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ON THE CONVERGENCE RATES OF EMPIRICAL BAYES RULES
FOR TWO-ACTION PROBLEMS: DISCRETE CASE!

By TACHEN LiaNG
Purdue University

The purpose of this paper is to investigate the convergence rates of a
sequence of empirical Bayes decision rules for the two-action decision prob-
lems where the distributions of the observations belong to a discrete exponen-
tial family. It is found that the sequence of the empirical Bayes decision rules
under study is asymptotically optimal, and the order of associated conver-
gence rates is O(exp(—cn)), for some positive constant ¢, where n is the
number of accumulated past experience (observations) at hand. Two exam-
ples are provided to illustrate the performance of the proposed empirical
Bayes decision rules. A comparison is also made between the proposed
empirical Bayes rules and some earlier existing empirical Bayes rules.

1. Introduction. The empirical Bayes approach in statistical decision the-
ory is appropriate when one is confronted repeatedly and independently with the
same decision problem. In such instances, it is reasonable to formulate the
component problem in the sequence as a Bayes decision problem with respect to
an unknown prior distribution on the parameter space and then use the accu-
mulated observations to improve the decision rule at each stage. This approach
is due to Robbins (1956, 1964, 1983). Many such empirical Bayes rules have been
shown to be asymptotically optimal in the sense that the risk for the nth
decision problem converges to the optimal Bayes risk which would have been
obtained if the prior distribution was fully known and the Bayes rule with
respect to this prior distribution was used.

The usefulness of empirical Bayes rules in practical applications clearly
depends on the convergence rates with which the risks for the successive decision
problems approach the optimal Bayes risk. The purpose of this paper is to
investigate the convergence rates of a sequence of empirical Bayes rules for
two-action decision problems when the distributions of the observations belong
to a discrete exponential family.

Let X be a random observation with probability function of the form

(1.1) [(x|0) = h(x)07B(0), x=0,1,2,...;0<0<Q,

where h(x) > O forall x = 0,1,2,..., and where @ may be finite or infinite. The
observation X may be thought of as the value of a sufficient statistic based on
several iid observations. Consider the following testing: H,: 6 > 0, against H,:
6 < 8,, where 0, is a known positive constant. For each i = 0,1, let i denote the
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action deciding in favor of H,. For the parameter 8 and action i, the loss function
is defined as

(1-2) L(0, i) = (1 - i)(00 - 0)1(0,00)(0) + i(0 - oo)I[oo,Q)(a):

where I,(-) denotes the indicator function of the set A. In (1.2) the first item is
the loss due to taking action 0 when 6 < ,, and the second item is the loss of
taking action 1 when 6 > 6,. It is assumed that @ is the value of a random
variable ® having an unknown prior distribution G(8).

For a decision rule d, let d(x) = P{accepting Hy|X = x}. That is, d(x) is the
probability of taking action 0 given X = x. Let D be the class of all decision
rules. For each decision rule d, let r(G d) denote the associated Bayes risk.
Then r(G) = inf, ¢ ,r(G, d) is the minimum Bayes risk among the class D.

Based on the preceding statistical model, the Bayes risk associated with the
decision rule d is

(1.3) "G, d) = 20[00 — p(x)]d(x){(x) + C,
where '
h(x)f(x +1)
(1.4) o(x) = A+ DI@)’
(1.5) f(x) = /OQf(xw)dG(o),
(1.6) c= £ [%0-0)i(xi0) do(0).

We consider only priors G such that [0 dG(8) < oo to insure that the risk is
always finite.

Note that C is a constant which is independent of the decision rule d. Thus,
from (1.3), a Bayes decision rule, say dg, is clearly given by

1 if p(x) > 6,
1.7 d = 0
(1.7) G(x) {0 otherwise.

DEFINITION 1.1. A decision rule d is said to be monotone if for x, y > 0 with
x <y d(x)<d(y)

Since the class {f(x|0)|0 <6 < @} has monotone likelihood ratio in x,
straightforward computation leads to that @(x) is increasing in x. Therefore, by
(1.7), the Bayes decision rule dG(x) is a monotone decision rule.

