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REPEATED SIGNIFICANCE TESTS FOR
EXPONENTIAL FAMILIES

By INcHI Hu

University of Pennsylvania

The problem of approximating the power and significance levels of
repeated significance tests (RST) and modified repeated significance tests
(MRST) is considered. The method due to Siegmund in the special case of
normal observations with known variance is generalized. The main ad-
vantages that are claimed for this method are two-fold. First, it can be used
to approximate the power of RSTs. Second, it can also be used to approxi-
mate the power and significance levels of MRSTs. Numerical and Monte
Carlo results are also given for the repeated ?-test.

1. Introduction.

1.1. In this article we study the significance levels and power of repeated
significance tests (RST). An RST is the sequential version of a generalized
likelihood ratio test. To be more precise, let us consider the following testing
problem. Let X, X,,... beii.d. according to the distribution function F,, where
{Fy: 6 € O} forms a multiparameter exponential family. By that we mean Fj
has the form Fy(dx) = e?*~¥®F(dx) for some smooth function (-) from the
parameter space © into R!' and some distribution function F, over R“
Throughout the sequel we shall assume that F, has density with respect to
Lebesgue measure on R and there exists an integer n, such that the ngth
convolution of this density is bounded. It is well known that Ey,X, = u(0) =
vy (8). Moreover, there is no loss of generality in assuming that r(0) =
Sometimes it is convenient to index this family by p and write F,. We also use
Z(r) to denote the covariance matrix of X, under F,. Let ©, be a proper subset
of ® c R? We are interested in testing H0 6 e @O against H;: 0 ¢ ©,. The
generalized log-likelihood ratio statistic after observing X, X,,..., X,, for this
testing problem is

nA(S,/n) = supl,(8) — sup 1,(0) = n(S,/n) — ney(S,/n),
(2] €9,
where [(0) = 6’S, — ny(0) is the log-likelihood after observing X,,..., X,
S Zl‘“l \a.nd
¢(x) = sup [0'x — y(8)],  ¢o(x) = sup [8x — y(8)].
e €9,

An RST is defined in terms of the stopping rule
T = inf{n: n > my, nA(S,/n) > a}.

' Received October 1985; revised September 1987.
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Sampling stops at min(T, m) and H, is rejected when T < m. Significance levels
and power of an RST are given by

sup Pp{T < m} and P{T <m}, 0¢&0,,
€,

respectively, where P, denotes a probability law under which X;, X,,... arei.i.d.
according to the distribution function Fj,. In some cases when one expects a small
deviation from the null hypothesis and wants to increase the power, one may use
a modified version of an RST. An MRST rejects H, when either T < m or
T > m and mA(S,,/m) > c for some ¢ < a.

Observe that if we fix ¢ and let a tend to oo, then it is unlikely that the
log-likelihood ratio process nA(S,/n) will cross the level a before time m. In
this case, the rejection region of the corresponding MRST reduces to
{mA(S,,/m) > c}, which is exactly the rejection region of a fixed sample test.
On the other hand, if we set a = ¢, then the corresponding MRST is just an
RST. So an MRST can be thought of as a family of tests interpolating the fixed
sample size test and RST.

Underlying this interpolation, there is a trade-off between the expected
sample size and power. That is, as @ moves from ¢ to oo the power of an MRST
increases to that of a fixed sample test at the cost of increasing the expected
sample size. So with an MRST at hand the designer of an experiment has one
more degree of freedom to choose from in fulfilling his need. If he thinks the
power is more important he may choose an MRST with a substantially larger
than c. If smaller expected sample size is desired he may choose a close to c.

The power of an MRST is given by

P{T < m} + P{T > m, mA(S,./m) > c}
(1.1) = Py{mA(S,./m) > ¢} + P{T <m, mA(S,,/m) < c}.

The quantity (1.1) also appears on other occasions. Siegmund (1985) suggests
defining attained significance levels of an RST in the following way:

@O U T=m, and m,A(S,, /m;) =z > a, then the attained level is
supy c o, Fo{moA(S,,/m,) > z}.
(i) If T = n € (m,, m], the attained level is supy . ¢ Py{T < n}.
(iii) If T > m and mA(S,,/m) = c, then the attained level is

sup [P{T < m} + B{T > m, mA(S,,/m) > c}]
09,
= sup [B{(mA(S,/m) > ¢} + BT < m, mA(S,/m) < c}].
06,

In case (iii) the attained significance level is of the same form as (1.1).
In this article we only consider a special kind of 6,

8, =(6:6,=--- =6,=0}, d <d.

By reparametrization ©, can be generalized to ©f = {A§: § € O}, where A is a
d X d matrix.
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Typically the significance levels and powers of RSTs and MRSTs cannot be
computed exactly and some approximation is required. Approximations for
significance levels of RSTs in exponential families have been provided by
Woodroofe (1978) and Lalley (1983). Their setting is more general than that
given previously, but their methods are not as successful in approximating the
power of RST's and the power and significance levels of MRSTs. In what follows,
we shall exhibit with a simple example three methods which have been developed
by previous authors. ,

Let X,, X,,... be iid. according to N(6,1). We want to test § = 0 against
0 # 0. The RST in this case is defined by the stopping rule

T =inf{n: n > m,, S2/(2i) > a}.

1.2, The forward method. The essential ingredients of this method are the
likelihood ratio of a mixture measure @ and the probability measure P, under
the null hypothesis and Wald’s likelihood ratio identity. Let Q(A) =
J® o Py(A) db. Then

dQ/dPy(S,,...,8,) = j “ exp(6S, — n62/2) d6 = (27/n)" %exp(S2/2n).

Here the notation du/dr(Y) means that p and » are considered to be measures
on a o-field that contains ¢(Y), and dp/dv(Y) is the Radon-Nikodym deriva-
tive of the restricted measures.

