The Annals of Statistics
1988, Vol. 16, No. 4, 1623-1634

MIXTURES OF DISTRIBUTIONS:
A TOPOLOGICAL APPROACH

By L. A. L1 AND N. SEDRANSK

State University of New York at Albany and Yale University

Identifiability problems have previously precluded a general approach to
testing the hypothesis of a “pure” distribution against the alternative of a
mixture of distributions. Three types of identifiability are defined, and it is
shown that B-identifiability allows a Bayesian solution to the testing prob-
lem. First, an equivalence relation is defined over parametrizations of prob-
ability functions. Then the projection onto the quotient space is shown to
give a B-identifiable parametrization. Bayesian inference proceeds using the
Bayes factor as a “test” criterion.

1. Introduction. The history of estimation of mixtures is long, dating from
Karl Pearson’s work in 1894 studying 1000 forehead breadths of Naples crabs
from a mixture of two species. For convenience, it can be divided into several
groups of methods for estimation of mixtures: moments methods, maximum

likelihood methods, Bayes estimates, informal graphical techniques and some

others including f-efficient estimates and spectral decomposition. [ Appropriate
bibliographies can be found in Li and Sedransk (1982) and Everitt and Hand
(1981).] Despite the laborious computations involved, work on estimation of
mixtures has led to results which are satisfactory to varying degrees.

By comparison, few results are available for hypothesis testing. The problem
is easily stated for the simplest case: Test the hypothesis that the sample comes
from a single (“pure”) population against the alternative that the sample is a
mixture of two (or more) populations when the parameters as well as the mixing
rates are unknown. More generally stated, the null hypothesis is that the sample
comes from a mixture of k or fewer populations and the alternative is that the
mixture is of £ + 1 or more populations, where % is specified but all parameter
values and mixing rates are unknown.

Informal diagnostic tools for the detection of mixtures have been developed
using the sample histogram or probability plotting [see Hazen (1914), Everitt
(1978) and Fowlkes (1979)]. These methods have also been criticized for being ad
hoc and potentially misleading [Murphy (1964) and Cox (1966)]. A number of
authors have derived tests for the presence of a mixture of specified components
[see Baker (1958), Tiago de Oliveira (1965) and Binder (1978)] or special cases
[see Johnson (1973) and Thomas (1969)]; and the difficulties in testing for the
presence of a mixture have often been pointed out [for example, Everitt and
Hand (1981)]. The inherent problem of identifiability is crucial. As will be seen
later, this identifiability problem is also implicit in the estimation of mixtures
and is the source of difficulty in getting solutions to converge in some estimation
. problems.
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In this article a resolution of the identifiability problem is given, based on an
identification map (or equivalently, the use of a particular quotient space). This
explains the convergence problem in the estimation of mixtures and leads to a
method for detecting the presence of a mixture. First two types of mixtures are
defined, and conditions for identifiability in several senses are reviewed. Then a
more stringent definition of identifiability is shown to be necessary for solution
of the hypothesis testing problem. The identification map (projection onto a
particular quotient space) renders unidentified parameter spaces identifiable;
and inferential procedures are given for the new identifiable (quotient) spaces.

2. Mixtures and identifiability. A (type I) mixture is defined to be a
mixture of probability density functions from the same family. (A mixture of
density functions from several families is a type II mixture, which is discussed
briefly in Section 5.) That is, let f(x|0) be a probability density function with
respect to m-dimensional Lebesgue measure for x = (x,, x,,..., X,) on R™ given
the parameter 8 € ©, where © is a measurable subset of R% If @ is a probability
measure such that the parameter space ® includes the support of @, then the
probability density function with respect to m-dimensional Lebesgue measure

f(x) = [£(xI8)Q(dB)

is called a mixture density function (obtained by mixing probability density
functions from the same family {f(x|8): 8 € }) for the random vector X =
(X, X,,..., X,,) on R™, and @ is called a mixing probability measure.

Hence, if the mixing probability measure @ assigns positive probability p; to
the point 6, € ©, (l-dimensional), i =1,2,..., k, where 8, # 8, for i #j, the
mixture density function for the random vector X on R™ in (2.1) is of the form

k
(2.1) fx) =% pif(x18;),

i=1
where 6,€®, 0<p; <1 for i=12,...,k 8,#0, for i #j, and T}, p,= L.
More precisely, f(x) is called a type I (k) mixture if it is obtained by mixing
exactly k probability density functions from the same family {f(x|0): 0 € 0}
and is of the form (2.1). A type I (< k) mixture is obtained by mixing at most %
components.

