(x,) and maximize integrals of the type

¥.(0) = Ssnw) D, ()p(dr) .
Similar arguments will apply here. However further assumptions on the be-

havior of the p, near ¢, seem to be needed to avoid unpleasantness with the
negative values of logarithms. This will be described more specifically elsewhere.
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