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ON THE STRONG APPROXIMATION OF THE DISTRIBUTIONS OF
ESTIMATORS IN LINEAR STOCHASTIC MODELS, I AND II:
STATIONARY AND EXPLOSIVE AR MODELS!

BY P. JEGANATHAN
The University of Michigan

It is shown that in the stationary autoregressive case (Part I [Sections
. 1-5)] the distributions of least squares estimators and their close relatives
such as sample autocovariances and the recently introduced general M-esti-
mators converge to suitable Gaussian distributions uniformly over all Borel
sets and uniformly over suitable neighborhoods of the parameter. Specifi-
cally, the notion of strongly asymptotically shift equivariance is introduced
and it is shown that the distributions of any estimators satisfying this
asymptotic equivariance condition converge in the preceding strong sense
whenever they converge weakly (in law), provided the likelihood function of
the sample is appropriately smooth. This smoothness of the likelihood is
verified under mild conditions. Then, restricted to a broad class of models
which include autoregressive models, a more easily verifiable condition imply-
ing the aforementioned asymptotic equivariance is derived and is shown to be
satisfied by the estimators mentioned earlier. The methods used in the
present paper are different from the usual method of characteristic functions;
some indications of their possible wider scope are given.

In Part II (Sections 6-8) the explosive autoregressive model is considered
and a simple extension of the preceding result is applied to show that the
least squares estimators converge in the preceding strong sense under suitable
random or nonrandom normalization.

1. Stationary autoregressive case: Introduction. Consider the pth order
univariate autoregressive model

Y, =B+ BY, 1+ - +BY, ,+e,

n=12,..., where ¢, i > 1, are iid., independent of (Y,,...,Y;_,), E(e) =
02 < oo and the roots of the characteristic polynomial in m,

mp_Blmp_l_ oo _Bp=0’

are all less than 1 in absolute value (stationary case). 8’ = (B,,..., 8,) and o?
are parameters to be estimated.

One of the most familiar estimators of 8 and o
estimator §, and 62 defined by

2 is the least squares (L.S.)

A

n
Bo=(Bons-es Bon) =AY X VY,
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and
12 LA ’
63= ’r_L Z Yj_ﬁOn_ Zﬁiny}_i
Jj=1 i=1
where
Y = (1, YI’ Y;_l, ~’Yj-—p+1)’
and
n ~ ~
An= Z Yj—ly;"l'
j=1

It was shown by Mann and Wald (1943) under the further restriction that all
moments of ¢, exist and are finite that n™'4,, converges in probability to a p.d.
matrix A and that vn ( ,én — B) converges in law to a (p + 1)-variate Gaussian
distribution with mean vector 0 and covariance matrix 6?A~!. A detailed
treatment of this result with improvements and generalizations can be found,
e.g., in Anderson (1971) and Fuller (1976). More general estimators of 8 and o2
called M-estimators have also been recently introduced in connection with
robust estimation and have been shown to converge in law to appropriate
Gaussian distributions, see, e.g., Bustos (1982) and Martin and Yohai (1985). In
the present paper it is shown that the Gaussian approximation to the L.S.
estimators (and their close relatives such as sample autocovariances) and more
general M-estimators holds uniformly over all Borel subsets and uniformly over
suitable neighborhoods of the parameter. (Such convergence will loosely be
referred to later as strong convergence.) A similar result is also proved for the
L.S. estimators in the explosive case, that is, the case where the characteristic
polynomial has at least one root outside the unit circle but has no roots on the
unit circle. The unstable case, that is, the case where the characteristic poly-
nomial has no roots outside the unit circle, but has at least one root on the unit
circle, is treated in Jeganathan (1987a). Estimators in other stochastic models
such as, e.g., regression with lagged dependent variables and with time series
errors and ARMA models will be treated in a subsequent part.

Some indications of the statistical motivation for considering such a strong
convergence can be found in Jeganathan (1987b). [This paper will henceforth be
referred to in short by J(1987b)]. Briefly, the information contained in the
estimators is asymptotically reflected in the limiting distributions only when the
likelihood ratios of the estimators converge in law appropriately to the likeli-
hoods of the limiting distributions, as is explained in, e.g., Le Cam (1986), and
such convergence of likelihood ratios becomes equivalent to the strong conver-
gence of distributions of estimators under the asymptotic equivariant restriction
of the present paper.

We now would like to explain some of the differences between the methods
that will be used in the present paper and the usual method of characteristic
functions (Ch.f.) used in the case of sums of independent random variables to
prove strong convergence. The method of Ch.f’s is very powerful when the
summands are independent, though it depends to some extent on the identical
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nature of the distributions of the summands when strong convergence and other
higher order (Edgeworth) expansions are needed; see Bhattacharya and Ranga
Rao (1976) for a thorough treatment of the subject. See also Lemma 6.2 of
Le Cam (1960). It has also been shown by Gotze and Hipp (1983) that this
method works well even when the summands are not independent but have
suitable asymptotic independence structures and the events or functions that are
approximated are assumed to be appropriately smooth. In the preceding case of
L.S. estimators the asymptotic independence structures and other required
conditions are satisfied [cf. Bose (1985)], but our interest is approximation over
all Borel sets, and we do not know if the methods of Gétze and Hipp can be
successfully employed for such a strong approximation. Another difficulty, which
arises even when the sample is i.i.d. is the following. In most cases of interest the
estimators, in particular M-estimators, can be approximated by sums of i.i.d.
r.v.’s when the sample is i.i.d., but the remainder term will also be random. In
such cases Bhattacharya and Ghosh (1978) have shown that it is possible to get
(higher order) approximations if the events or functions that are approximated
are appropriately smooth and if the (random) remainder terms converge to 0 at
suitable rates, but again it is not clear if such methods work well when the strong
(higher order) approximations are needed. But note that one of the fundamental
results of Bhattacharya and Ghosh (1978) is that strong higher order approxima-
tion holds if the estimator itself is a smooth function, independent of the sample
size, of the sums of independent r.v.’s, but, e.g., M-estimators are typically not of
this form. The crucial idea of our previous paper J(1987b) and the present paper
is that if one has the approximation even only for extremely smooth events or
functions and if the likelihood ratios of the sample are sufficiently smooth, then
one can get the approximation for all events provided the estimator is strongly
asymptotically shift equivariant (SASE) (see Section 2 for a precise definition).
In the present paper, as in our previous paper J(1987b), we consider only the first
order approximation. An attempt to further develop this method to get higher
order approximations in time series and nonlinear regression models is presently
being made. A definite form of the idea of the present method occurred to us
after having seen the paper by Boos (1985); see J(1987b) for details.

The present paper is actually a continuation of our previous paper J(1987b).
The main result of Section 2 of that paper is that, under the restriction that the
likelihoods of the sample are smooth in the sense that they are locally asymptoti-
cally normal (LAN) [cf. Le Cam (1960)] and under the equivariance restriction
indicated previously, convergence in law entails strong convergence; this result
with suitable modifications will be recalled together with some further essential
results in Section 2. Further, the applications considered in that paper were
estimates of location, scatter and regression parameters, and the previously
mentioned restrictions were readily verified in those cases because of the exact
equivariance of the estimators and the models considered there. The situation of
the present paper is not that immediate and, in fact, most of Sections 3-7 are
devoted to the verification of the SASE condition. Specifically, in Section 3,
restricted to a broad class of models which include stationary AR models, a
general result is obtained giving an easily verifiable condition implying the
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aforementioned SASE condition. For L.S. estimators and sample autocovari-
ances the conditions of this result are verified in Section 4. In Section 5 we then
consider a “contaminated AR model” and show that M-estimators satisfy the
requirements of the preceding result. Sections 6-8, which constitute Part II of
the present paper, are devoted to the L.S. estimators in the explosive case, but in
this case approximations more general than LAN are needed. For instance, when
the errors are Gaussian the likelihoods of the sample are locally asymptotically
mixed normal (LAMN) [see, e.g., Davies (1985)], a situation which is more
general than, but very similar to, that of Section 2. However, as will be noted,
the results of Sections 2 and 3 extend to these more general cases also. In the
explosive case when there are also some roots inside the unit circle, the existing
results on the convergence in law of L.S. estimators do not seem to be satisfac-
tory, especially on the choice of normalizing constants; we have taken some care
on this point, see Section 8 for the details.