The problem of identifiability of mixture density functions has been exten-
sively studied by Teicher (1960, 1961, 1963, 1967), Yakowitz and Spragins (1968)
and Chandra (1977). The notion of identifiability for mixtures used by Teicher
et al. is denoted here by T-identifiability.

DEFINITION 2.1. A class of mixture density functions f(x) is said to be
T-identifiable if there is one-to-one correspondence between the probability
measure, which is determined by one and only one mixture density function in
this class, and the corresponding mixing probability measure @ for that mixture
density function.
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A sufficient condition, denoted here by (C.0), for T-identifiability, is given by
Yakowitz and Spragins (1968), for type I (%) mixtures.

(C.0) The mixture comes from a family {f(x|8): 6 € ®} which is linearly
independent (a.s. on R™) over R.

Some weaker conditions than (C.0) can be shown to be necessary and/or
sufficient for T-1dent1ﬁab1hty A sufficient condition for T-identifiability of type
I (< k) mixture is

(C.1) The mixture comes from a family {f(x|8): 8 € ©}, where every subset
with at most 2% elements is linearly independent (a.s. on R™) over R.

Necessary and sufficient conditions for T-identifiability for type I (< &) and
type I (k) mixtures are given in (C.2) and (C.3), respectively.

(C.2) The mixture comes from a family { f(x|8): 8 € ©}, where every positive
linear combination of at most % elements is unique.

(C.3) The mixture comes from a family { f(x)|0): 0 € ©}, where every positive
linear combination of exactly k& elements is unique.

Obviously, (C.0) = (C.1) = (C.2) = (C.3).
A natural definition of identifiability differing from T-identifiability is P-
identifiability.

DEFINITION 2.2. A parametrization for a class of mixture density functions is
said to be P-identifiable if there is one-to-one correspondence between the
mixture density function in this class and its representing parameter.

In general, a T-identifiable class of all type I (%) mixtures parametrized by
(P P2sevvs Pp1 0py---,8;) € (0,1)*~1 X ©F is not P-identifiable, since a type I
(k) mixture can also be written as

f(x) = Zp,,(,)f(xl (a))

for any permutation 7 of {1,2,..., n}.
However, restricted to a suitable subset A of (0,1)*~! X ©*, the T-identifiable
class of type I (k) mixtures is P-identifiable. For example, take

= {(pl,p2,...,pk_1,01,02,...,Ok)IO <p;<lfori=1,2,...,k—1,

(2.2) k-1 . )
Y p;<1,0,€@fori=1,2,...,k with, <0, < -+ <0,},

i=1

where “ < ” is some ordering and 0,,..., 8, are distinct.
If f(x|0) is a continuous function of its (l-dimensional) parameter 0, then the
mixture density functions of the form f(x) = %, p,f(x|8;) are also continuous
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functions of the parameter (p,,..., py_1,08,,...,0,) on R¥*#~1 Hence, if the
probability density functions being mixed are continuous on their parameters,
the type I mixture is continuous on A = A U dA (where JdA is the boundary
of A).

Now, if (C.3) holds but (C.2) fails, then there may exist a type I mixture of %
components identical to a type I mixture obtained by mixing fewer than %
components. That is, a P-identifiability problem occurs on A. This creates a
crucial difficulty in testing for the presence of a mixture.

Moreover, if the class of type I (< &) mixtures is not T-identifiable despite
T-identifiability of the class of type I (k) mixtures, the mapping from A to the
space of probability density functions need not be bicontinuous. If (C.3) holds
but (C.2) fails, let X be a point of dA and let A be a point of A such that both
represent the same mixture density function f. Then there exist disjoint neigh-
borhoods N of X and N of A. Consider the mixture density functions correspond-
ing to parameter values along a path through N to the point X and then along a
path from A through N. As the mixture density functions vary smoothly, the
parameters must “jump” from N to N at the parameter values
for f.

Alternatively, suppose that condition (C.2) holds. Then the class of all type I
(k) mixtures parametrized by (p;,..., Pp_1,9;,-..,0,) € A is P-identifiable,
although the class of all type I (< k) mixtures need not be P-identifiable.