Since the prior distribution G is unknown, it is not possible to apply the
Bayes rule for the decision problem at hand. In this situation, we use the
empirical Bayes approach. We note that Johns and Van Ryzin (1971) have
studied the preceding decision problem via empirical Bayes approach. In this
paper, a sequence of empirical Bayes decision rules {d,} is proposed for the
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decision problem described previously. The associated asymptotic optimality
property is investigated. It is found that the order of the rate of convergence of
{d}} is O(exp(—cn)) for some positive constant ¢, where n is the number of
accumulated past experience (observations) at hand. Two examples are given to
illustrate the performance of the proposed empirical Bayes decision rules. A
comparison is also made between the proposed empirical Bayes rules and some
earlier existing empirical Bayes rules.

2. The proposed empirical Bayes rules and its asymptotic optimality.
For each j=1,..., let (X;,©;) be a pair of random variables, where X; is
observable but ©; is not observable. Conditional on ®; = 6, X; has probability
function f(x|6). It is assumed that ©,, j = 1,..., are independently distributed
with common unknown prior distribution G. Therefore, (X;,0,), j = 1,2,...,
are iid. Let X, = (X,,..., X,,) denote the n past observations and let X,,, = X
denote the current random observation.

For each x =0,1,2,..., let

(21) W(x) = = 5 1g(X) + 8,

Jj=1

where §, is a positive value such that 8, = o(1). The estimator f,(x) is analogous
to the usual empirical frequency estimator of f(x) with some modification which
guarantees that f,(x) is always positive. Let

A+ 1)
%) = 2+ D)

Analogous to the Bayes rule dg(x) of (1.7), one may obtain an. intuitive
empirical Bayes rule which decides to take action 0(1) whenever ¢, (x) > (<)6,.
See Johns and Van Ryzin (1971), though the estimator f,(x) given in (2.1) is
different from theirs. However, the estimator ¢,(x) does not possess the increas-
ing property and therefore the corresponding decision rule is not monotone.

Recall that the class { f(x|0)|0 < § < @} has monotone likelihood ratio in x.
Under the loss function L(#8, i) of (1.2), the class of monotone decision rules is
essentially complete; see Berger (1985). Thus, it is natural to desire that the
proposed empirical Bayes decision rule be monotone. In the following, we
propose a monotone empirical Bayes decision rule, say d.*, which is obtained on
basis of a smoothed version of ¢, (x).

Let

(2.9) #1(x) = | max 9.()] 7 @,

(2.2)

where a A b = min{a, b}. Then the empirical Bayes decision rule d ¥ is defined
as .

(2.4) d*(x) = {1 if gx(x) = 6,,

0 otherwise.
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Note that the past data X, is implicitly contained in the subscript n. From
(2.3), ¢X(x) is nondecreasing in x. Then, by (2.4), we see that d*(x) is a
monotone decision rule.

In the following, the asymptotic optimality of the sequence of the proposed
empirical Bayes decision rules {d*} will be investigated. The monotonicity of
the decision rules {d,*} will be used to obtain the related asymptotic optimality.

Consider an empirical Bayes decision rule d,(x). Let r(G, d,) be the Bayes
risk associated with the rule d,. Then-

(2.5) G, d,) = g[oo — o(0)] E[d(2)] f(x) + C,

where the expectation E is taken with respect to X,. Since r(G) is the minimum
Bayes risk, r(G,d,) — r(G) = 0 for all n. Thus, the nonnegative difference
r(G, d,) — r(G) is used as a measure of the optimality of the empirical Bayes
decision rule d,,.

DEFINITION 2.1. A sequence of empirical Bayes decision rules {d,}%_, is said
to be asymptotically optimal at least of order «, relative to the (unknown) prior
distribution G if r(G, d,) — r(G) < O(a,) as n — oo, where {a,} is a sequence
of positive numbers such that lim, _, «, = 0.

Let A(6,) = {x|p(x) > 6,} and B(6,) = {x|p(x) < 6,}. Define

min A(6,) if A(8,) * @,
(26) M= {oo if A(8,) = 2,
max B(6,) if B(64,) + @,
(2.7) N { -1 if B(6,) = @,

where @ denotes the empty set.
By the increasing property of @(x) with respect to the variable x, m < M;
also, m < M if A(6,) # @. Furthermore,

(2.8)  xs<miffp(x) <6, and y=Miff ¢(y) > b,.