2. Likelihood of the sample and the strong convergence of the estima-
tors. For each n>1, let {P, ,: § € O} be a family of probability measures
(defined on some measurable space), where the parameter space © is assumed to
be an open subset of the k-dimensional Euclidean space R, k£ > 1. Usually, B,
stands for the joint probability distribution of the sample.

DEFINITION 1. The family {F; ,: § € O} is said to be LAN at 6, € © if
there exists a sequence {W,(f,)} of random k-vectors and a p.d. matrix B(6,)
such that the differences

dI)00+8"h,,, n

1
%7 dp, .

1
h;zvvn(oo) - Eh;zB(oo)hn

converge to 0 in P, ,-probability for every bounded {%,} of R*, where §,, which
may depend on 6, n > 1, are suitable p.d. matrices and the sequence {W,(6,)}
converges in law under F; , to the k-variate Gaussian distribution N(0, B(6,)).
(In Sections 4 and 5 of the present paper, §, will be taken to be n='/%I; I is the
identity matrix.)

The following notation is needed for the next definition: u denotes the
Lebesgue measure in R*, D, = (h € R*: |h| < a}, a > 0, and 6,(h) stands for
6y + 8,h. [Throughout the paper (k,,..., h,) = h € R* and |h| stands for the
supremum norm |A| = max{|h,|,..., |kl }.]

DEFINITION 2. A sequence of estimators {T},} of a k-vector g(0) is said to be
SASE at 6, € © if for some nonsingular matrix F,, the differences

E[ H(T.*(8) = Foh) Paych. ]

_ #(La) fDE[ F(T,*(8)) = Fy(h, + u))|P0n(hn+u)’n] du
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converge to 0 for all bounded sequences {h,} of R*, for all large « > 0 and
uniformly for all Borel measurable f such that |f| < 1, where we let T,*(0) =

8, ((T,, — &(0)).

DEFINITION 3. A sequence of estimators {T,} of a k-vector g(#) is said to
converge strongly to a distribution Q, at 6, € © if, for some nonsingular matrix
F, , the differences

E[1(T.2(8) = Fogha) Paycn,n| = [1(x) dQu(x)

converge to 0 for all bounded {4,)} of R* and uniformly for all Borel measurable
functions f such that |f| < 1, where we let T,*(8) = 8, (T, — &(9)).

Note that the preceding convergence is equivalent to

sup sup [Py ) | T*(85) — Fyh € B] — Qg B)| = 0
|h|<a BEZ

for all a > 0, where # is the Euclidean Borel field of R*. A similar remark
applies to the SASE condition. For the cases treated in the present paper, it is
possible to get the convergence to be uniform in §, € K C © also for every
compact K.

We now recall the main result (Theorem 1) of J(1987b).

THEOREM 1. Assume that (P, ,: 0 € O}, n > 1, satisfies the LAN condition
at 6, € ©. Let {T,} be a sequence of estimators of a k-vector g(0) such that

(i) the SASE condition is satisfied at 6, and that

(ii) for some nonsingular matrix F, , the sequence {5, T, — g(6,) — 8,F; h)}
converges in law under Fy ,, , to a distribution Qq, for every h € R%, where Qy,
does not depend on h.

Then the sequence {T,} converges strongly to the distribution Q, at 0,.

REMARK. The preceding formulation of the result is slightly different from
Theorem 1 of J(1987b) in that the preceding SASE condition is weaker than the
corresponding condition in J(1987b), but note that the proof in J(1987b) is
actually the proof of Theorem 1. Even though both the preceding SASE
condition and the corresponding stronger one in J(1987b) are implied by the
strong convergence, in the present situation we could succeed verifying directly
only the weaker SASE condition. It may further be noted that the main reason
to state the SASE condition in the preceding form with the uniform prior on D,
is that it suits the proof given in J(1987b). It is possible to replace the uniform
prior density on D, by any density of the form f(u)/»(D,), where f is an
appropriately smooth probability density on R* with the corresponding prob-
ability measure ».
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The following result [cf. Le Cam (1960)] will be used in the verification of the
SASE condition. This result also entails that the measurability of the functions
6 — P, ,, involved in the definition of the SASE condition is not a restriction.

THEOREM 2. Assume that {P, ,: § € ©}, n > 1, satisfy the LAN condition
at 0, € ©. Then one can construct a sequence {W,*(6,)} of random k-vectors
satisfying the following properties:

@) Elexp[uW,*(6,)1|1Fy (1), 2] < o0 foralln > 1 and all h,u € R*.

(i) Let K, (0y, h, u) be functions such that the measures Q,(8,, h, u), defined
by

de (6,, h,u 1
49,60, k. u) _ K, (6o, h, u)exp|u[W,*(8,) — B(6))k] — -wB(6,)ul,
dFy (), n ?

are probability measures. Then

sup |K,(0,, h,u)—1] >0

|kl <a,|u|<a
and
sup ”'PO,,(h+u),n - Qn(o()’ h’ u)” -0

|h| <a, |u|<a

for all a > 0. (Here ||v|| denotes the total variation of the signed measure v.)

Note that as a consequence of (ii), the differences W, (6,) — W,*(6,) - 0 in
P, , ,-probability where W,(6,) are the random k-vectors involved in the LAN
condition.

We now consider the LAN of the AR model. Let Y pseer ¥, Y,,...,Y, ) bea
sample from the stationary AR process defined in the Introduction. Fj ,,
6’ = (B, 0%), will henceforth stand for the conditional distribution of the preced-
ing sample given that (Y,_,,..., Y;) is a known constant vector. In what follows,
notations and assumptions introduced in Section 1 will be used throughout. In
particular, recall that:

(B1) The roots of the polynomial equation in m,
mP — BmP~l— ... =B =0,

are all less than 1 in absolute value.

Let (1/0)f(x/0) be the common p.d.f. with respect to Lebesgue measure of
the ii.d. sequence ¢,, n > 1, recall that ¢, = Y, — Y,/_, 8. Then the p.df. of P, ,
is given by

1 n
1 /).
(1) o"/2 j=1f(£1/°)
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To proceed further, we introduce the following assumption.

(B2) The density f is absolutely continuous with respect to Lebesgue measure,

f(x)
(2) 0<f_ f()]f()dx<oo
and
)
® o< [ fr+ f()]f(x)dx<oo

where f denotes the denvatlve, whenever it exists, of the density f.

Note that condition (3) will not be needed if the scale parameter o2 is
assumed to be known.

THEOREM 3. (i) Let B ,, be the dzstrzbutwn of the sample from the autore-
gressive model of Section 1, assuming that o? is known. Let © be the set of all
B’s such that Assumption (B1) is satisfied. Further assume that condition (2)
holds. Then the families {F; ,: B € ©}, n > 1, satisfy the LAN condition at all
B 6.

(11) Let By ,, 0" = (B, 62), be the distribution of the sample when both B and
6% are unknown Let © be as before. Assume that conditions (2) and (3) are
satisfied. Then the families {F ,: 8 € ® X (0,00)}, n > 1, satisfy the LAN
condition at all § € © X (0, o).

Proof of statement (i) can be obtained from Swensen (1985). A proof of both
statements is also given in Jeganathan (1986).

3. A general result implying the SASE condition. The purpose of this
section is to prove the following general result. The result is general in the sense
that it is applicable to a wide class of econometric models.

THEOREM 4. Let Y, = (Y,,...,Y,) be a sample of n observations having the
Jjoint distribution F, ,, 0 €0C Rk k > 1, where © is open. Let § (Y,), n>1,
be a sequence of estimators of a k-vector g(8). Assume that the following three
conditions are satisfied:

(A) The sequence {F, ,: § € ®}, n > 1, satisfies the LAN condition at § € ©
with the normalizing matrices §,, n > 1.

(B) There are transformations U, 4, ,= U, R" —> R", such that the dif-
ferences [with 8,(h) = 6 + §,h],

E[ 18X )N 1. n| = B[ FOLULCE)WPot, 00,1

converge to 0 as n - oo for all bounded sequences {h,)} of R, for all
u € R* and uniformly for all Borel measurable f such that |f| < 1.
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(C) Denote, suppressing h, and 6, én(Un(Yn)) by ,(u), where U, is the transfor-
mation of Condition (B). Then there is a nonsingular matrix A such that the
quantities

sup{18, "(6,(u) = 6,(v)) — A(v — w)l/Ju = ol: Jul < a, o] < a}
converge to 0 in P, ,-probability for all « > 0.

