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ON EMPIRICAL BAYES TESTING WITH SEQUENTIAL
COMPONENTS

By RoHANA J. KARUNAMUNI
The University of Alberta

We study the empirical Bayes decision theory with an m-truncated
sequential statistical decision problem as the component. An empirical Bayes
sequential decision procedure is constructed for the linear loss two-action

- problem. Asymptotic results are presented regarding the convergence of the
Bayes risk of the empirical Bayes sequential decision procedure. With sequen-
tial components, an empirical Bayes sequential decision procedure selects
both a stopping rule function and a terminal decision rule function for use in
the component with parameter 6.

1. Introduction. Empirical Bayes decision theory [introduced by Robbins
(1956) and later developed by Rebbins (1963, 1964), Johns (1957), Samuel (1963)
and Johns and Van Ryzin (1971, 1972), among others] deals with a sequence of
independent repetitions of a given statistical decision problem, called the compo-
nent problem, where each problem in the sequence has the same unknown prior
distribution G. The components to which empirical Bayes methods have been
applied are, with few exceptions, the fixed sample size identical statistical
decision problems. Exceptions are the varying (nonstochastic) sample size com-
ponents considered by O’Bryan (1972, 1976), O’'Bryan and Susarla (1977) and
Susarla and O’Bryan (1975). Another exception is found in the works of Liappala
(1979, 1985). In his case the varying sample sizes are random. In this paper we
consider empirical Bayes decision theory with a sequential statistical decision
problem as the component, and study the linear loss two action problem for a
very general class of densities.

In Section 2 we introduce notation to describe the sequential component and
in Section 3 we discuss the two action problem and the sequential component
problem to be studied in this paper. In Section 4 we define the empirical Bayes
problem and construct an empirical Bayes sequential procedure. Asymptotic
results and examples are presented in Section 5.

2. Notation. Let the parameter space be the measurable space (£, +7) and
let ¢ denote the class of all prior distributions on Q. Let X, X,,... beiid. P,
0 € Q, where P, is a probability distribution on (%, #), % is the real line and %
is the Borel o-field. For £ =1,..., m (m is a positive integer), we write x* =
(x4,..., %), Pf =Py X --- XP,(k terms) and let #* denote the Borel o-field in
Xk =9X -+ X& (k terms). Suppose that the component problem has (termi-
nal) action space A and loss function L > 0 defined on £ X A. Let the constant
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EMPIRICAL BAYES TESTING 1271

¢ > 0 denote the cost per observation. For £ = 0,1,..., m let 2% denote a set of
mappings § from Z™ into A that are constant with respect to the last m — &
coordinates and such that L(6,68) is /X #™ measurable. 2° consists of
constant functions. We will regard the domain of § € 2% as #* when it is
convenient to do so, £ =1,2,...,m. For k> 1, let G, denote the posterior
distribution of @ given x* when § ~ G, and G € ¥. Throughout this paper, we
let [ E] denote the indicator function of a set E.

3. The two action problem. Let the parameter space Q be a subset of the
real line and let f; > 0 be a density function of the distribution P, with respect
to a given o-finite measure p on (2, #). To conserve the notation we will also let
fo(x*) denote the product f,(x,),..., f,(x,) for x* € * k > 1. We wish to test
the hypothesis

H,: 0 < 6, against H,: 0 > 6,,
where 6, € Q. Consequently, the action space A consists of two actions only, that

is, A = {a,, a,}, where a, and a, denote the actions of deciding H, and H,,
respectively. We assume the linear loss function

(81) L(6,a,)=(8-6,)", L(8,a)=(6,-6)", 6€eQ,

where b*= max{b,0} for any real number b. We assume that the first moment
of 4 is finite with respect to G, where G is the prior distribution of § and G € 9.

Let us now derive our sequential component consisting of a terminal decision
rule 8(G) and a stopping rule t(G) with respect to G for our testing problem.
The terminal decision rule 8(G) is defined by a finite sequence

(3.2) (81,.-.,8,),

where 8§, € 2%, k =1,2,..., m, is a Bayes decision rule relative to G for the
fixed sample size k testing problem (@, A, L) with A = {a,, a,} and the loss
function (3.1). For £>1, 8, can be determined as follows. Let §,(x*) =
pr{choosing a,|X* = x*}. Then it is easy to show that a Bayes rule is provided
by the nonrandomized rule [see Johns and Van Ryzin (1972)]

1, if k)Y <o,
(33) ) = | b M)

0, if ay(x*) >0,
where '
(3.4) a(x*) = [ (0= ) fo(x*)G(db).
Then it is easy to see that

pk(xk)/fk(xk)’ if f(x*) >0,

Er(Gr) + e =r(Gy) = {o if fy(x*) = 0
b k - ’

where r(G,,) denotes the minimum posterior Bayes risk with respect to G,, E*
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denotes conditional expectation on X, , given x*,
(3.5) fux*) = [ fo(x*)G(d0)
and

(36) pu(x*) = [[apsr < 0Japin(dry) + fy(x*) = [, < 0]y (x*).

The stopping rule 7(G) is defined by a finite sequence 1(G) = (7, Ty, ---» T,
where 7,=0, 7, =1and, for k=1,...,m — 1, 7,: Z* - {0,1) such that
1, ifp,(x*) =0,
(37) (k) = | b o)
0, ifp,(x*) <o0.