The following theorem is our main result.

THEOREM 2.1. Let {d,;*} be the sequence of empirical Bayes decision rules
defined previously. Suppose that 6, < Q. Also, assume that

(@) /P0dG(6) <  and
(b) m < oo.

Then r(G, d.}) — r(G) < O(exp(—cn)) for some positive constant c.
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ProoF. Under assumption (b) and by (2.8), direct computation leads to
r(G,d}) - r(G) = ¥ [8 — o(x)] P{gX(x) = 6,}f(x)

x=0

(29) ;
+ ZM[‘P(-’C) = 6,] P{@x(x) < 6,}f(x),
where X7 (=0if m= —1. 4
The nondecreasing property of ¢X(x) implies

{P{q;,’,"(x) > 6,} < P{gp¥(m) = 6,} forallx <m,

P{o¥(x) < 6,} < P{e}¥(M) < 6,} forall x> M.
Combining (2.9) and (2.10), we have .
(211) r(G,d;y) - r(G) < b,P{g}(m) 2 6y} + b,P{e¥(M) < 6,},
where

0<b= ¥ [6-0(x)] f(x) <0, 0xby= fLM[q»(x)—ool f(x) < o

x=0

(2.10)

and the finiteness of both b, and b, 'is guaranteed since [0dG(8) < o by
assumption (a).

Therefore, it suffices to consider the asymptotic behavior of both
P(g3(m) = 8y} and P(gx(M) < ).

By the definition of ¢X*(x), when ¢*(M) < @, then ¢*(M) > ¢, (M), where
@,(+) is the function defined in (2.2). In view of this fact and by (2.1) and (2.2),

Plo} (M) < 6} < P{g,(M) < ¢}

(2.12) _ p{% > A(M) < ~t(M,8,) + A(M, 6, n)},
where
(2.13) Aj(x) = h(x)[I(x+1)(Xj) - f(x+ 1)]
—boh(x + 1)[I(x)(Xj) - f(x)],
(2.14) t(x,0,) = h(x)f(x + 1) — Goh(x + 1)f(x),
(2.15) A(x, 8y, n) = 8,[h(x + 1)6, — h(x)].

Also, by the definition of ¢}*(x) and (2.1) and (2.2) again,

P{gx(m) = 6,}
= P{@,(y) = 6, for some y = 0,1,..., m}

m

(2.16) < X P{o ) = 6}

y=0
- A7 EA0) 2 ~,0) + At ).
y=0 Jj=1
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Note that A (x), j=1,..., n,areiid; E[A;(x)] = 0 and a,(x, 6,) < A/(x) <
ay(x, 0,), where a,(x,0,) = —h(x)f(x + 1) — h(x + 1)8, + h(x + 1)6,f(x) and
ay(x,8)) = h(x) — h(x)f(x + 1) + h(x + 1)8,f(x). Also, since 8, = o0(1) and
m < oo, there exists some positive integer n, such that for all n > n,,
|A(Y, 0y, n)| < 318(,6,)] hold for all 0 <y<m and for y =M. Hence,
for n sufficiently large, —#M,6,) + A(M, 6,, n) <0 since ¢ M, §,) > 0, and
—t(y,0,) + A(y, 6y, n) >0 for 0 <y <m since {(y,6,) <0 for 0 <y <m. In
view of the preceding facts and by Theorem 2 of Hoeffding (1963),

P{% .n A(M) < —¢(M, 6,) + A(M, 00,n)}

(2.17) < exp{ —2n[~t(M, 8,) + A(M, 8y, n)]*a; (M, 8))

n s _,
< exp( - 7 [~ (31, 6,))°a5 (31, 6,)}
and for0 <y < m,
1 n
P 7 ZAj(y) > —t(y,6,) + A(y,6,,n)
j=1