Then the SASE condition is satisfied.

We first separate certain technical parts of the proof and state them as
lemmas. We need some additional notation. The left open and right closed cube
{(xy,.. xk) =xe€RFa,-80<x;,<a,+8,i= , k} will be denoted by
D(a,8), = (ay,...,a,). D(a, 8) denotes the closure of D(a, §); note that
D(a, d) = {x € R*: |x — a| < 8). D(0, 8) will be denoted by D;.

The following important lemma will be used crucially. It can be found, e.g., in
Rudin [(1974), page 185], but the proof is only sketched there with arguments
more involved than the following ones.

LEMMA 5. Letg: D, — R* be a continuous function such that |g(x) — x| < e
for all x € Ds. Then

D&—e c g(Ds) c E&-Fe'

_ Proor. Since x € D; implies |g(x)| < |x| + e < + ¢ we have gD, c
D;.,. To prove the other part, denote the column k-vector g(x) by
(g(%),..., 8(x)) and the column k-vector x by (x,,...,x,). Let x*7!=
(%4y--+5X4_1,0). Then

{(gl(x)""’gk—l(x)),: x € Db‘}
2 {(g1(xk_l)’---,gk—l(xk_l))/: xkle I_)s} = (s, say.

Further, for each fixed x; € [ -8, 8], i=1,2,...,k — 1, the function g,;“(xk) =
8x(x): [-8,8] >R is contmuous in x, so that the set g*([—39,8]) is both
compact and connected in the real line. Hence

gr([-8,0]) = 1nf gk (x4), sup g¥(x)|,

|xg| <&
o) [—a +ea—¢],
since by assumption |g,(x) — x,| < eforall x € D;. Thus the set g(D;) contains
the Cartesian product Cs X {x,: |x,| < § — €}.

Further note that by assumption [with xk‘1_= (%95« + oy Xp_1, 0)]
|g,(xk Hh—x|<e i=1,2,...,k—1, for all x*~! € D; so that by repeat-
mg the preceding arguments one arrives at the required result g(DB) )

Xt {x: x| < 8 — ¢} = Ds_,. This completes the proof. O

To proceed further, we note the following fact.

REMARK. Every open subset of R* can be written as a countable disjoint
union of the left open and right closed cubes of the form D(a, §).
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Results of the following type are probably well known, but we obtain it as an
easy consequence of Lemma 5. (Recall that D, = {x € R*: |x| < a}.)

LEMMA 6. Let g: D, - R* be a function such that, for some 0 < ¢ <1,

(4) lg(x) — 8(y) — (x = y)l < elx — |
for all x and y in D,. Then g is 1-1 such that g(B N D,) is Borel measurable for
every Borel measurable subset B of R*. Furthermore,

_ k -1 e k
A-off fx)des [ fle7(x)des (14" f(x)ax
for all nonnegative Borel measurable f.

ProoF. Condition (4) implies that

lx = y1(1 —¢) < lg(x) —g(y)l < (1 + e)lx — ¥l
for all x and y in D,, so that g is 1-1 and continuous on D,. Continuity implies
that for every closed subset C of R* that is contained in D,, g(C) is compact
and hence measurable. Hence, since g is 1-1 one can easily see that the sets
g(D(a, 8)) are measurable if D(a,8) € D,. Using the preceding remark, this
implies that g(U N D,) is measurable for every open subset U of R*. Hence,
since g is 1-1 it follows from the usual arguments that g(B N D,) is measurable
for every measurable subset B of R*. This proves the first part.

To prove the second part, note that Lemma 5 implies that

(5) D(g(a),8(1 - ¢)) c &(D(a,8)) c D(g(a),8(1 + ¢))
for every D(a, 8) C D,. Further, if p is the Lebesgue measure in R¥,
(6) w(D(e(a),8(1 £ ¢))) = (1 £ &) *u(D(a,8)).

Hence (5) and (6) readily imply that
(1 - &)*u(D(a,8)) < p(g(D(a,8))) < (1 +&)*n(D(a,$s))
for every D(a, 8) C D,. Hence, in view of the preceding remark,
(7) (1-e*'w(UnD,)<p(eUnD,))<1+e)*n(UnD,)

for every open subset U of R*. Now note that since g is 1-1, »(B) = p(g(B N
D,)) is a Borel measure. Further note that, as is well known, every finite Borel
measure » on R* is regular in the sense that »(B) = inf{»(U): B c U, U open)
for every Borel subset B. Thus (7) implies that

(1-e)*w(BND,) <p(g(BND,)) <(1+e)w(BND,)
for all Borel sets B. This can be rewritten as

1-e¢* /D In(x) dx < /g ool @) de s (1 % /D Ig(x) dx

for every Borel subset B, where I denotes the indicator function of the set B, so
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that the result is proved for the functions f = I and hence for every nonnega-
tive measurable f. This completes the proof. O

In what follows, let
|det B|/2
(2 - )k/2

where (suppressing 6), W, and B are the ones involved in the definition of LAN
condition.
As a consequence of Lemmas 5 and 6 we now obtain Lemma 7.

~(u— B W,YB(u- B*Wn)},

S,(0,u) = 5

exp{ -

LEMMA 7. Assume that Condition (C) of Theorem 4 is satisfied. Let 0, (u)
and the matrix A be as defined in Condition (C). Then the supremum, taken over
all f such that |f| < 1, of the absolute value of the differences

8 “W(G,(u) —0))S,(8,u)du— 846, — 0) — Au)S, (8, u) du,
(8) j;)af(an ( (1) )) (0, u) du _/;)af( n ( n ) u) (0, u) du
converges to 0 in P, -probability.

Proor. Let g, (u) =8, én — 5n(u)). Then Condition (C) in particular im-
plies that the quantities

sup |g,(u) — Au|

lu|<a

converge to 0 in probability. Hence it follows easily that the difference between
the Lh.s. of (8) and the quantity

fDJ,(g,,(u))du

converges to 0 in probability, uniformly in f, where we let J;(u)=
(8,0, — 8) — u)S, (8, A~ 'u). Now, according to Condition (C), there is a
decreasing sequence {e,} of positive numbers such that ¢, |0 and P, (E,) — 1,
where

E, = {[suplA~"(g.(u) — £,(v)) = (v = w)l/lv ~ ul: ju] < &, o] < o] <e,}.
Therefore, according to Lemma 6, we have for every nonnegative f,

o (=) [ (gu(w)dusiar [ J(w) du
<(1+¢k) fD:f,(g,,(u>) du

whenever the event E, is true, where |A| is the determinant of A..Further,
Lemma 5 implies that whenever the event E, is true and f is nonnegative,

(10) [A J,(u)dusfg )J,(u)duszD J;(u) du.

a(l-e,) a(l+e,)

(Dy
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But denoting the symmetric difference of two sets by 4,

(11) J(u) du — J(u)du| < |A| S,(0, u) du,
f a(l+e,) , ./‘;Da , Lﬂ a(lte,)
and since ¢, |0 and P, (E,) — 1 the required result follows easily from (9)—(11).
O

PROOF OF THEOREM 4. We verify the SASE condition when A, =0, n > 1;
verification for the general bounded {4,} requires only the notational change of
replacing 8 by 6,(h,) throughout. Explicitly, we want to verify that for some
nonsingular matrix F, the differences

(2) B (60, = )] = 75 . Fao 1(05 (6 = 0)  Fou)]

converge to 0 uniformly in f, |f| < 1. According to Condition (B), the differences
between the Lh.s. of (12) and the quantity

(13) #(D)/ 0.l F(87(6,(u) — 6))] du

converge to 0 uniformly in f. In what follows, we assume without loss of any
generality that the measures Fj ., , are identically the same as the ones
constructed in Theorem 2. Now (13) can be rewritten as

f £(8,(8,(w) = 0))(dPs (), n/dP, ) du
(14) I"’(Da) f., an(dpﬂn(u), n/dPo,n) du

X dP,,n(u)’ R av,

where
|det B|'/?
" (2m)*?