By Wald’s likelihood ratio identity,

PT < m} = Eo{(T/27)"*e~54/T; T < m)

= /—°°OOE9{(T/2W)1/Zexp[—(a +R,(T))]; T <m}de

= (a/vr)lﬂe“"f

o0

Ey{(T/2a)?e BT, T < m} dé,

where R, (T) = (S2/2T — a) is the corresponding excess over the boundary for
this problem.

Before going any further, we introduce some notation. Throughout this work,
let R(T) denote the excess over the boundary corresponding to the stopping
time 7. Usually the stopping time depends on a parameter m. To emphasize the
dependence. on m, sometimes we write R, (T') or R,, and use R_(T) or R to
denote the corresponding limit in distribution as m — oo.

If a, m, my = o in such a way that (2a/m)/? = 6, < 8, = (2a/m,)"/? then
an argument using the strong law of large numbers shows that with Pj-probabil-
ity 1,

(T/2a)l/21(m0<Tsm) - 0_11[91»90]
and
)
P(T <m} ~ (a/vr)l/ze“"/;00“1E9{e—3°°(7‘)} dé.
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E,{e"R=(M} can be approximated using nonlinear renewal theory developed by
Lai and Siegmund (1977) or Woodroofe (1982) and the approximation is com-
pleted. This method has been generalized to RSTs for curved exponential
families by Lalley (1983).

1.3. The backward method. The backward method due to Siegmund
(1985, 1986) sets as its primary goal the approximation of the condiiional
probability P{™(A) = P(A|S,, = £}, which by the sufficiency of S,, is indepen-
dent of §. Then powers and significance levels may be obtained by uncondition-
ing with respect to the distribution of S,,. In this article, we shall generalize this
method to multiparameter exponential families.

The essence of this method involves randomizing the starting point of a
conditional process, then regarding it as a process running backward from the
point of conditioning. Let P{")(A) = P{A|S, =\, S, =¢)} and T* =
sup{n: n < m, S}/2n > a}. Observe that P{"(T < m} = P{P(T* > m,)}. Let

Bm(a) = [* POY(A) @) Pexp( (A - 0)%/2m] ) an.

Then

dBm™ n\l2 (82 g2
dPo(,"é) (Sn,...,Sm) = (;) exp(g - 2—”:)

Since under the reversed time scale T* is a stopping time, Wald’s likelihood ratio
identity gives

. m \1/2 2 S
P{M(T* > m,)} = EE("‘){(—) exp(i— ot ); T* > mo}.

T* 2m  2T*
The f’e("‘) distributions of S,, n = m, m — 1,..., running backward from S,=¢
is the same as the P, distributions of ¢ — S,, n=0,1,..., running forward.

Hence the previous expectation equals

e

m-—r 2m  2(m— T)

where 7 =inf(n: n>1, (¢£+ S2)/[2(m — n)] > a}. Assume that 6, =
(2a/m,)"? and £, = £/m. A law of large numbers argument shows that T/m —
1 — (£,/60,)* with probability 1 as m — . The preceding quantity is approxi-
mated by

(m8,/¢)exp(—a + £2/2m) Eof e~ Bn(M},
where

R.(7) = {(5, = &)"/[2(m ~ )]} - a
is the excess over the boundary at the stopping time 7. Again nonlinear renewal
theoty can be used to obtain the asymptotic distribution of R_(7) and the
approximation to P{™(T < m)} is completed. Unconditioning ¢ using the margi-
nal distribution of S, under P, yields the approximation to P{T < m}.
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We may uncondition ¢ using P, with  # 0 and obtain approximations to the
power. Unfortunately, the result is not a bona fide asymptotic expression,
although numerical results show that it is a very good approximation. See
Siegmund (1985), Section 9.3, for details.

1.4. Woodroofe’s method. This method, which was developed by Woodroofe,
is quite different from the two methods described previously. It does not use
Wald’s likelihood ratio identity. The method first approximates P{T = m} then
estimates Py(T < m} by summation. Observe that P{T = n} ~ 2P{T_ = n},
where

T.= inf{n: n>=m,, S, > V2na }
and

P(T,=n} = f;;Pe‘"’{T+> n — 1}(27n) " exp(—£2/2n) d.

It is easy to see that the only values of ¢ which are of first-order importance are
v2an + O(1). In this range we can approximate the curve y2na by its tangent
and the conditional random walk by an unconditional one (with drift £;). That
is, let £ = V2an + y, where y is arbitrary but fixed,

P{M{T,> n — 1} = Py(S, < V2ak forall my < k < n — 1|S, = V2an + y}
= Py(S, — S, > y + V2a (n'? - k'/?)
for all m, < k < n|S, = V2an +y}
= PS>y +2a[n'/2 - (n - i)""]
foralll <i<n-—myS,/n=p*+ 0(1)}.
Observe that V2n[n'/2 — (n — i)?] = é‘/2_a77;i + O(Mn_‘q'ﬂ?) - Lp*iif

n — o0, @ = oo in such a way that (2a/n)/? - p*. The preceding conditional
probability is asymptotically equivalent to
P.{S,>y+ tp*iforalli > 1} = P,. (S, > yforall i > 1}.

To continue, we need

LEMMA [Woodroofe (1982)]. Assume p = EX, > 0. Let M = min(S,, S, ...).
Then for x > 0,

[E(S,)] P(S,,>x} = 'P(M > x}, wherer,=inf(n:n>1,8,>0).

By the lemma and the argument given previously,
P{T = n) ~ 2B{(T, = n)

- [ B (S.)] " BenlS, > 3) )
xexp( -~ [(VZan + y)'| /2n) dy
~ 7 a/m) e [T (B alS,)] RS, > y)e dy.
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The preceding integral equals lim,,_, , E,.{exp[ — R ,(T')]} by renewal theorem,
where R (T) = S%/2T — a. Summing over n and approximating the sum by an
integral yields the desired result. Now we are in a position to make brief
comments on the three methods described previously.