To obtain a better parametrization, consider the following definition of
identifiability.

DEFINITION 2.3. A parametrization for a class of mixture density functions is
said to be B-identifiable if the correspondence between a mixture density
function in this class and its representing parameter is bicontinuous.

Note that B-identifiability is a more strict definition of identifiability than
either P-identifiability or T-identifiability. Even if condition (C.2) holds and if
the probability density functions being mixed are continuous on their parame-
ters, the parametrization for the class of all type I (%) mixtures parametrized by
(Pyeos Pr_1:95,...,0,) € A need not be B-identifiable. The B-identifiability
problems occur on JdA.

3. Parameter spaces. Suppose that the null hypothesis is that the random
vector X does not have a mixture density function; that is, the probability
density function of an observation x is simply f(x|0) for some parameter 0 in
© c R’ Then the class of all probability density functions under the null
hypothesis is the family #, = {f(x|0): 8 € 0).

The alternative hypothesis is that the random vector X has a type I (&)
mixture density function for some parameter (p;, pg,..., Pp_1, 01, 85,...,8;) in
A c R¥*%#-1 Then the class of all probability density functions under the
alternative hypothesis is %, the class of all type I (%) mixtures. Since %, is
naturally parametrized by ® and %, is parametrized by A, it is intuitively
appealing to think of @ as the parameter space for the null hypothesis and A as
the parameter space for the alternative hypothesis. However, these are two
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distinct spaces; so some other parameter space must be used to test the null
hypothesis of no mixture.

To construct an appropriate parameter space, first the relationship of %, to
%, and the induced relationship of A to JA are considered. Then, using a
correspondence between dA and O and identifying points in A U dA which
represent a single (unmixed) density function, an appropriate space is found.

Note first that for a type I (k) mixture,

k
f(x) = Y p,f(x]8,); and as p, approaches 1 for some i,
i=1
f(x) approaches a probability density function f(x|0,) in %, Note also that
F, UZ, is (arcwise) connected. Thus for any probability density function in %,
there is a boundary point of A, N € A, to represent it. One useful characteriza-
tion of such a N\ is

o~ ~

(3.1) N=(By, Pareres Pp_1,00,6,,...,8,),
where for some 6 € ©, p, > 0 only if §; = 0. Let S = {\}; then S C 9A.

The following lemma summarizes the T-, P- and B-identifiability of these
parametrizations.

LEMMA 3.1. Assume T-identifiability holds for the class of all type 1 (< k)
mixtures. Then

(i) the parametrization for #, by A is P-identifiable;
(ii) the parametrization for %, by S is not P-identifiable;
(iii) the parametrization for %, U %, is neither P-identifiable nor B-identifi-
able.

The statistical identifiability problem for testing for the presence of a mixture
is the existence of multiple representations (points in S) for a single probability
density function in %,. Consider a mapping which identifies these to a single
point.

THEOREM 3.1. Suppose that T-identifiability holds for the class of all type I
(< k) mixtures, and that © is arcwise connected. If a mapping ~ from
T = A U S onto T satisfies

(i) ~ is continuous on T,
(ii) ~ is one-to-one on A,
(i) AnS= g, 3
(iv) ~ maps two points in S satisfying (3.1) to the same point in S if and only
if they represent the same probability density function, and maps any two points
" not satisfying (3.1) for the same 8 € O into distinct points in S,

then the new parametrization by ~ (pPy, Pay--+s Pr—1, 05 05,...,0,) is P-iden-
tifiable.
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Proor. By Lemma 3.1, the original parametrization for %, by
(P1s Posevs Pp—1,01,05,...,8,) € T is P-identifiable. Because ~ is one-to-one
on A, the new parametrization for #, by ~ (py, Pgy---» Dp_1,01,05,...,8,) € T
is also P-identifiable. Since there is no density function in %, giving an
alternative representation for a density in %, there is no P-identifiability
problem between A and S; and as AN S= @, there is no P-identifia-
bility problem between A and S either. Hence, the only possible P-identifiability
problem is on S. But ~ maps all points in S satisfying (3.1) for any particular
0 € © to one point in S, so the P-identifiability problem no longer exists on S.
Therefore, the new parametrization by ~ (py, pg,..., Pr_1, 01, 05,...,0;) is P-
identifiable. O

The existence of such an identification mapping ~ satisfying requirements
(i)—(iv), is demonstrated with the following construction of one such mapping in
two steps.