Now, using Theorem 2, the numerator of the ratio inside the bracket of (14) can
be approximated with P, ,-probability tending to 1 by

(15) ff 1(G,(u) - 0))S,(6, u) du.

By Lemma 7 and again using Theorem 2, (15) can be approximated with
P, ,-probability tending to 1 by

1
exp[EVVn’B_lW,].

0,(u),n

(16) fo Au)W du.



1294 P. JEGANATHAN

Further, all the approximations hold, in view of contiguity, with respect to
Py (o), n-Probabilities uniformly in v, |v| < . Thus, if the numerator of the ratio
inside the bracket of (14) is replaced by (16), the difference between (14) and the
quantity resulting by the replacement converge to 0 uniformly in f. Since this
resulting quantity is the same as the r.h.s. of (12), the proof of the theorem is
complete. O

4. Strong convergence of L.S. estimators and sample autocovariances.
Let (Y;_p,..-, Y, Y,,...,Y,) be a sample from the stationary AR model of
Section 1. In this section, Theorem 4 of Section 3 will be applied to estimators of
6 = (B’, 0%) that can be written as explicit functions of the observations of the
sample. L.S. estimators defined in Section 1 form one such example. Another

estimator, 6, = (,IfOn, cevs Bons 0?2), which is sometimes preferred for computa-
tional reasons [see Anderson (1971), page 186)], is defined by the relations

p
Ct—ijn= _Ci’ i=1,2,...,p,
Jj=1

p
Bmz= }; 1- E:I%n)
j=1
and
n p 2
63 = n_l Z (Y; - EOn - Z _tny;—t) ’
J=1 i=1
where
Y,=n'YY,
j=1
n—h _ _
Co=(n-n)"'YL (Y, -Y)(Y,,-Y), h=0,12,..,n-1
j=1

According to Theorem 3 of Section 2, Condition (A) of Theorem 4 is satisfied;
we now verify the remaining Conditions (B) and (C) when h,=0, n>1;
verification for the general bounded {4,} requires only the notational change of
replacing 6 by 6 + h,/ V/n throughout.

Recall that the vector (Y,_,,...,Y;) is assumed to be a known constant
vector. It will also be convenient to reparametrize so that the new parameter is
6=(pB,-...,B,0), where » = B, /1 — ):f;l,Bj. This of course does not change
anything. Now let

ou, =Y, — v,

ou, = (Y, —») _131(Y1 -»),

OUps1 = ty;)+l =) = B(Y, ) - - =B, (Y; —»),

p
ou;=(Y,—») - Z:Bj(Yi—j_V)’ izp+2.
j=1
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The joint p.d.f. of u,, u,,..., u, is given by

P 1 2 . i-1
gn(ul""’un)=ﬂf ui__ZBij—1+_(1_ Z.B,)] 1_[ f(u,).
i=1 0j=1 o Jj=1

l=p+1
Now set
1 0 0 0
_.31 1 0
1
= B,(B,0) = S B, B 1 0
0 0 e 1

nXn

Since the determinant of this matrix is 1/6"/%, the joint p.d.f. of (Y}, Y,,..., Y,)
is given by

(17) #gn(Bn(Yn - Vln))r

where Y/ = (Y,,...,Y,) and 1, =(1,1,...,1),,,. Also, with the notation
0(h)—0+h/\/— h'—(u,v w),uGR vGRP and w € R, one has for
every measurable function 7,

(18) E,[T(Y,)] = Eo(h)( ((B,:‘B,.*)(Yn—%l,,))),

where B* = B(B +v/Vn, o+ w/ Vn) and Ey (») denotes the expectation with
respect to the density

19 2 )_1 B*|Y z 1
+ = —|lr+ = .
1o (oo ) afmzfmn (- o)
Note that this density need not be equal to the density of Fy ) , but the
differences between the ratios of (19) and (17) and the ratios dFy () ,/dF; ,

converge to 0 in P, -probability as can be seen using condition” 2). Thus,
according to Theorem 2, Condition (B) of Theorem 4 is verified with

(20) .6, A(Y,) = 1B*( - (u/\/_) ) say.

In order to simplify the verification of Condition (C), we now consider in
detail only the first order autoregressive process. One can easily check that the
verification in the pth order case is almost the same by writing it in the matrix
form, see, e.g., Anderson [(1971), Section 5.3]. We now have to deal with only
three parameters (p, 8, o) where for convenience ¢ now stands for the inverse of
the original scale parameter. Then

1 0 0 0 0
B 1 00 0
Bl=~| B? B 1 0 0],
() .
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so that letting —v = v,

1 0 0 0
> 1 0 0

= ..
X 8 v v ) 0

- * —_— —_— “ o

B, Bn (1 + ——0‘/—) ‘/’7 ‘/; .
g2 v ' v )
Vn Vn

Thus, the £th component of the vector Y,* defined previously in (20) is given by

@) Y- (1e =) %+ ZY B = UkZlﬂ”
¥ [ 7 E Y n
To proceed further, we first prove Lemma 8.

LemmA 8. Condition (C) of Theorem 4 is satisfied for the statistics
] | (Y.*) = 6.(h), where Y, * is as defined in (20) and

%) = (3 £ vnt £33 £ 7).
i=1 i=1 i=1
PrROOF. First note that § ) (h) = (0 l(h), ng( h), 6,4 h)), where

0::1("’) =n"! Z Y,

i=1
Go() = n' 3 V2 ¥,
i=1
and
Ga(h) = nt ¥ ¥,
i—1

with Y;* as defined in (21). We first consider 6,,(%). Using (21) we have

) n A, A, A,
VRl (h) =n" "2 Y Y, Y, + v—2 4 422 4 2 n8
= n n n
A, A+ A, A,
+0? 3/‘;+uv( 23/2 5)+uv“’ >
An2 An2 (An2 + An5)

2

nl
+ow—s + Wwu—— + wol— + u
nd/2 nd/2 n? n

2 n
+uvcw
nb/2’



STRONG CONVERGENCE OF DISTRIBUTIONS 1297

where the coefficients A ,;, i = 1,...,5, are such that n™'A,; converge in prob-
ability to some constants. Before illustrating this behavior of the A,’s, we
observe that this entails

ﬁ(énz(hz) - 0:¢2(h1)) = a;(uy — uy) + ay(v, — v))
+ag(wy — wy) + Z,5(hy, hy)

for some constants a,, a, and a;, where the r.v.’s Z,,’s satisfy the property that
the quantities

(24) sup{1Z,z(ha, m)I/1hy = ol 1] < @, |hy| < o}
converge to 0 in P, ,-probability for every a > 0.

To illustrate the behav10r of the coefficients in (22), consider the coefficient
of v,

(23)

Anl n Jl : n J_2 ;
(25) Een T LYY A nt L LYY A
Jj=1i=1 J=11i=1

The first term on the r.h.s. can be written for each fixed I > 0 as
1 Jj-1 n -3

n”t Z Z Y}—IYJ'—iBi_l +nt Z Z }/}—le—iBi_l

j=1i=1 j=li=1
n J—1
Z Z Y;‘—lyj—i:Bt_l =L +1,+1; say.
j=li=l-

Then clearly I, —, 0 for each I. Als

E: ¢AK )E(Y2) B

-2

ELl<n 'Y

_]=l

K »

—n—Z ,B"lsK’I,BllﬁO asl - oo,
Jj=li=1l-

since |8] <1 where K and K’ are some constants. Thus I, converges to 0 in
probability, first by letting n — oo and then I — co. Further, convergence of I,
for each fixed I follows from standard results and arguments [see, e.g., Anderson
(1971) and Lemma 11 of Section 5]. Hence the convergence of the first sum on
the r.h.s. of (25) follows easily; convergence of the second sum also follows using
similar arguments. Similarly, the behavior of other coefficients can be checked.