If one were only concerned with the significance levels of RSTs, then the
forward method is the most general of the three. If one wants second-order
approximations to significance levels, then Woodroofe’s method appears to be
the appropriate method to use (cf. Woodroofe, 1977, and Woodroofe and Taka-
hashi, 1982). But if we restrict our attention to the linear hypothesis, then the
backward method produces the most fruitful results. It can be used to approxi-
mate significance levels, power and p-values of RSTs and MRSTs. One of the
major contributions of this article is to generalize the backward method to
multiparameter exponential families.

The rest of the article is organized as follows.'The main results are given in
Section 2. In Section 3, we prove the main theorem which allows us to generalize
the backward method. Section 4 contains the proofs of two theorems on repeated
t-tests. In Section 5, we discuss the duality of the forward and backward method,
highlighting Theorem 7, which relates the excess over the boundary of these two
methods. The numerical results on repeated #-tests are given in Section 6.

2. Main results.

2.1. The simple null hypothesis. In the case of simple null hypothesis (i.e., ©,
contains only one point), the backward method can be generalized to multi-
parameter exponential families in a straightforward fashion. Without loss of
generality we may assume ©, = {0}. In this case the stopping rule is given by

T = {n: n>=my, n¢(S,/n) > a}.
It will be convenient to use the notation
P™(4) = B(AIS, = §),

~ where A belongs to the o-field generated by X,,..., X,,.

Throughout the sequel we shall let £ =mé,, a=ma, Let H(t x)=
(1 = t)o((£o — %)/(1 - t)) and define
(2.1) t,=inf{t: £> 0, ap/(1 — t) = o[£,/ — 8)]].
Let Z;, i = 1,2,3,..., be a sequence of i.i.d. random variables and each Z; has
the same distribution as VH,(¢,,0) - (1, X;), where X, is distributed according to
F,. Put V, = X7 ,Z; and define

7,=inf{n: n>0,V, > 0}.
THEOREM 1. Suppose a = o0, m = o0, m, = o in such a way that a/m =

a,>0,1>my/m=a, >0. Then for each &, which satisfies ¢(&,) < a, and
t, <1- a,, we have

PM(T <m) ~ (1 - 8)" £ 26/ - )]

(22) xexp{~m[a, ~ ()] }1i(4o),
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where
n(&) = [E()] 7 [TeP(V, > 2) ds.

COROLLARY 1.1. Suppose in addition to the asymptotic relations of Theorem
1 that ¢/m = ¢, < a,, and the set A = {£,: ¢(§,) < ¢y, ¢, <1 —my/m} con-
tains an open set of R%. Then

BT < m, ms(S,/m) < c)

(2.3) ~ (my2n) Ve Lm[go/(l — )] |—1/2(1 — ) (&) dé,

and
P{T < m, m¢(S,,/m) < c}

(2.4) ~ (m/2m) " exp[ - m(ao + ¥(0) — 0 B)]
x[2[B/(1 = )] |1 - 1) (),

where B maximizes 8 - §, over the set A, and t, is defined in the same way as t,
in (2.1) with §, replaced by B.

The proof of Theorem 1 is omitted here since it is similar to the arguments
given in Section 1.2 [see Hu (1985) for details]. Corollary 1.1 follows from
unconditioning (2.2) with respect to the distribution of S,,.

2.2. The composite null hypothesis. For any vector V in R% let VO, V® be
two vectors such that V = (V®, V@) where V¥ € R4, V® € R%, d, + d, = d.
The null hypothesis we consider here takes the form

Hy: 0= (00,09) € 0,={6: 0 =00},
where 0 denotes the zero vector in R%. §® plays the role of nuisance
parameters. The stopping rule is given by
T = inf{n: n > my, nA(S,/n) > a}.
All the following notation corresponds in the obvious way to that of the simple
hypothesis case. Let H(¢, x) = (1 — t)A[({, — x)/(1 — t)] and define
ty=1inf{t: t>0,(1 — £)A[(& — tro) /(1 — 8)] = a0},

where p, = p(6,), with 6, = (0D, 6P(¢P)). Let W,, i =1,2,3,..., be a se-
quence of i.i.d. random variables and each W, has the same distribution as
VH(t,, tope) - (1, X), where X is distributed according to distribution function
K. Put V, = X7_\W, and define 7, = inf(n: n >0, V, > 0}.
THEOREM 2. Suppose a = o0, m = o0, m, = oo in such a way that a/m =
a,>0,1—m,/m=a, >0. Then for each &, such that t, <1 — my,/m and



1650 I.HU

A(¢y) < a,, we have
BT < m) ~ (1= 1)~ [£(&) [

(2.5) x| E[(£ = toro) /(1 = )] |7 *2(%0)

xexp{ —m[ay — A(£)]},
where

(26) v(ko) = [PV, > %) di/E(V,,).

2.3. Repeated t-tests. Theorem 2 can be applied to obtain results on re-
peated t-tests. Assume X,, X,,... are independent and normally distributed
with unknown mean p and variance o2 and that we are interested in testing H:
p =0 against H;: p+ 0. Let [, (-) denote the log-likelihood of X,. Simple
algebra shows that the (generalized) log-likelihood ratio statistic is

NEAE S, s\ _ (), S® /n
()=o) -l - (ool s (s

where

5, = (89, 89) = ( ¥ X, ¥ X)

i=1 i=1

o(x,, x,) = supl, (x,, x,) = [(xz -1) - log(x2 - xf)]/2,
o, 1

do(x5) = suply ,(x,) = [(xz -1)- log x,] /2.