Define the mapping ¢ from T into R**#~1 by

q)(pv sz---, Pk_l, ol’ 02,...,0k)

(3.2) = | P1> Pgs---» pk—l’(p1p2 e pk) . (01 - 02)’

k
(P1P2 o p) (0= 0y), ..., (Pypy o pg) - (0, —6,_,), Zpiei s
i=1

where p, = 1 — Z*_! p,. Then ¢ is C*-differentiable on T and homeomorphic
on A. Further, pA N @S = @ and ¢S C d¢A.

Provided that the class of all type I (< k) mixtures is T-identifiable, the
reparametrized space @A for the alternative hypothesis is P-identifiable. Al-
though the reparametrized spaces ¢S and ¢T for the null hypothesis and for the
alternative hypothesis are not P-identifiable, there is no P-identifiability prob-
lem between @A and ¢S.

Next, define a second mapping ¢ from ¢7 into R**+%#-1 by

\P(pli D5 pk—1’01!02"“’0k)

1. 1 1
(3.3) b ( k + p1||91||2 + Pl . 'L + Pr—1ll0_all%

plol’ p202’ LR pk—lok-—l’ ok ’

where p, =1 — ¥ p,. Then ¢ is C*-differentiable on ¢T and homeomorphic
on @A. Further, yepA N Yo @S = & and Y o pS C Iy o @A,

Finally, take the mapping ~ to be ¢ °¢. Then the parametrization for
testing the hypothesis by ~ (py, Pgs-.s Pr_1,01,0;,...,8,) € T is P-identifia-
ble; and S is the parameter space for the null hypothesm while A is the
parameter space for the alternative hypothesis.
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The mapping constructed in Theorem 3.1 is a projection onto a quotient space
defined in the following way. Let #(x) be the family of all distinct probability
density functions under consideration (mixed and unmixed). Then the function g
maps T into &; and ~ is an equlvalence relation defined for ¢,t, € T by
t, ~ t, if and only if g(¢,) = g(t,). Thus T is the quotient space (often written
T/ ~) with the natural topology being the quotient topology. This new (iden-
tifiable) parametrization defines é which maps T' into 2. The continuity of g
induces continuity of g. Thus g is P-identifiable. B

The bicontinuity of &, and hence the B-identifiability of T, however, depend
upon the mixture density family of functions g, that is, whether the parametri-
zation is either open or closed.

THEOREM 3.2. If g is a continuous mapping ontqg # and ~ is the equiv-
alence relation defined for t,, t, € T by t, ~ t, if and only if g(t,) = &(t,), then T
is B-identifiable if and only if g is either open or closed.

PROOF. A particular case of Theorem 11.2 in Munkres (1975). O

COROLLARY. If the class of all type 1 (< k) mixtures is T-identifiable, if g is
either open or closed and if ~ satisfies conditions (i)—(iv) in Theorem 3.1, then
if # is Hausdorff [as with the usual (weak or Prohorov) topologies], so is T
and the parametrization by ~ (P, Pas-.-s Pp—1 01 0, ..., 8,) is B-identifiable.

(In point of fact, the condition of T-identifiability in this corollary is not
essential. However, the equivalence relation would no longer be one-to-one on A
in the absence of T-identifiability.)

Hence, the particular mapping ~ = ¢ o ¢ defined in (3.2) and (3.3) gives an
appropriate parametrization for testing the null hypothesis of no mixture:

-~ (pl’p2a“~’ pk—l,el,ez""’ok) € T’

A stronger condition which often is easily checked is sufficient for B-identifi-
ability.

COROLLARY. Suppose that the class of all type 1 (< k) mixtures is T-iden-
tifiable, that © is compact and that = F, U #, is Hausdorff. If a mapping
~ from T = AU S onto T satisfies (i)—(iv) in Theorem 3.1 and also satisfies

(V) the parametnzatzon of # by T is continuous,

then the parametrization by ~ (p,, Dg,--., Pr_1, 01, 05,...,0,) € T is B-iden-
tifiable.