The same arguments apply also to other statistics ﬁnl(h) and §,,(h) so that

‘/;(énl(hz) - 5n1(h1)) =by(u, —uy) + by(v, — v,)
+b3(w2 —w) + an(h2’ h,)

(26)

and

(27) ﬁ(éna(hz) - 0::3(h1)) =cy(uy — 1) + cy(v, — v;)

+c3(w2 - wl) + Zn3(h2’ hl)’
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where b;’s and c¢;’s, i = 1,2,3, are constants and Z, and Z,, satisfy property
(24). Hence the proof of Lemma 8 is complete. O

Now, using the relationship between the components of the statistic (7,, and
those of L.S. estimate 9:, and the estimator 8, defined previously, one can easily
check, using (23), (26) and (27), that Condition (C) of Theorem 4 is satisfied for
the estimators §, and 6,. We thus have:

THEOREM 9. (i) Assume that Assumption (B1) and condition (2) of Section
2 are satisfied. Then the (p + 1) vectors \/_E ( ,én — B) and Vn (B, — B) converge
strongly to Gaussian distributions (B, = (Bops---» Byr))-

(ii) In addition to the restrictions of the preceding statement, assume that
E(&}) < oo and that condition (3) of Section 2 is satisfied. Then the (p + 2)-
vectors Vn ( 0:, —0) and Vn (0:, — 0) converge strongly to Gaussian distributions.

Note that condition (ii) of Theorem 1 is satisfied because of (18) and Condi-
tion (C) and the convergence in law of Vn (6'?\,, — 6) and Vn (8, — 6) under B, It
may also be noted that it is possible to get the preceding strong convergence to
be uniform in § € K C © also for very compact K; this can be obtained by
replacing 6 in the preceding verification by arbitrary 6, € K throughout.

5. Strong convergence of general M-estimators. In this section, Theo-
rem 4 will be applied in a situation where the estimators cannot in general be
written as explicit functions of the observations as in the previous section.
Consider the observations X,, n > 1, such that

Xn = (1 - V'n)Yn + ‘/nZn’ nxl,

where Y, is the pth order autoregressive process of Section 1, {Z,} and {V,} are
sequences of i.i.d. r.v.’s and the three sequences {¢,}, {Z,} and {V,} are mutually
independent. Also it will be assumed throughout that E(V?) < oo and E(Z?) <
co. We refer to, e.g., Bustos (1982) and Martin and Yohai (1985) for the details of
the significance of this contaminated autoregressive process in the context of
robust estimation. It is possible to relax [cf. Bustos (1982)] the independence
of the r.v.’s of the sequence {Z,} and those of {V,}, but we proceed with the
preceding independence restrictions. It is further assumed that the distributions
of the sequences {V,} and {Z,} do not involve any unknown parameters so that
the only unknown parameters are B and o? of the process {Y,}. (An apparent
exception to this is when {Z,} is an autoregressive process with the same 8 and
with error distributions possibly different from those of {Y,}, but then {X,)
itself becomes an autoregressive process with the same 8 and o¢.) This assump-
tion in particular entails that the likelihood ratios of the observations {(Y,, V,, Z,),
1 < i < n} will be the same as those of {Y,, 1 < i < n}. Therefore by Theorem 3,
since {Y;, 1 < i < n} is independent of {(Z;, V;), 1 < i < n}, the LAN condition

2208

holds under conditions (2) and (3) of Section 2, verifying Condition (A) of
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Theorem 4. This independence also entails that, according to (18) with § = (8, o),
(28) E0 [ f(én(Yn’ Zn’ vn))] = E0,,(h) [ f(én(Yn* ’ Zn’ Vn))]

for all statistics §,, for all measurable f and for all A € R”*2, where Y,* is as
defined in (20). Z,, = (Z,,..., Z,), V, = (V}, ..., V,) and the expectation E, ,, is
with respect to the probability measure whose conditional density given (V,,Z,)
is given by (19). Thus, as in Section 4, Condition (B) of Theorem 4 is also
satisfied for all statistics §,.

Now consider the general M-estimators [see, e.g., Bustos (1982) and Martin
and Yohai (1985)], that is, consider 0 =( ,én, é,) such that

(29) ElRi_ld)(Ri_l,(Xi - R;_8,)/8,) =0

and

(30) éx(((xi L AVAVANE

where R,_, = (1, X,_,, X;_,,..., X;_,) and ®: RP*1 X R > R and x: [0, ®0) -

R are conveniently chosen functlons Under certain regularity condltlons on ¢
and x, Bustos (1982) has shown that for some (p + 2)-vector g(8), Vn (6, ). — 8(0))
converge in law to a nondegenerate Gaussian distribution with mean vector 0; it
is possible to strengthen his result so that condition (ii) of Theorem 1 is satisfied
for T, = 0,. Recently, several other variants of M-estimators have also been
1ntroduced in the context of robust estimation [see, e.g., Martin and Yohai
(1985)]; these variants will be considered in a subsequent part in the context of
ARMA models.

We now state the assumptions. Let X! ; be the n-vector whose ith compo-
nent is defined by

(31) X=Vz+(1- V)Y,

where Y;* is the ith component of Y * defined in (20). Note that Y;*, and hence
X%, depends on the parameter 6. Set X, = (X,,..., X,)).

(C1) For all a > 0, the quantities
sup |én( z,o,,) - én(xn)l

lu|<a
converge to 0 in P, -probability for all sequences {f,} with §, =6 +
h,/Vn, {h,) bounded.

REMARK. Note that this condition is a necessary one for Condition (C) and
seems to be a very mild one. In fact, if the difference § ) (X,)—0 -0 in
F, ,-probability then, by contiguity and by (31), ,,(X 8) — 80— 0in Py -prob-
ablhty for every u if Condition (A) of Theorem 4 is 'satisfied. Thus the dif-
ferences 4, (X%0) — ) (X,,) converge to 0 in F, -probability, but (C1) is stronger
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than this. It is possible to derive (C1) from more basic assumptions on the
preceding functions ® and x.

(C2) For each y € RP*!, the function

(B,0) = ((y0(5,(x - ¥8)/0)), x(((x - ¥B) /0)?)),

defined from R?*2 —» RP?*2 is continuously differentiable with respect to
all B8 and o. Denote the derivative by [the (p + 2) X (p + 2) matrix]
Wy(y,(x — y'B), o). Further, the function (y, x) = (y®(y, x), x(x?)) de-
fined from R?*2 —» RP*2 is continuously differentiable with respect to all
y and x and denote the derivative by [the (p + 2) X (p + 2) matrix]
Wy ,%).

In order to state the next condition, let {Y,/} be the process satisfying the
equations,

Yn, = BO + Bly;t,—l + - +pr;z,—p + e,

where n now ranges over all integers, i.e, n=0,+1,+2,..., and the ¢,’s

are ii.d. for all these values of n coinciding with the ¢,’s of Section 1 for

positive integers n; in other words, Y, is the stationary version of Y,. Let X/ =

AQ-V)Y'+VZad §=(Z,V,Y j=-p+1,...,1).

(C3) Denote the matrix Wy(y,(z — B'y), 0) by &(§ B,0) and Wy(y, x)
by g2($) B: 0) when y= (X/—p+1’°-° ’ XO,)I’ 2= Xll and x = (Xl, -
B X5 — -+ —B,X’,.1)/0, where W, and W, are as defined in (C2). Then

E[suplgi(§+£,,3+£,o+s)—g,(ﬁ,ﬁ,o)]] -0, i=1,2,as 8§ - 0.

le| <&

(C4) The matrix E[g,(§, B, 0)] is nonsingular.
(C5) For some & > 0,

E{[ sup |g,(§+ ¢, B+ ¢t 0+ t)|]2} < o0.

|t <8

We now state the main result of this section.

THEOREM 10. Let §, = (B,, 8,) be the M-estimators defined previously (based
on the observations {X,, i <i < n}). Assume that E(V?) < o0, E(Z}) < oo,
Conditions (C1)—(C5) and conditions (2) and (3) of Section (2) are satisfied.
Further assume that condition (ii) of Theorem 1 is satisfied for the sequence
(0:,}. Then the (p + 1)-vector 0:, converges strongly to a Gaussian distribution.

In order to prove this theorem, it remains only to verify Condition (C) of
Theorem 4. To this end, it is convenient to prove Lemma 11 first.
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LEMMA 11 Assume that Condition (C3) is satisfied. Let the (p + 1)-vector
§=(Z,V,Y, j=i—p,...,i). Then with &, g, and g, as in (C3), for every
>0,

lim lim supP[ sup (n
1t <8

VY {gu(&+t,B+to+1t)
i=1

-0 pooo

—E[gu(¢,B,0)]}| > e] =0, k=1,2.