The repeated t-test is defined in terms of the stopping rule

T = inf{n: n > my, nA(S,/n) > a}.
The repeated t-test rejects H, when T < m, while the modified test rejects H,, if
the sample path belongs to

(T<m} U {T>m, mA(S,/m) > c}.
Observe that the test statistic A(S,/n) is scale invariant. So under the null
hypothesis, the probability of any event which is measurable with respect to the
o-field generated by A(S,/i), i = 1,2,3,..., is independent of the variance o2,
and we may write

Py{(T < m}
and
P{T < m} + P(T > m, mA(S,/m) > c}
= P{mA(S,,/m) > ¢} + P{T < m, mA(S,/m) < c},

for significance levels of the repeated ¢-test and the modified test, respectively.
Let Y,,Y,,... be an ii.d. sequence of random variables, each having the same
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distribution as

Y= -[6%201+62)]2%+ [6/(1 + 6%)]2
+[0%2/(1 + 62) + log(1 + 6%)] /2,

where Z is standard normally distributed. Put U, = ¥7_,Y; and let

(2.7)

(2.8) By = (e2*/m — 1),
(2.9) 8, = (e*/m - 1),
(2.10) 8, = (e2/™ — 1)/,

Define v, (0) = [5°e™*P(U, > x} dx/E(U,)).
THEOREM 3. Assume a — o0, m — o0, my —> 00, ¢ = oo such that 0 < @, <
0, <8, < . Then
Py{T < m, mA(S,,/m) < c}

(2.11) ~ 2(a/m) %" f;ollog(l +67)]7.(0) df,

where § is the positive solution of the equation
e 62
(1+6%)log(1 +6%) (1 +62)log(1 + 62)°

(2.12)

Replacing ¢ by a in Theorem 3 yields

COROLLARY 3.1.

(213)  PT <m) ~ 2(a/m) %" [0 ®1og(1 + 6%)] *»,(6) do.

REMARK. Theorem 3 of Woodroofe (1978) contains a mistake (an incorrect
Jacobian), so the results on the repeated t¢-test in Woodroofe (1979) are also
incorrect.

It is easy to see that the power of the modified test depends on the
parameters p, o2 only through the ratio n = p/o, so without loss of generality we
may take 6 = 1 and p = . By symmetry the power at n equals that at —, so
we may assume 71 > 0. The power of the modified t-test is given by

P{T <m} + P{T > m, mA(S,,/m) > c}
= P{T <m, mA(S,,/m) < ¢} + P,{mA(S,/m) > c}.

The second term on the r.h.s. of (2.14) can be obtained by approximating the
tail probabilities of noncentral ¢-distribution. It is therefore sufficient to con-
struct an approximation for the first term. Let a = (1 — e~2¢/™)1/2 and define

(2.14)
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g(x) = (x —1-logx)/2 — nax'/2 Put

2
(2.15) vo = [(a2n? + 4)7 + an| /4,
(2.16) 1= orl/? = (a/2)[(a2n? + 4)* + .
Let ¢, be the positive solution of the equation
(2°17) (1 - ty)log[]- - 71_1722/(1 - t7)2] = —2a,.

THEOREM 4. Under the same asymptotic relations as in Theorem 3, we have
P{T < m, mA(S,,/m) < c}

~ m~V%xp|—m(a, + &(v,) + n2/2)]v+{[exp(2a0/(1 - ty)) - 1] 1/2>
x exp[3ay/(1 — ¢ )]n"lao{exp[Zao/ 1-t)] -1-ay(-t)}"
X [277(72 + any3?/2)(1 - ¢,) ]

3. Proof of Theorem 2. The most tricky part of the proof of Theorem 2 is
the construction of a measure @ whose likelihood ratio relative to P{™ is a
simple function of the stopping rule (asymptotically). We will construct @ by
randomizing the starting point of the sufficient process S, according to a
conditional distribution. Define T* = sup{n: nA(S,/n) > a} and P{")(A) =
P(AIS, = A, S, = &). It is easy to see that

dP(m) (S ) — fn(sn— }\)fm(g)
dP(m) nycc o Pm fn(sn)fm(g _ }\) ’
where f,(-) is the density function of S, under F,.

Let f(-) denote the density function of S{¥ under P, and let 0¥ be the zero
vector in R%. Define

Qa) = [ P M) me = S (f)( (2);’) d\®,

where A, = (AV,0?), Observe that f,(¢ — Ay)/f,2(¢®) is the conditional den-
sity of S, given S? = £®. The likelihood ratio of @ relative to P{™ is found to
be

dQ ' dPy7; fm(€ = Xo)
) (S,,-..,S,) = fd dP‘"‘) ’")——_——f,,‘[")(é“’)) d\®
_ E(O12(SP)
The distributions of S, under @, n =m, m — 1,..., running backward from

S,, = m§, are the same as the conditional P, distributions of mé§, — S,, n =
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0,1,..., running forward and tied down at S = m¢{. Under the reverse time
scale, T* is a stopping time, so Wald’s likelihood ratio identity gives
(m)
BT < m) = BT 2 m) = Eof oo

(STt, Sm); T* > mo}
3.1
@) { e S0 FO(£2)

ﬁ%&@ﬂA@‘Twsz‘
Define
£-8,

=i : - n)A - .
T 1nf{n (m-n) (m_n)>a,n$m mo}

It is easy to see that the distribution of T* under @ is the same as the
distribution of m — 7 under P{{)(A) = P(A|SP = £{®), so the last term of (3.1)
can be replaced by

o ol = 8)EO(®)
Ez 12 (@ - S?)f.(¢)

where E{™ denotes the expectation corresponding to the conditional probability
1-}‘(;',‘). To proceed further, we need

(3.2) ; 'rsm—mo},

PROPOSITION 5 [Borovkov and Rogozin (1965)]. If for some integer n,, S,
has a bounded continuous density f, with respect to the Lebesgue measure on
Re, then as n - oo,

(3.3) fu(nx) ~ (2mn) "2 [£(x)| _l/zexp[ —n¢(x)].
Moreover the preceding limit is attained uniformly over compact subsets.
By Proposition 5 we have

(2)£(2) d,/2 /21%@)( @) |~ /2
f((g)) ( ﬂm) \/! |2(§0)| / IS( )(58)” Y.

(3.4) xexp{m[¢(§o) - 4’0(&)2))]}

= (@mm) 2 [2(80) [*2O(69) | exp[ mA (&),

where £®(p) is the covariance matrix of S under P,. To approximate the
remaining part of (3.2), we need the following lemma whose proof will be given in
the Appendix.