4. Bayesian inference about a mixture. Return now to the problem of
determining whether or not there is a mixture. Borrowing both notation and
vocabulary from frequentist theory, let H, denote the null hypothesis that the
sample comes from an unmixed distribution; and let H, denote the alternative
hypothesis that the sample comes from a type I (&) mixture distribution.
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It is clear that a traditional (absolutely) continuous prior with respect to
(kl + k — 1)-dimensional Lebesgue measure on T is improper for this problem
since the (kI + k — 1)-dimensional Lebesgue measure of S, the parameter space
for the null hypothesis, is 0. Thus neither positive prior nor posterior knowledge
about S can be expressed using (k/ + k& — 1)-dimensional Lebesgue measure.

Hence, a mixture prior distribution of different dimensionalities is used,

(4.1) P=aP)+ (1 - a)P,
where 0 < a < 1, and P,, P, are probability measures on the parameter spaces
for the null and alternative hypotheses, respectively.

For the null hypothesis of no mixture, S has dimension I and P, is an
l-dimensional continuous probability measure. For the alternative hypothesis of
type I (k) mixture, A has dimension kI + & — 1; and, for simplicity, let P, be a
(kl + k — 1)-dimensional continuous probability measure. Define = to be the
(kl + k — 1)-dimensional density function of P, on A and to be 0 otherwise.
Thus for every Borel subset B of R**4-1,

(4.2) P(B) = j mBdHH*E-1,

where [ dH*'**~1 is the integral taken with respect to (k! + k& — 1)-dimensional
measure, or equivalently (on R**#-1),

(4.3) P(B) = [m,BdLF**-1,

Similarly, define 7, to be an l-dimensional density function for F, such that
7, = 0 off S. Then for I'(8), a parametrization of S,

(4.4) Py(B) = [=,T(0)|HJr(0)T"(B) db,
where HJ;(0) is the Jacobian of TI. A simple choice of I'(8) =
(1/k,1/k,...,1/k,0,0,...,0,0) reduces the expression in (4.4) to
11 1 .
(45) PO(B)-fwo(;,Z,...,z,o,o,...,o,o T'-Y(B) de.

Given data, D = {x,,X,,...,X,}, where x; is a realization of the random
vector X on R™, i = 1,..., n, the likelihood under the null hypothesis is

[1/(x8), wherebe©,
i-1

and the likelihood under the alternative hypothesis is
n k
I1 [ > p,-f(xilﬂ,«)],
=11} j=1

~where 6, € © for j=1,2,...,%,08, <8, < -+ <0,and0 <p, < 1,Z§=1pj= 1.
Both the Bayes factor and the posterior odds ratio have commonly been used
in Bayesian decision making. The Bayes factor comparing these null and alterna-
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tive hypotheses is
_ P(HD) |P(H,) _ P(DIH,)
®  P(H|D)| P(H,) P(D\H,)’

where H,, H, denote the null and alternative hypotheses, respectively.
Substitution of (4.3) and (4.5) into (4.6) gives

n 1 1. 1
BOl = f;:l:.[lf(xile)ﬂo(z, 'Ev'-’ 78-’0’0’.”’0’0) do

(4.6)

n k
(#7) - le—ll [ z ij(xi|0j)]ﬂl(sv CSSPRPR JRTE 01 PYERPR 79)

=1|, =1
Xd(sl,..., sk_l,tl,-..,tk),
where
(pl’ Das--vs Pp-1s 01, 02,...,0k) = ~—1(81, Sg5eeey sk_ptptz,---,tk)

in the denominator, p,=1—-X!!p, and ~"! =@ ley™! [ and ¢ are
defined in (3.2) and 3.3)]. ~
The posterior odds ratio is defined for this problem as

_ P(H,D)
*  P(H,D)
which, with substitution of (4.5) and (4.3), gives

n 11 1
K, = afﬂf(xdﬂ)wo(z, Z,...’ ;,0,0,...,0,0) do

(4.8)

(4.9) _ 2l &
+(1- a)f‘I‘[1 Y D (%08 |51, 830+ e Sprrtistgeesty)
i=1f j=1

Xd(Syseees Sp_1rbis-eesty).

The Bayes factor or the posterior odds ratio is then interpreted in the usual
way. That is, a large value of By, or K, supports the null hypothesis while a
value less than 1 supports the alternative hypothesis. [See Spiegelhalter and
Smith (1982) for discussion of the interpretation of Bayes factor values.]