PROOF OF THEOREM 10. First note that the lemma is true when the (p + 1)-
vectors §;’s are replaced by (Z,,V,Y/, j=i—p,...,i), as can be easily seen
using ergodicity. Also, it can be shown that for every increasing sequence &, 1 oo,
the quantities sup, _;.,|Y; — Y;’| converge to 0 in probability. Hence the lemma

follows easily. O

In order to simplify further computations, we now restrict our attention to
the case where (Y} is a first order stationary AR model with known S,, say
By = 0, so that the two unknown parameters are 8 and o, where, as in Section 4
for convenience, o stands for the inverse of the original scale parameter. Then,
with A’ = (v, w) and using (21) and (31),

w ow
(3)  XP=X+ (- V)| maNo) + Y+ g (V).

rg’ ovn

where
i-1
&Y )= X Yi—j.Bj_l-
j=1
Also, define
g.(h) = 6,(X}),

where X* = (X},..., X) with X as defined in (31). Then, in view of (29) and
(30), we have the followmg vector equatlon using Taylor’s expansion around
(B(w), ,(u)): For every u’ = (uy, u,) and 2’ = (2,, 2,) in R?,

Y (X2.0( X2, (X7 - B(2)X2,)/6,(2)),
x*((X7 = B.(2)X7.,) /6,(2)))

(xz.0(X2 ., (X7 - B (w)X2,)/8,(w)),
(X7 - Bu(w)XZ,)/6,(u)))

(é(z)—o(u))ZW( P XP = XX, 0)

=1 +1,, say,

[
M=

0

..
I
—

|
™=

(33) =1

*

X
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where |(B*, 0*) — O(u)| < |0(2) — §,(u)| and x*(x) = x(x?). Further, using
(29) and (30) for the observations X;* and using Taylor’s expansion around X} ;
and (X — B(w)X,)/8,(w),

Il = i (Uli(u’ 2)1 U2i(u’ z))
(34) i=1

X %(Xt'il + Ul?(u’ z)’(Xiu - En(u)Xt'il)/én(u) + U2t(u, 2)),

where
(U, Upt)l < |(Uy, Uyl
and where
U, = Uu(u, z) = X7, - X4
(35) = n—1/2(21 - ul)(l - Vi)gi(Yi—l)
+(ovn) (2, - u,)(1 - V)Y,
+(0n)_1(2122 - uuy)(1 - V;)e(Y,_,)
and

(36) Uy = Upi(u, 2) = ((Xzz - XP) = B(u)( X7, — iu—l))/én(u)'
Now note further that, as can be easily seen,

sup sup |X} - X -,0.
|h|<al<i<n
Using this fact together with Lemma 11 and Conditions (C1)-(C3), it can be
shown that with G = E[g,(¢, B, o)),

li“’i(lhz)—G

n,;_,

(37) sup

lu| <a, |2|<a
for all a > 0, where the sum YW, is the coefficient of (0:,(2) - én(u)) in (33).
Similarly, in view of relations (34)—(36), one can check (see the illustration in the
proof of Lemma 8) using Lemma 11 and Conditions (C1)-(C3) and (C5), that
there is a matrix H such that the quantities
(38) sup /|z —ul-,0
|h|<a, |2|<a

I(u, 2)
Vn
for all a > 0, where I is the sum in (34): It follows from (33) that
(39) 0= (H+Z,(u,2))(z - u) + [G + Zy(u, 2)|Vn (6,(2) - §,(w)),
where sup |Z,,(u, z) —,0, i=1,2,

lu| <0, |z| <a
for all @ > 0. Now since G is nonsingular [Condition (C4)], it follows easily from
(39) that Condition (C) of Theorem 4 is satisfied with A = F, where F is the
nonsingular matrix involved in condition (ii) of Theorem 1 which we have
assumed to hold for the sequence {én}. This completes the proof of Theorem 10.
O

—)p()

—H(z - u)
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6. Strong convergence of L.S. estimators in the explosive case: Intro-
duction. Recall that an AR model is called explosive if its characteristic
polynomial has no roots on the unit circle, but has at least one root outside the
unit circle. The purpose of this part is to prove the strong convergence of L.S.
estimators in this case with suitable random or nonrandom normalization. Since
in the explosive case in at least part of the process only a few variables play a
dominant role, central limit considerations cannot be invoked entirely and since
our method depends on the smoothness of the likelihoods of the sample, we
assume that errors are Gaussian in order to achieve the required smoothness.
Actually, the required smoothness, and hence the strong convergence, can be
achieved under only condition (2) of Part I using the methods of Example 1 of
Levit (1974) as was kindly pointed out by the referee, but this will not be done
here in order not to overload the paper. Note, however, that we do not assume
the Gaussian restriction when the convergence in law of the L.S. estimators is
derived. This restriction will entail that the suitably normalized log-likelihood of
the sample will be quadratic in the parameter, but the variables of the quadratic
term will stay random even in the limit, thus violating the LAN condition of
Section 2. However, it will turn out that this case corresponds to the LAMN
likelihoods [see, e.g., Davies (1985)] and that the results of Sections 2 and 3 will
generalize to this case in a simple and natural way.

Section 7 treats the case in which all roots are outside the unit circle, to be
called purely explosive case. The limit distribution of L.S. estimators in the first
order case with Gaussian errors was obtained by White (1958). This result of
White was extended to the purely explosive case of any order by Anderson
(1959).

The more difficult part of the explosive case in which not all the roots are
outside the unit circle, to be called partially explosive case, was treated by
Venkataraman (1967, 1968) [see also Stigum (1974)]. Among several other results,
Venkataraman (1968) obtained that the L.S. estimators converge in law to a
Gaussian distribution when normalized by vn . The limiting Gaussian distribu-
tion he obtained was degenerate since the normalizing constants Vn completely
eliminate the influence of the explosive part of the process and retain only the
influence of the stationary part. In Section 8, we first obtain the convergence in
law of L.S. estimators with different normalizing quantities so that the influence
of both explosive and stationary parts are retained and that the limit is
nondegenerate and then obtain the strong convergence.

7. Purely explosive case. Consider the AR model of Section 1 with 8, = 0,
that is, {Y,}, n > 1 — p, is a process such that

(40) Yn = BIYn—l + oo +BpYn-—p + Eny
n=12,..., where ¢, i > 1, are i.i.d., independent of (Y,,..., Y, _,) with mean 0

and variance 1. Without further mention, it will be assumed throughout this
section that the roots of the characteristic polynomial of the preceding AR
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model are all greater than 1 in absolute value. Whenever we assume that the &S
are Gauss1an it will be stated explicitly. Since B, =0, we now let Y/ =
Y; _p+1)- Then if B, is the L.S. estimator,

B.—B=A4,'C
where

= ZY}—IY;’LI and C,= X Yj—lej

j=1
We first recall Theorem 12 from Anderson (1959). To state it, let
B 1 B2 Bp
1 0 0
d=| 0 1 0 0
0 . 1 0 | oo

and & = (e;,0,...,0),4,, i > 1. Then relation (40) is equivalent to
Y, =6Y,_,+§, n>1.

Further, let

(41) Z, =8 "V, =F+8 M+ - 486D | + 57,

THEOREM 12. Let §, = 62, Then:
(i) The differences

n
8,A8,— Y 872 78"
i=
and

n—1
8nCn - Z 8_iZn€n—i
i=0
converge to 0 in B ,-probability.
(i) The sequence {Z,} converges in B, ,-probability to a random vector Z
such that ZZ' is an a.s. positive definite matrix.

(iii) There is a sequence {e}}, i > 1, identically distributed with and indepen-
dent of the sequence {¢;}, i > 1, such that the vectors Y738~ 'Z ¢, _,; converge in
law to the vector Y2 8 “~VZe*, where Z is as in statement (ii) and hence is
independent of {e}}.

(iv) It follows from the preceding three statements that when the €;’s are
Gaussian, (8,A,5,,8,C,) converges in law under P, , to (A, A'*W), where
A =Y2 87ZZ'8 " and W is a copy of the standard p vanate Gaussian distri-
bution independent of A, with mean 0 and unit covariance matrix.