LEMMA 6. Under the same assumptions as in Theorem 2, there exists a
compact set K of R® such that

| FndE-8)
E((Z)){ f(2) (£(2) _ S(z)) H

(m) m -r(g - S'r) . S K
o|Eg @ (§(2)_S(2))’75m_m0’ , € m. )

'r'sm—mo,S,eEmK}
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where mK = {mx: x € K}.

By Lemma 6 we have

E(m fm—-r(g - S‘r) .
&\ T (g TS
(3.5)
E(m) fm,—'r(£ - S'r) . S
-~ 5(2) fm_ (§(2) _ S(2)) s T S m — mo, r € mK .

Since (3.3) holds uniformly over compact sets, the r.h.s. of (3.5) is asymptotically
equivalent to

£@ — SO\ [V g |TV2
(m) — ) A2y 2 T T
Ee‘z’ {2w(m 7) 2 ( m-r ) 2:(m—'r)
£-8, £ — §®
Xexp{—(m—'r)[cb(m_q_)— O(T_-T— ;T<m—m,, S, € mK
(3.6) £@ - SO\ [V% g\ "2
= E(m — ) Ay 2 T T
Ef‘z’ 21r(m T) 2 ( m-—n ) 2:(m— 'r)

Xexp{— [(m - 'r)A(g ') - a}};
m-—r
T<m-—m,, S, € mK}e‘“.

Observe that the exponent inside the expectation on the r.h.s. of (3.6) is
exactly the excess over the boundary at stopping time 7. The nonlinear renewal
theory for conditional random walks developed in Chapter 4 of Hu (1985) will be
employed to finish the proof.

The following limit relations are valid [see Hu (1985), Chapter 4]. For all
e> 0,

@ Tim RIS, /7~ ol > €} = 0,
(3.8) 'mliflw PE{r/m — to > €} = 0.
By (3.7) and (3.8) we have

(3.9) PE{|det(E@[(£® - 8@)/(m - 7)]) - det(£D(¢®))| > e 0,
| P{|det(E[(¢ - S,)/(m - 7)])

(3.10) —det(E[(£o — tomo)/(1 = &)])| > ¢} =0,
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as m — co. In view of (3.8)—(3.10), the r.hss. of (3.6) is asymptotically equivalent
to

m= 4% a(1 — t) ™4 |EO(60) [ 2180 — tomo) /(1 — £0)] |
er‘(’;,'){e‘Rm(*); Tr<m-m, S, €mK},

where R, (7) = (m — 7)A(§ — S,)/(m — 7)) — a. Under the assumption
to <1 — my/m, the last factor in (3.11) is asymptotically equivalent to

E@ e Rn7),
By Theorem 6 of Chapter 4 of Hu (1985), we have
(3.12) EZ){e™ D} - (£,).
Substituting (3.4) and (3.11) into (3.2) and using (3.12), we have
m —d, 1/2 -1/2
BT < m) ~ (1= 1)~ [£(8) [*12[(§0 ~ tomo) /(1 = )] |*v(40)

Xexp{ —m[ao - A(go)]},
which is the desired result.

(3.11)

4. Proofs of Theorems 3 and 4.

4.1. Proof of Theorem 3. The starting point of the proof is Theorem 2. We
will identify those quantities on the r.h.s. of (2.5) in the special case of the
repeated ?-test given in the following discussion. Let £/m = &, = (§,, £,), a, =
a/m. Define
(4.1) to=inf{t: (1 - £)A[£,/(1 - ¢), &) = ao},
where

A(x,, x,) = (1/2)log[x2/(x2 - x12)] .
Denote by }:(gl, §,) the covariance matrix of (X, X?2), where X is normally

distributed with first and second moments given by E(X) = §,, E(X?) = £,. A
simple calculation shows that the determinant of } is

3
(4.2) 1£(%0)l = 2(¢;, - £7)".
Define
H(t, x,,x,5) = (1 - t)A[(§0 -x)/(1- t)]
Let W, i =1,2,..., be iid. random variables having the same distributions as

VH(ty,0, t,¢,) - (1, £5°Z, £,Z2), where Z is distributed according to the stan-
dard normal. An easy calculation shows that W, has the same distribution as

_ Z_2 512 _z 51(1 - to)
2 206,14 - &2 T2 - 1) - £2Y2

L1 £ g gu—w2}}
2|61 -t)" - & L1 -t) - &)

(4.3)
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Let V, = T2, W, and
v (&) = fooe“P{K+> x}dx/EV, .
0

By Theorem 2 we have

BT < m} ~ (1 ) 1260 12 [6/(1 = o), £] |7 r_ (&)

xexp{ —m[a, — A(&)]}.

In order to obtain significance levels from (4.4) we need to uncondition it with
respect to PyS,, € md{,}. Observe that each term on the rhs. of (44) is a
function of z = £,/£1/2, hence a function of y = (m — 1)"/22(1 — 22)~'/2 This
reduces the conditional probability P{™{T < m}, which in general is a function
of two variables, to a function of one variable. This is because the likelihood
ratio statistic is scale invariant. It is easy to see that the random variable
corresponding to y has a t-distribution with m — 1 degrees of freedom. Multiply-
ing (4.4) by the t-density and integrating over the appropriate range yields

P{T < m; mA(S,,/m) < c}
(45) e [(6-8)" (680 - 1) 7] - 0) 7

XV—(go)eMA(‘EO)gm—l(y) dy’

(4.4)

where

RO 7 T I 0

[(m = 1)2]"/"T[(m - 1)/2] \m — 1
D= {y:0<ty<1-my/m, A(&) < co}.
The last factor on the r.h.s. of (4.6) cancels with
™A€o = exp{(m/2)log[£,/(£; — £2)]} = [¥%/(m — 1) + 1] ™

After calculation, we have

(4.6)

1) Z=(m-1V0-2) "= (m =)V e/ (6 - )]
and
@8) &[5 -80-t) Y = emlBay/(1 - 8)].

