ADDENDUM TO: "LOCAL ASYMPTOTICS FOR LINEAR RANK STATISTICS WITH ESTIMATED SCORE FUNCTIONS"

By Georg Neuhaus

University of Hamburg

In a parametric counterpart of the nonparametric considerations of Neuhaus, a class of quadratic goodness of fit statistics is developed generalizing the usual Cramér-von Mises statistics.

Here a parametric counterpart of the nonparametric considerations of Neuhaus [N] (1987) is presented. The notation of [N] will be kept up.

Let X_1,\ldots,X_n be i.i.d. real random variables (rv's) each having a continuous of F and let us start with the simple hypothesis H_0 : $F=F_0$ for some fixed continuous of F_0 versus the omnibus alternative. H_0 holds true iff the rv's $U_i=F_0(X_i),\ 1\leq i\leq n$, are uniformly distributed on (0,1), i.e., $H_0\colon Q=\lambda$ with $Q=\mathcal{L}(F_0(X_i))$. As alternatives H_1 we choose all probability measures $Q\neq\lambda$ on (0,1) being dominated by λ . Defining $g_n\in L_2^0(0,1)$ by the equality $dQ/d\lambda=1+g_n/\sqrt{n}$, the testing problem rewrites as $H_0\colon g_n=0$ versus $H_1\colon g_n\neq 0$. It is a well known fact from asymptotic testing theory, that for $g_n\to g$ in $L_2(0,1)$ (always $n\to\infty$) the upper test based on the linear statistic with score g_n , i.e.,

(1)
$$n^{-1/2} \sum_{i=1}^{n} g_n(U_i),$$

is asymptotically optimal for testing H_0 versus the single sequence of alternatives $\mathcal{L}(U_1,\ldots,U_n)=Q^n$ represented by $g_n,\ n\geq 1$. At this point one is in the same situation as described in [N]: There is an asymptotically optimal test statistic with unknown optimal score function g_n . Following the procedure of [N] we estimate g_n by some estimator \hat{g}_n based on the kernel method and use $n^{-1/2}\sum_{i=1}^n\hat{g}_n(U_i)$ as a new test statistic which may be expected to be sensitive over broader ranges of alternatives than the linear statistic (1).

The preceding development immediately extends to composite hypotheses

$$H_0: F \in \{F(\cdot, \vartheta): \vartheta \in \Theta\} = \mathscr{F},$$

where $F(\cdot, \vartheta)$ are continuous df's and $\Theta \subset \mathcal{R}^r$, $r \geq 1$, is some open parameter set: If $\hat{\vartheta}_n = \hat{\vartheta}_n(X_1, \ldots, X_n)$ is some estimator of ϑ , we redefine $U_i = F(X_i, \hat{\vartheta}_n)$ and use the test statistic (1) with the new U_i 's.

Using the kernel density estimator $(1/n)\sum_{i=1}^{n}K_{a}(\cdot,U_{i})$ of $dQ/d\lambda$ (cf. [N], (2.7)], we get

$$\hat{g}_n = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n K_a(\cdot, U_i) - 1 \right)$$

Received December 1986; revised February 1988.

AMS 1980 subject classification. 62F05.

Key words and phrases. Quadratic tests, goodness of fit, estimated scores, asymptotic distribution.

as an approximation of g_n . Replacing g_n by \hat{g}_n in (1) yields the quadratic test statistic

(2)
$$T_n = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \left(K_a(U_i, U_j) - 1 \right).$$

If $W_n(t)=n^{1/2}(F_n(t)-t)$, $0\leq t\leq 1$, is the empirical process of the U_i 's, T_n may be rewritten as $T_n=\sum_{\kappa=1}^\infty \lambda_\kappa(a)\langle \psi_\kappa',W_n\rangle^2$. Since $W_n,\ n\geq 1$, converges in distribution under alternatives $g_n\to g$ [see Neuhaus (1976)], the asymptotic distribution of T_n may be derived under suitable regularity conditions as in [N], Theorem 2.5, with the same shape of the limiting distribution.

As already discussed in [N] the choice of (bell-shaped) kernels K is of much less importance than the choice of the bandwidth a. The "Cramér-von Mises kernel" $K(x) = \{2/3 - (|x|/2)(1 - |x|/2)\}1(|x| \le 1)$ with the very large bandwidth a = 1 leads to $\lambda_{\kappa}(1) = (\pi \kappa)^{-2}$ entailing

$$T_n = ||W_n||^2 = \int \left(F_n^e(x) - F(x, \hat{\vartheta}_n) \right)^2 dF(x, \hat{\vartheta}_n),$$

which is just the usual Cramér-von Mises statistic; here F_n^e is the empirical df of X_1, \ldots, X_n . For practical applications in [N] the Parzen-2 kernel is recommended since for all bandwidths $a \in (0,1]$ the $\lambda_{\kappa}(a)$'s are nonnegative,

$$\lambda_{\kappa}(\alpha) = \left(\sin(\pi\kappa\alpha/4)\right)^4 \left(\pi\kappa\alpha/4\right)^{-4}, \quad \kappa \geq 1$$

rendering the corresponding test asymptotically unbiased, and in the case of simple hypothesis even asymptotically admissible; see [N]. Hall (1985) introduced for the simple hypothesis case (on the circle) a U-statistic which in our setting on the line would correspond to T_n from (2) with triangular kernel

$$K(x) = (1 - |x|)1(|x| \le 1).$$

Therefore, Hall's statistic may be conceived as a linear statistic with estimated score function in our sense. The "tailoring" in the title of Hall's paper refers to the possibility of choosing the bandwidth adequately.

REFERENCES

Hall, P. (1985). Tailor-made tests of goodness of fit. J. Roy. Statist. Soc. B 47 125-131. Neuhaus, G. (1976). Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The D_k approach. Empirical Distributions and Processes.

Lecture Notes in Math. 566 68-82. Springer, Berlin.

NEUHAUS, G. (1987). Local asymptotics for linear rank statistics with estimated score functions.

Ann. Statist. 15 491-512.

Institute of Mathematical Stochastics University of Hamburg Bundesstrasse 55 2 Hamburg 13 West Germany