From the initial formulation of the problem using Lebesgue (kI + k& — 1)-
dimensional measure, Hausdorff measure is a natural but not essential choice for
defining integrals. The role of Hausdorff integrals in defining conditional prob-
abilities is discussed in Li and Sedransk (1984).

5. Discussion. The method of construction illustrated in the preceding
section is a general one in that it relies only upon the projection ~ onto the
quotient space T and on properties of the family of probability density functions
being mixed. Thus, this approach can also be applied to mixtures of distributions
from different families (type II mixtures). That is, let f,(x|87) be a probability
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density function with respect to m-dimensional Lebesgue measure for x =
(%, Xg5...,%,,) on R™ given the parameter 0/ ©;, where ©; is a measurable
subset of RY j=1,2,...,% If the mixing probability measure ¢ assigns
positive probability p; to the point 8/ € 0; for j = 1,2,..., k, then the mixture
density function for the random vector X = (X,, X,,..., X,,) on R™ is of the
form

k
(5.1) f(x) = glpjfj(xlﬂj)'

where 8/ € ©,,0 <p; < 1for j=1,2,..., k, and rh,pi=1

In general, exact analogues of the results for type I mixtures hold for type II
mixtures [with the exception that the parametrization of a T-identifiable class of
all type II (k) mixtures parametrized by (p,,..., p,_,,0...,0%) € (0,1)* 1 x
0, X -+ X @, is P-identifiable; see Li (1983)]. Thus, the procedures to detect a
type II mixture or to determine whether a mixture has 2 components [against
the alternative of k’(< k) components] are variants of the procedure given in
the preceding section where an appropriate choice of the mapping ~ is made in
each case. Furthermore, if the class of mixtures is enlarged to include mixtures
obtained by simultaneously mixing probability density functions from the same
and different families,

kK
f(x) = Z Z pijfj(xwij):
Jj=1i=1
where 0 <p;;<1,0,;€0 fori= L,2,...,k;, j=12,...,k, and Y, ,pi;=1,
the same procedure can be applied, although ~ will in general be a more
complicated function.

Recognizing the necessity of B-identifiability, or equivalently, using the quo-
tient space T, also resolves some confusion arising from simulation studies of the
estimation problem for mixtures. For example, in estimating ( p, 6,, ,) for a type
I (2) mixture, Chiang (1951), Robertson and Fryer (1972) and Tan and Chang
(1972), have variously observed that: (i) the estimation algorithm begins looping
as p approaches 1, (ii) the estimated values for (p,6,,6,) are most accurate
when p is not close to either 1 or 0 and (iii) the variance of the estimator
increases as 6, — 0, approaches 0. All these phenomena result from use of a
non-B-identifiable parametrization.

To see this, consider the estimation problem when 6, — 6, < 8, for some small
6>0,0<p<1; 6,0, €R. Then there exists §’ € R such that (p,0,,0,) is in
an e-neighborhood, N;, of the boundary point (p, 8’, 8"). A single density f(x|6’)
is multiply represented by (p, 8’, 6"), (0, 6;*, 8’) and (1, 8’, 6, *) for all choices of
P, 0:*, 6;**. Consider two points, one in N, and one in Nj, where N, and N, are
e-neighborhoods of (0, 6, 8) and (1, 8’, 6,**), respectively. As probability func-
tions vary smoothly through the probability density function f(x|6’), the corre-
sponding parameters can jump discontinuously among N,, N,, N,. Since most
parametric estimates (either method of moments or maximum likelihood) are
obtained as continuous functions of the probability density function, these will
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also show the discontinuous behavior (as with the parameters) near boundary
values. The looping for values of p close to 1 is just the jumping among
neighborhoods of various representations of f(x|0’). The inaccuracy of estimated
values for (p, 0,, 8,) occurs when the algorithm finally does converge in some
neighborhood other than N, (or N;) of a representation of f(x|6’). The increased
variance of the estimated (p, 6,, 6,) occurs when 6, — 6, is close to 0 because
although the estimated density function is close to f(x|6’), the estimated
(p,6,,6,) is in some other neighborhood than N,. This behavior would argue
against an iteration termination criterion based on difference of consecutive
iterates of parameter estimates (a strategy widely used with the EM algorithm).
A more reasonable termination criterion might be based on the similarity of the
densities corresponding to consecutive parameter iterates. However, difficulties
of this kind are naturally obviated when looking directly at the quotient space T'.
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