Applying Stirling’s formula to approximate the first factor on the r.hs. of (4.5)
and using (4.7) and (4.8), (4.5) becomes

P(T < m; mA(S,,/m) < ¢}
(49) (m/2m)%e-5 Lexp[3ao/(1 — )] = t) " _[Ee(2)] .

where
C={2:0<t,<1-my/m, A(%y) < ¢}
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We need to make another change of variables. Let

2/(1 - to)
(4.0) . _.
[1-22/(1 - 2)7]"

By (4.1)

(4.11) log(1 + 62) = —log[1 — 22/(1 — £,)*] = 2a,/(1 - t,).
Let 6,, 0,, 0, be the same as in (2.8)-(2.10). Observe that

(4.12) 0<ty<l—my/me 0, <0 <6byor—0,<0< -0,

Let § be the solution of (4.10) corresponding to z = 62/(1 + 62). Then by (4.10)
0 satisfies (2.12). Notice that 8, < 6 if ¢ < a and that-c = a implies 0, = §. So

(4.13) Ag) <coe |2] <02/(1+62) = 0>8o0rf < —4.

(4.12) and (4.13) determine the range of integration

(414) {0 <ty<1—mo/m, A(§) <co} = {<0<06}{-0,<0<-6)}.
An easy calculation shows that '

(4.15) ’ (1 = £,)(1 + 62" ¥*[262 — log(1 + 62)] [log(1 + 62)]

In view of (4.11), (4.14) and (4.15), (4.9) becomes
P(T < m, mA(S,/m) < c}
(4.16) ~ 2(a/m) e " fi "log(1 + 62)]

x [2602 - log(1 + 62)]»_[£,(6)] db.
Clearly (4.3) can be rewritten in terms of . That is,

1/2

-3/2

W= (02/2)2% - 6(1 + 6%)"°Z + (1/2)[ 62 — log(1 + 62)]

— (02/2)[z - (1 + 62)2/8] - (1/2)[1 + log( + 62)].

Comparing — W with Y defined by (2.7), we find that —W and Y have
the same support, (—oco,(1/2)[1 + log(1 + 6%)]). In fact, —W and Y are
distributed as —(1/2)[0%/(1 + 6*)1x%(0°%) + (1/2)[1 + log(1 + 6%)] and
—(1/2)02x%(072 + 1) + (1/2)[1 + log(1 + 62)], respectively, where x*(p) de-
notes the noncentral x2-distribution with one degree of freedom and noncentral-
ity parameter p. So the likelihood ratio of Y relative to — W exists.

x2(p) has density in the form [see, e.g., Ferguson (1967), page 103]

3 e-o/2(p/2 () [T + 1/2)] 3N e, 0 << o
j=0
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So Y has density

fy(y) =201 +6%)672 i e~1/26(262) 7 (1) T I(J + 1/2)] 2~ U+
j=0

xexp{(1 + 6%)[y — 1/2 — (1/2)log(1 + 62)] /62}
x {67(1 + 62)7[1 + log(1 + 6%) — 25] v
= 07 %exp{(1 + 6%)y — [2 + 6% + log(1 + 6%)] (26%) ")

X ¥ (074 + 672 [1(j+1/2)] 27241
j=0
X (j1)7'[1 + log(1 + 6%) — 2y]" 7,
-0 <y<(1/2)[1 + log(1 + 6%)].
— W has density

fow(y) =207% ;exp[—(%z)_,l(l + 02)] [(202)‘1(1 + 02)]j(j!)‘1

X[T(j+1/2)] 2=/
xexp{072[y — 1/2 — (1/2)log(1 + 6%)]}
x (672[1 + log(1 + 6%) — 2y] 7"

= 0 %exp{672y — [2 + 6% + log(1 + 62)](26%) ")

X ¥ (074 + 672 [T(j+1/2)] g2+
j=0
x (j1) 7M1 + log(1 + 62) — 2y] 77",
-0 <y < (1/2)[1 + log(1 + 6%)].
The ratio of these two densities is surprisingly simple:

i fY(y)/f—W(y) =ey~
Appealing to Theorem 7, we have

(4.17) v_(0) =v,.(0)EY/EW.

The expectations of Y and W are easy to evaluate:

(4.18) EW =6%—- (1/2)log(1 + 62)
. and

(4.19) EY = (1/2)log(1 + 6%).

Substituting (4.17)—(4.19) into (4.16) yields the desired result.
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4.2. Proof of Theorem 4. By Proposition 5, S,, has P, asymptotic density in
the form

(4.20) fr,o(méo) ~ (2mm) V(&) " %exp{ ~m[s(&) — n&, — u2/2] }.
Unconditioning (2.5) with respect to the r.h.s. of (4.20) gives
P{T < m, mA(S,/m) < c}

-1/2

(421)  ~ (m/2m)emeo D [ [ (1= 1)V E[6(1 - 8) 7, 8]
Xv_(&;)exp{ _‘m[‘f’o(fz) — n¢,]} d¢, dé,,

where
B={(¢,£):0<t,<1—my/m, A(&) < c,/m}.
After calculation, we have

{(51» ) < §,/8% < }
where

a=(1- e_2°/m)1/2,

m
a, = —0(1 - e‘2“/’"°)l/2.

Although the double integral on the r.h.s. of (4.21) is taken over the set B, the
only part which contributes to the first-order approximation is the integral over
a small neighborhood N of y = (v, Y,), where (v, v,) minimizes ¢(£,) — n¢,
over B. It is not hard to see that the minimum of ¢,(£,) — n¢, over B occurs on
the curve £,£;'/2 = a. On this curve, ¢,(£,) — n¢, equals

g(¢;) = —nafé/z - (52 —1-logé;)/2.

A simple calculation shows that y, and y, are given by (2.15) and (2.16),
respectively. The nonexponential factor inside the integral on the rh.s. of (4.21) is
approximately constant over N. Namely,

(1 - 1) 260 ~20) % &) | o (80)

1/2

=(1-t) 2w -8) N w] | (),

where ¢, is defined by (2.17).