The fact that ZZ’ is a.s. positive definite in statement (ii) was not established
in Anderson (1959), but can be found, e.g., in Lai and Wei (1983).
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Now note that when the ¢,;’s are Gaussian,
dl)ﬂ+ 8,h,n

——— =h45,C, ——h’8A6h
dpﬁ’n n n-n

log

for all n > 1 and A € R”. Hence the preceding result implies that the likelihood
ratios dFy,; 5 ./dF; , converge in law under F; , to the likelihood ratios of
the family {@,: h € R?} such that

dq, 1
Xt exp| WAY2W — ~H AR,
dQ, P 2

where A and W are as in statement (iv) of Theorem 12. Now given A, the family
{G): h € RP} is a Gaussian family. For this reason the family {F; ,: 6 € 0},
n > 1, is said to be LAMN at §, if Definition 1 of Section 2 is satisfied with
B(48,) replaced by a sequence {B,(6,)} of a.s. positive definite matrices such that,
for some a.s. positive definite matrix B(6,), the sequence {(W, (6,), B,(6,))}
converges in law under P, , to (B'/%(6,)W, B(6,)), where W is a copy of the
standard k-variate Gaussian distribution independent of B(8,). We refer to, e.g.,
Davies (1985) for a detailed study of LAMN families. For our purpose we
mention that Theorems 1 and 2 of Section 2 and Theorem 4 of Section 3 extend
to the LAMN case, since the arguments that involved the normality of the
limiting families {@,} hold true also when {@,} is mixed Gaussian as defined
previously. The required changes in the statements are that the nonsingular
matrix F; involved in the SASE condition and condition (ii) of Theorem 1 have
to be replaced by a sequence {Fj ,} of a.s. nonsingular matrices such that for
some a.s. nonsingular matrix Fy, the sequence (5  ,, W (8,), B,(6,)) converge in
law under P, , to (F,, B'/%(6,)W, B(f,)), where W is, as before, independent of
(Fy,» B(8,)). Furthermore, the nonsingular matrix A of Condition (C) of Theorem
4 has to be replaced by a sequence of a.s. nonsingular matrices, but under
condition (ii) with the preceding modification of Theorem 1, this sequence can be
taken to be the preceding sequence {F, ,}. Henceforth, whenever Theorems 1
and 4 are referred to, it is to be understood that they are referred to with the
preceding modifications.

It follows from the foregoing remarks that it remains only to check Condition
(C) of Theorem 4, since then condition (ii) of Theorem 1 also follows. This will be
done only in the first order case, since the general case can be checked in a
similar way. We first consider the case in which B, |8| < 1, is the true parameter
and then briefly indicate the proof for the general case where the true parameter
is B+ 8,h,, {h,) bounded, |8 >1 and §, =B "2, As in Section 4, the
transformed variables satisfying Condition (B) of Theorem 4 are given by

(42) Y* =Y, +8,h(Y,B 72+ YB3+ - +Y,_)).

Our aim is to prove the strong convergence of (,l?n — B) under the normalizing
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quantities 8, and (£7_,Y,)"/2. We thus have to check that the variables,

n -1 n
8,:‘( )y Y,-*:%) Y Yx,(Y* - BY*))
Jj=1

Jj=1
and
n 12,
( )y Y;’:“i) L V(Y - Y,
J=1 J=1

considered as functions of h, satisfy Condition (C) of Theorem 4. This is a
consequence of Lemma 13.

LEMmMA 13.
n n
82) Y*3=82) Y2, + hU, + h%,
Jj=1 Jj=1
and

n n

8, X V(Y - BY*)) =6, X Y, (Y, - BY,_,) + AU + RV,¥,
j=1 j=1

where the variables U,, V, and V,* converge to 0 in P, ,-probability and the

difference between the variables UX* and (1 — B~2)"'Z? converge to 0 in

probability, where Z, is as defined in (41).

ProoF. Using Theorem 12, we shall proceed in an indirect way which seems

to be easier than the direct way. First note that Theorem 12 entails that the
differences

n—1 2
Y (Y- BY,_ )R + BYO}
Jj=1

n
2y v, -(1-82)"
J=1

converge to 0 in P, ,-probability. Hence, contiguity and (42) imply that the
differences

n n—1 2
(43) 82 Y2 - (1-872) 7| ¥ (Y* - BYx, )8 + ,BYO]
Jj=1 Jj=1

converge to 0 in P, -probability. Both the left- and right-hand sides of these
differences are quadratic in A, so that the differences between the corresponding
linear and quadratic terms also converge to 0 in probability. In view of (42),

(44) Yj* - IBY;tl = Y/ - IBY}—I + 8nhy}—1r
so that the coefficient of & of the sum inside the bracket of (43) is given by
n—1
8, X Y B + (BY)S,.

i=1
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Since 8, = B~ it can be easily checked that this converges to 0 in P, ,-prob-
ability. This proves the first part of the lemma.

Using again the arguments used to prove (43), it follows from another part of
the first statement of Theorem 12 that the differences

8, X Y (Y* — BY*,) -

n—1
Y (Y — B )BT + BY,
=1
(45) ’
X

Z (YJ* - 'BYj*l)B_nﬂ}
j=1

converge to 0 in probability. Using (44),

Y (Y- BY* )R = ¥ (Y, - BY,_,)B "

j=1 Jj=1

n

Z B n+j

Since §, = B~ ("2,

-

n n

5, Y, B = LBz
Jj=1 Jj=1
n—1 )
= LBz,
Jj=0

Hence, it follows easily that [see Anderson (1959)] the differences
8,27 Y, B - 1-B8%H"Z, converge to 0 in probability Since both left-
and right-hand sides of (45) are quadratic in A and in view of the first part of
this proof, the second part of the lemma now follows, completing the proof of the
lemma. O

As to the verification when the parameter is of the form 8 + 8,4, |8 > 1, it
can be easily checked that Theorem 12 and Lemma 13 remain valid when g is
replaced by B + B~ (*?h_ throughout [including that 8§, = B~*~? is replaced
by 8, = (8 + B~ ?h,)” ("~ ?]. Hence the verification follows easily using the
fact that 8, %, — 1.

We thus have the following.

THEOREM 14. Let ,én be the L.S. estimator of B of the purely explosive AR
model (40). Assume that the error variables are Gaussian with mean 0 and
variance 1. Let 8, = 8"~ and A,, be matrices as defined in Theorem 12. Then
the random quantities 8 (8, — B ) and A% B, — B) converge strongly to the
distributions of A~ °W and w, respectwely, where A and W are as in
statement (iv) of Theorem 12.
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8. Partially explosive case. Let B be the backshift operator, i.e., BY, =

Y,_,. Then the equation

n

Yn=Blyn—1 +BZYnf2-|’_ +Bp},n_p+8n, n > 1,
can be rewritten as
(1—,81B—3232_..._Bpo)Yn=8m n>1.
Let py, py, .-, p, be the p roots of the characteristic polynomial . Assume that
for some 1<k <p, |o)l <|pol < -+ < |ppl <1 <|ppyy| < +++ < p,|. We
may write
) (1-BB~-- ~B,B?)Y,=[(1 - p,B) - (1~ p,B)]

X[(1 = pgs1B) -+ (1 - p,B)]Y,.
Let ay,..., a; be such that

1-pB)---(1-pB)=1—a,B—a,B*— --- —q,B*
and v,,..., Y, be such that
(1-ppB)---(1-p,B)=1—yB— - —v,_xB? %

It then follows from (46) that
V,=(1-pB) - (1-p,B))Y,

is a purely explosive AR model of order p — & with parameters v,, ..., Yp—x and
with characteristics roots p,_,,..., p,. In other words, we have
(l—le— —yp_kBp_k)Vn=sn, n>1.

Similarly, it follows that
Un = ((1 - pk+lB) T (1 - ppB))Yn
satisfies the relation
(l—alB— —akBk)Un=£n, nx>1,

so that {U,} is a stationary AR model with characteristic roots p,,..., p,. As
before let

~n = (Yn’ Yn—l? '?Yn7p+1),’
Unz (Un’Unfl’ ’Un7k+1)

and

(47) M
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Let ,én be the L.S. estimators of 8 = (B,,..., 8,)". Then, using (47),

(én - ,B) = ( E 17;‘1?]/—1) Z Y,j—l
J=1 Jj=

(48) . I .
n n
] -1 -1
Z ~J 1 ~J Z K c..
=\ Vi [\ Via =1\ Vi ’
Now if we let
Yl Y2 oo “ e Yp—k
1 0 0
n=10 1 0 0
0 e 1 0 | p-ryxp—k)

then Theorem 12 holds with §, and Yn there replaced, respectively, by 7, =
n~ =2 and V. To proceed further, we need Lemma 15.