(2.18) < exp{ —2n[—t(y, 6,) + Ay, 6,, n)]2a3-l(y, 00)}

n 2
=< exp{ - E[_t(y: 00)] a; (v, 00)},
where ay(x, 8,) = ay(x, ) — a,(x, 6,) = h(x) + h(x + 1)6,.
Let
(2.19) ¢ = smin{t*(y,6,)a;(7,6,)0 <y <mory=M}.
It is clear that ¢ > 0 since m < oo from assumption (b) and
tz(y: oo)a.';l(y’ 00) >0
for all 0 < y < m and for y = M. Then from (2.11), (2.12) and (2.16)-(2.19), we
have
m
- r(G,d}) - r(G) <b, Y exp(—cn) + bexp(—cn)
(220) y=0
= O(exp(—cn)).
Hence, the proof of this theorem is complete. O
3. Examples and remarks. The following two examples have been consid-
ered by Johns and Van Ryzin (1971) and used to illustrate the performance of
their proposed empirical Bayes decision rules for the two-action problem. We

cite them and use the same to illustrate the performance of the proposed
empirical Bayes decision rules {d }}.
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EXAMPLE 1 (The geometric distribution). Suppose that
f(x10) =01 - 9), x=0,1,2,...;0<6<1,
and that the prior distribution has the probability density function g(8), where
g0)=(a+1)1-06)°, 0<6<1l,a> —1.
Then
(a+ 1) (x+ )T (a + 2)
‘ I'(x+a+3)

h(x)=1 and f(x)=

Thus,
h(x)f(x +1) x+1
p(x) = = :
h(x+1)f(x) x+a+3
which tends to 1 as x — o0. Taking 0 < 4, < 1, then A(4,) = {x|p(x) = §,} + .
Therefore, m < M = min A(6,) < oo. Hence, by Theorem 2.1,
r(G,d*) — r(G) < O(exp(—cn))

for some positive constant c.

ExaMPLE 2 (The Poisson distribution). Let
f(x]0) = e %*/T(x + 1), x=0,1,2,...; 6 > 0.
Letting the prior density function be g(8) = e~ %, 6 > 0, we then have
1 x+1 1
0% 2 df = |- = ——
=) = 102 +1)f (2) and  A(%) = T

Thus,
h(x)f(x+ 1) x+1
*) = S D) - 2

which tends to c as x — oo. Therefore, for any finite 6, > 0, m < co. Then, by
Theorem 2.1, r(G, d*) — r(G) < O(exp(— cn)) for some positive constant c.

Johns and Van Ryzin (1971) considered several situations about the behavior
of the tail probability of the prior probability density function, under which
their proposed empirical Bayes decision rules may achieve the best possible
convergence rate a, = n~'. We also apply those conditions to the sequence of
the empirical Bayes dec1smn rules {d}}. We state the result as a corollary
without citing the statement of those conditions. The reader is referred to Johns
and Van Ryzin (1971) for details.

COROLLARY 3.1. Let {d}} be the sequence of the empirical Bayes decision
rules defined in Section 2. Suppose that [20 dG(8) < . Then, either under the
assumptions in Theorem 3 or under the assumptions in Theorem 4 of Johns and
Van Ryzin (1971), we have r(G, d,*) — r(G) < O(exp(—cn)) for some positive
constant c.
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ProOOF. We need only to verify that A(6,) # @ under each assumption. This
can be done directly by noting Lemmas 4, 5 and 6 of Johns and Van Ryzin
(1971). O

REMARKS.

1. One can see that the assumptions given in Theorem 2.1 are simpler and more
natural than that of Johns and Van Ryzin (1971), since the prior distribution
function G(-) is unknown and therefore, it is hard to verify the behavior of
the tail probability of the prior density function. Further, Johns and Van
Ryzin’s results cannot be applied to the case where the prior distribution
function G(-) is not continuous. However, the result of Theorem 2.1 still holds
even in this situation.

2. The empirical Bayes tests of Johns and Van Ryzin (1971) have the same
pointwise, exponential convergence rate, but poor overall convergence rate.
This disappointing fact is due to the behavior of their empirical Bayes tests
for the large values of x. To overcome this difficulty, we use the smoothed,
monotone estimator ¢X*(x), which simplifies the problem into two points case,
see (2.9)—(2.11).
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