It remains to approximate [[ge~ ™) ml g¢ d¢ . The following argument
uses a change of variables to convert the double integral into an integral of a
single variable, which can then be approximated by the Laplace method. Let

(4.22)
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"= §1$2_1/2, Yo =&
J fexo{—mlan(t) - nta]} dt, dty

= Lw[xanp{ _m[¢o(y2) - ny1y21/2] }yé/z dy, dy,

= fo “exp| — ma( 3,)] 242 [ [ exp(mny,5?) dyl] dy,

= fowexp[—rrz<1>o(;v2)]yzl/“’{('nnyé”)_1
X [exp(mn,5;/%) — exp(many;/ a,)] } b,
~ [["expl~méo(3,)] (mn) "exp(mny} %) i,

= (m'n)_l Lwe_mg(yz) dy2.

The Laplace method gives

_1y1/2
(4.23) (m'q)_1 fooe-mg(yz) dy, ~ (m'ﬂ)_l{2ﬂ[mg”('yz)] 1}1/ - M),
0

Substituting (4.22) and (4.23) into (4.21), we have

P{T <m, mA(S,/m) < c}
(4.24) ~ exp{ —m[a, + n%/2 + g(v;)]}
xv_(v)n 2amg"(w)(1 - ¢,)|E[n/(1 - 8,). %] [}
-1/2

= m~V%xp{—m[a, + 12/2 + g(,)] }v+{[exp[2a0/(1 - ty)] - 1] 1/2}

(4.25)  xexp[3a,/(1 - t,)]agm {exp[2a0/(1 ~ 2,)] = 1 —ay/(1 — £,)}
X{277[72 + (1/2)anvd?](1 - t7)3}‘1/2.

In the preceding equality we have used
1/2
v_(v) = v.{[exp[2a0/(1 - £,)] = 1] "}ao/(1 - 1,)]
-1
_ x {exp[2a,/(1 = t,)] —1-ap/(1 - ¢,)} ,
which is the immediate consequence of (4.11) and (4.17)-(4.19), and
' -1/2 _ _
|$[71/(1 - ty)’ 72] | =2 1/272 3/29XP[300/(1 - ty)]:
which follows from (4.2) and (4.8). This completes the proof of Theorem 4.
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5. Duality of the forward and backward methods. A variant of the
forward method [see Theorem 5.29 of Siegmund (1985)], which involves taking
the likelihood ratio of the maximum invariant process X;'X,, X;'X,,...,
X;'X,,... then mixing it by Lebesgue measure over the invariant parameter
space, can be employed to derive Corollary 3.1. This method cannot be easily
modified to prove Theorem 3 because of the existence of a subtle measurability
problem. In short, the two-dimensional sufficient process (X7, X;,>"_ ,X?) is not
measurable with respect to the o-field generated by the maximum invariant
process.

Although the method mentioned previously cannot be employed to prove
Theorem 3, it suggests the succinct form of Theorem 3. The following theorem is
crucial in proving Theorem 3.

THEOREM 7. LetY,Y,,... and Z,, Z,,... be two sequences of independent
identically distributed random variables and let U, = ¥*_\Y,, V, = X ,Z,. Let
fy(:) and f_,(-) denote the probability density functions of Y, and -2Z,
respectively. Assume
(5.1) fy()/f-2(y) = e
and EZ, > 0, EY, > 0. Then

/3°e"‘P{ U, > x} dx/EUT+ EZ,
[@e™*P(V, > x}dx/EV,  EY,’

where 7, denotes the first time the corresponding random walk is positive.

When there is a possibility of confusion, we use a superscript to denote the
random walk we refer to, e.g., ¥ = inf{(n > 0: U, > 0).

PrOOF OF THEOREM 7. Integration by parts gives
(52) [ e *P(U, >z} du/EU, = (EU, ) {1 - E[exp(- T,,)]}.
0

By Wald’s lemma we have

(5.3) EU, = EY, - E7Y.
By the duality lemma

(5.4) (E'rf{)_l=P{'rl_]= o},

where 7V is the first time the corresponding random walk is nonpositive.

Appealing to Wald’s likelihood ratio identity, we have
U
E { * f_2(Z) U

P{17V< o0} = < ©

I1

e z)
= E[exp(-U,,)],

(5.5)
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where in the second equality given previously we have used (5.1). Substituting
(5.3)-(5.5) into (5.2), we have

(56) [ eP(U, > x)dx/EU, = P(rU= o} P(rV= o0} /EY,.
0

A similar argument shows that
(67) [T~ p{V, >z} du/EV, = P{rY= 0} P(1V= w} /EZ,.
0 .

By the obvious scale property

(5.8) P(17V= 0} = P{rV= o}
and i
(5.9) P{(17V=o} = P{1V= }.

Dividing (5.6) by (5.7), using (5.8) and (5.9), the desired result follows. O

REMARK. The relation (5.1) holds not only for the repeated t-test but also
for other cases; see Hu (1985), Chapter 2, for details.

Although Theorem 7 is not difficult to prove, its importance cannot be
overemphasized. It provides the crucial link to proving the equivalence of the
forward and backward approximations in cases in which both methods work.
Also, for cases in which only the backward method is applicable, Theorem 7
allows one to convert backward representation into forward representation
efficiently. This reduces the programming work in numerical computation. To be
more specific, in evaluating the excess over the boundary numerically, Theorem 7
guarantees that only one subroutine is enough.

6. Numerical results. In the numerical computation of the approximations
given by Theorems 3 and 4, the main programming task is to evaluate numeri-
cally »_(-), the Laplace transform of the excess over the boundary. It turns out
that »,(-) relates to the characteristic function of Z,, the increment of the
random walk V, which generates the excess over the boundary, through an
integral formula. See the theorem in Woodroofe (1979).

Sometimes it is inconvenient to take the data continuously, so it is helpful to
consider group sequential tests on these occasions. The stopping rule we are
interested in is

m-—m
—k_—'—o'], nA(Sn/n) > a},
where £ is the size of a group. It is easy to see that T, is a stopping time. After a
moment’s reflection, we find that approximation to the corresponding signifi-
cance levels and power are the same as k = 1, except for the excess over the
boundary part. To find the excess over the boundary, it is sufficient to identify

Tk=inf{n: n=m0+ik,i=0,...,[
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the increment of the random walk which generates the excess over the boundary.
In the repeated t-test it is given by U, = I*_|Y,, where the distribution of Y is
given by (2.7).