LEMMA 15. The differences

I, = ljj—l ~j—1 I,
diag{ —, n} N - dia, {———, ;,}
e (Z AL/ e Y

1 - LA
—diag{"‘l‘ Z Uj_lUj:v nn( Z ‘/}—1‘/}/1)7’;}

j=1

converge to 0 in P, -probability, where I, denotes the unit matrix of order k.

Proor. It only remains to show that the off-diagonal matrix

n
V/
jgl ﬁ J 1nn

converges to 0 in probability. Let Z, be as defined in (41) with Y, and & replaced,
respectively, by V_ and 7. Then

n . n
11 _ /
A

Jj=1

We have
sup |Uj|/Vn =, 0

1<j<n

and that {Z,}, n > 1, is bounded in probability. Hence it follows easily that
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there is an increasing sequence &,, 1 oo such that

X

-1 r—(n—j
(49) Y —=Z ") 0.

o+ .
Q:z

and Z are random variables so that

n—k, U
< ; |~ (n_J)EHTE—Zj—I

Now, first assume tha

|

—k, U, o
_Z._ Ul (n—J) <
E G
K n—k, '
<= X ™"
A
K n-1
=7 Y a7 >0 asn— oo,
]=kn
since |n| > 1, where
K= Sll.pE['U]-—IZj—l']
J

With suitable modifications [see Anderson (1959)], it can be shown that the
preceding arguments extend to the general vectors Uj and Z ;> also. Thus

n—k, U
(50)

/ / (n—Jj) __)p 0.
J=1
Hence the lemma follows from (49) and (50). O

Lemma 15 leads to Theorem 16.

THEOREM 16. Let 8, = diag{I,/ Vn,n,} and let M be as in (47). Then:
(1) The difference

« i=1 =1

8, M'(B, - B) - ’ . _1Jn
M, 1( Z ‘7;—1‘7}'—1) E ‘7;—181

j=1 j=1

converges to 0 in By ,-probability.
(ii)
1 n - n - - n o
= % U X VWi, X v)
Jj=1 J=1 Jj=1

converges jointly to (W,, A, AY/*W,), where the vectors W, and W, and the
random matrix A are mutually independent.
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ProoF. The first statement follows easily from Lemma 15. Further, since the
eigenvalues of n are greater than 1 in absolute value, it follows easily by
applying Theorem 12 to the variables V, that for every &, 1 oo, the differences

n n

(51) Mn Z ‘/;‘—1‘/;:177; - Z nZ,Zm""
and

n k,
(52) Z -1&;, — Z n jZ €n—i

j= j=1
converge to 0 in probability, where we now let, with & = (€550, 5,0)1 % (p—r)
1>1,

Z, =8 +n "+ - +n_k"+1§kn + V.

Note that the right-hand sides of (51) and (52) depend, for each r, on only the
variables ¢;,1 <i < k,and n — k < i £ n. Thus the statement will follow if we
can show that the vectors i G-Ui18/ Vn are asymptotically equivalent to the
vectors which depend only on the variables &, k, <i<n— k, For simplicity
we present the proof of this fact only for the case £ = 1. Now one can find an
increasing sequence k, such that &, 1 co and such that

ky, n
YE(UR,)+ ¥ E(U~) /n—>0
j=1 j=n—k,
and, since |p,| < 1,
n
Y E[Upy = Ut /n 0,
=1
where
U*=¢;+pe;,+ - +p{_k"_1£k"+1.

Hence it follows that, since U;_,¢; and U* ¢; are martingale differences,

2

Z U_e; + Z U;_&; n—-0
Jj=n—k, )
and
n 2—
Bl £ 52 | [n o
j=1 ]
Thus the differences
n n—k,,—l
)y Uj—ﬂ'?j/‘/’7 - X Ujfr?j/\/’7 =, 0.
j=1 J=k,+1

This completes the proof of the theorem since the sum X7 ¢ HU 1¢; depends
only on the variables ¢;, k, <i<n—k,. O
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Having established the weak convergence, we now establish the strong conver-
gence under the assumption that ¢;’s are Gaussian. We present the details only

when B = (B,,..., B,) is the true parameter; the general case can be obtained by
replacing 8 throughout by B + 8,h,, where A, is bounded and §, is as in
Theorem 16. To proceed further, note that B8 can be expressed as a function of
the parameters a = (a;,...,a;) and vy = (v,,..., Yp—x) which were introduced
at the beginning of this section. Let
[ 1 0 R
—a 1 0 el o0
Af(a)=|—a —ao 1 0 oo 0
L 0 e 1 dnXn
and
1 0 0
-1 1 0 0
B(y)=|-* —m 1 0 0
| 0 1 nXn

Note that the matrices A, («) and B,(y) are commutative, that is, A, (a)B,(y) =
B,(v)A,(«) for all n and for all « and y. Further let, as before, Y, = (Y,,...,Y,),
U,=,...,U,Y and V, = (V,,..., V. ). To simplify the further notations, we
take £ =1 and p =2 so that a and y are real values such that |a| <1 and
|y] > 1. We then have the following relations for all « and y:

(g + aly, 5,...,¢,) = A, (a)U,
(& + YVos855---8,) = B(V)V,,
(U, + vY,, Uy, ..., U,) = B,(7)Y,,
and
(53) (Vi + oYy, V,,..., V) = A (a)Y,.

[Relation (53) refers to all previous four identities.] If we take (a,y) as the
parameter and (a + h;/Vn,y + v,h,) as the alternative with y, = y~*~?, it
follows from (53) that Condition (B) ‘of Theorem (4) is satisfied with the
transformation

1

(59 (Ad@)B,(1) 4,0+ ZE By + 1h)¥,

In what follows, assume for simplicity that U, = 0 and V, = 0. Using the fact
that the matrices A,(«) and B,(y) are commutative, it then follows from (53)
and (54) that the vector U, transforms into the vector

hy

A;l(a)An a + ﬁ

)Bn(v +v,hy)Y, = U}, say,
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where the kth component of U* is given by

h,
(55) Ul =U + T £ Z (Uk ,+h27n Z ak AT

Jj=1

Similarly V, transforms into the vector V,* whose k2th component is given by

WL
Using (55) and (56) and using the ideas of Lemmas 8, 13 and 15, it can be shown
that setting 2 = (A, k,)’, the random vectors
Ujfl(Uj* - antl)

-1
(k) = Z(U) o
" Jj=1 Vit [\ V4 j=1 V}il(v;*_yv}il)

satisfy Condition (C) of Theorem (4) with §, = diag(n~/2, v, }. For this §, it can
further be shown using similar arguments that the differences, setting 6 = (6, yY
and Z w;, vy,

k—1 k—i—1
(56) = Vk+Ynh Z (Vk i ki I_JV)

n n
log(dPHsnh,n/dPo,n) — [h’&l Y Z 1€ — 3h'8 ( Y Z~jZ~jf)8nh]
j=1 j=1
converge to 0 in P, -probability so that the LAMN condition described in
Section 7 is also satisfied. Hence, in view of the remarks made in Section 7 and in
view of Theorem 16, we have

THEOREM 17. Let ,l? be the L.S. estimator of the partially explosive AR
model defined preozously Assume that the error variables are Gaussian. Let §,
and M be as in Theorem 16 and let A, = ¥}_ IV; 1V’ Then 8! 'M'(8, — ,B)
and diag(VnI,, A, JM'(B, — B) converge strongly to (W, AV ’W,) and
(W, W,), respectively, where W, is a k-variate Gaussian wzth mean vector 0
and covariance matrix the inverse of the limit of n™'L?_U,;_ 1U v Wy is a
standard (p — k)-variate Gaussian and A is as in statement (ii) of Theorem

(16). Furthermore, W;, W, and A are mutually independent.
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