Tables 1-6 give some examples of the approximations to power and signifi-
cance levels of RSTs and MRSTs. For comparison, the results of Monte Carlo
experiments are also included.

TABLE 1
Significance levels of repeated t-tests

Analytic Monte Carlo
a m, m approximation . (2000 replications)®
3.8 7 30 0.050 0.053 + 0.001
4.0 8 50 0.047 0.048 + 0.001
4.5 10 75 0.032 0.033 + 0.0006
5.0 10 110 0.024 0.023 + 0.0004

®Importance sampling [cf. Siegmund (1976)] is used in the preceding Monte Carlo experiments.

TABLE 2
The power of repeated t-tests
Analytic Monte Carlo
a m, m 7 approximation (2000 replications)

3.8 7 30 0.8 0.946 0.951 + 0.005
0.6 0.734 0.742 + 0.010

4.0 8 30 0.6 0.934 0.933 + 0.006
0.4 0.584 0.596 + 0.008

4.0 10 75 0.5 0.950 0.948 + 0.005
0.3 0.518 0.522 + 0.011

5.0 10 110 0.4 0.882 0.889 + 0.007
0.3 0.581 0.581 + 0.011

TABLE 3
Significance levels of modified repeated t-tests
Analytic Monte Carlo
a c m, m approximation (6000 replications)

3.8 3.6 7 30 0.050 0.053 + 0.001

3.95 3.6 7 40 0.050 0.052 + 0.001
4.0 3.6 8 50 ) 0.048 0.049 + 0.0009
4.7 4.2 10 80 0.028 0.027 + 0.0007
5.0 4.5 10 100 0.023 0.023 + 0.0066




1664

I. HU

TABLE 4
The power of modified repeated t-tests

Analytic Monte Carlo
a c m, m n approximation (2000 replications)
3.8 3.6 7 30 0.8 0.952 0.956 + 0.005
3.95 3.6 7 40 0.7 0.960 0.959 + 0.004
0.5 0.717 0.727 + 0.010
4.0 3.6 8 30 0.6 0.946 0.943 + 0.005
0.4 0.613 0.626 + 0.011
4.7 4.2 10 80 0.5 0.947 0.937 + 0.006
0.4 0.779 0.770 + 0.010
5.0 4.5 10 100 0.45 0.940 0.938 + 0.005
0.3 0.553 0.550 + 0.001
TABLE 5
Significance levels of group repeated t-tests
Number of observations ' Analytic Monte Carlo
in a group a m, m approximation (2000 replications)®
2 3.65 8 40 0.050 0.052 + 0.001
3 3.6 10 55 0.049 0.049 + 0.001
4 3.6 10 70 0.051 0.052 + 0.001
5 3.6 10 80 0.050 0.052 + 0.001
7 3.6 15 120 0.047 0.047 + 0.001
®Importance sampling is used in the preceding Monte Carlo experiments.
TABLE 6
The power of group repeated t-tests
Number of observations Analytic Monte Carlo
in a group a m, m n approximation (2000 replications)
2 3.65 8 40 0.7 0.962 0.961 + 0.004
0.6 0.880 0.888 + 0.007
) 0.5 0.726 0.741 + 0.010
3 3.6 10 55 0.6 0.969 0.966 + 0.004
0.4 0.681 0.685 + 0.010
4 3.6 10 70 05 0.949 0.940 + 0.005
0.3 0.527 0.518 + 0.011
5 3.6 10 80 05 0.973 0.961 + 0.004
0.4 0.855 0.843 + 0.008
0.3 0.590 0.574 + 0.011
7 3.6 15 120 04 0.970 0.966 + 0.004
0.3 0.790 0.773 + 0.009
0.2 0.420 0.414 + 0.011
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APPENDIX
PROOF OF LEMMA 6.
m fm—‘r(g - S‘f)
Ei(m){ f"(lz_)T(g(z) _ S,(z)) ;T<m—mg, S, &mK

m— Mo m fm—i(g - St)
(A.l) B i§1 Eg((z)){ fn(;zli(g(z) - Si(Z))

mmo [ APy fu-i(£ = )
E,| —£2(S,,...,S) —17 -
igl 00{ d.Pgo ( 1 SL) f”(l2ll(£(2) _ SL(2))

;¢=i,SieEmK}

;fr=i,Si<iEmK},
where in the last equality we have used Wald’s likelihood ratio identity. A simple
calculation shows that
dP) [P, (¢® - @)

S,...,8) = - — .
ap,, Sve8) = 7@ )exp[ SPOP — 9®()]]

Replacing the likelihood ratio in (A.1) by the r.h.s. of (A.2), we find that the last
term of (A.1) equals

e fm—i(g - Sl)
R

i=1
which is less than

(A2)

exp[ —S@0P + iy?(0P)]; 7 =i, Si ¢ mK},

m—mo X _ S
)y Eo{iﬂ;(—z()%ﬁ)‘l exp[ - S0 + iy®(6§?)]; S & mK }
a3 ! ™

" fm—i(§ — %)
Zo Jxemxy FO(E7)

By the assumption we made in Section 1, |f,,_(§ — x)| < b for some constant b,
if m — i > n,. By Proposition 5

12(69) > (/D) (m/2m) ™ [EO(EP) [ exp[mon(¢8)].

for m sufficiently large.
So the r.h.s. of (A.3) is bounded by

fi(x) dx.

m—my

(b/2)(m/2'rr)d*/2 |2(2)(£32)) |1/2exp[m¢(2)(£§,2))] Y PS¢ mK}.
im1

Standard exponential Chebyshev inequalities show that PyS; ¢ mK} is ex-
ponentially small with exponent depending on the size of K. Choosing K large
enough yields the desired result. O
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