Let N be the stopping time variable of the procedure (7(G), 8(G)). Then
NX™) = min{k|7,(X*) =1} and 1 < N < m. (In the empirical Bayes applica-
tion, this ensures that at least one observation is made at each repetition of the
component which allows for an updating of the empirical Bayes estimates.)
These kinds of sequential procedures are described in detail in various books
concerning decision theory, e.g., Berger (1985), Chapter 7. The risk of this
procedure at G is

R(G) = fﬂR(G,(T,S))G(dG),

where

R(0,(r,8) = [ X [N=k]{L(6,8,) + ck}P(dx").
k=1
Now using the definitions of L and §, [see (3.1) and (3.3)], we have
(35) R(G)=Cy+ k{;l_[sz_[grm[N=k]([aksO](0—00) + ck)
X fo(x™ )™ (dx™)G(d8),

where C; = [L(0, a,)G(d8). The empirical Bayes approach applied to this
problem can be based upon estimation: of the functions [N = k] and «,, k& =
1,2,..., m. For this purpose, it is useful to decompose and represent the indica-
tor functions as follows. For 2 = 1,..., m — 1, we write [N = k] = A, + B, and
[N =m]=A,, where

A,=[p;<0] - - [pp_y<0][pp>0] fork=1,...,m -1,
(89) B,=[p,<0] - [pp_y <O0l[pp=0] fork=1,....m—-1,
A, =[p, <0]-[pn,<0].
Thus, the Bayes risk of the sequential component (7(G), 8(G)) relative to G for
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our testing problem can be written in the form [see (3.8)]

R(G) =Ce + é fﬂfwAk{[ak < 0](8 — 8,) + ck}fy(x™)pm(dx™)G(dB)
(3.10) .
+ E fﬂfka{[ak < 0](8 — 6,) + ck}fy(x™)p™(dx™)G(d8).

The indicators corresponding to boundary sets are defined by B, in (3.9). In
the empirical Bayes application, the functions p, are estimated, so that a
separate treatment of boundaries is important insofar as convergences are
concerned.

4. Empirical Bayes problem. Suppose that the prior distribution G is
unknown but fixed. Then the classical Bayes quantities (3.3)—(3.7) of Section 3
are not available to the statistician. However, suppose we are experiencing
independent repetitions of the same component problem. Then applying the
empirical Bayes approach introduced by Robbins (1956), we derive empirical
Bayes estimates of the classical Bayes quantities (3.3)-(3.7) and, hence, obtain an
empirical Bayes sequential decision procedure d” = (7", 3"), where " is an
empirical Bayes stopping rule and 3" is an empirical Bayes terminal decision
rule.

At the nth stage of the repetitions, we will have observed the random vectors
XM ... XNyt from the past (n — 1) repetitions of the sequential component
described in Section 3, where N,,..., N,_, are the respective stopping times of
the past (n — 1) repetitions. In order to construct an empirical Bayes sequential
decision procedure, let us suppose that f,(x*), k > 1, and a,(x*), £ > 1 [see (3.5)
and (3.4)], can be estimated by functions

frxR) = fr(x5 XD, XN, k>,
and
ap(x*) = af(x*, XM, ..., X ey), k>1,

respectively such that a.e. (u*)x*, & > 1,

(4.1) fr(x*) »p fu(x*) asn > 0, k21,
and
(4.2) a(x*) »pay(x*) asn—> o0, k21,

where —, denotes convergence in probability with respect to the sequence of
random vectors {XM, ... XNao1 [ ),

We now define our empirical Bayes sequential decision (EBSD) procedure
d” = (7", 8") as follows. (Henceforth we use the superscript n to indicate an

empirical Bayes quantity.)
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Let 8™ be a finite sequence of functions (87,...,8)), where 87 is such that
87(x*) = pr{choosing a,|X* = x*} and, motivated by (3.3) and (3.4),

1, if a}(x*) <o,

(4.3) dp(x*) = {0 if al(xt) > 0

where af(x*) satisfies (4.2).
Let " be a stopping rule consisting of a finite sequence of functions
(7, ..., 7}), where, motivated by (3.7), 72 =1 and, for k=1,...,m — 1,

1, if p(x*) > 0,
(4.4) gty - | A
0, if pf(x*) <0,
where
n(k n k+1\_ n k+1
or(x") = |62, (x ap (x p(dx
“5) Bt) = [t ey (R ()

+ef(x*) — 8p(x*)ap(x*),

and f(x*) and a}(x*) satisfy (4.1) and (4.2), respectively. Since 7" = 1, sam-
pling will be stopped just after X,, has been observed if it has not been stopped
earlier. For investigating the risk of the EBSD procedure it is useful to define

Cr=[p"<0]--[pi_,<0][ot=0] fork=1,...,m—1,
Cr=1[et<0]-[oh_<0].

Then [N*=k]=C} for k=1,...,m—1 and [N"=m] = Cl, where N"

denotes the stopping time of the EBSD procedure d” = (1", 8"). Note that
P [N"=k]=1 implies ¥} ,C; = 1. Let R(G,d") denote the conditional

Bayes risk of d” = (1", 8") with respect to G. Then since C} partition 2™,

(4.6)

ROV G X L] Gl <008+ b

Xfo(x™)n™(dx™)G(d0).

The difference ER(G,d") — R(G) is treated as a measure of optimality of the
sequential procedure d” = (7", 8") and this motivates the following definitions.

DEFINITION 4.1. A sequence of sequential decision procedures {(r",8")}
is said to be asymptotically risk equivalent (optimal) relative to the (optimal)
sequential procedure (t(G), 8(G)) if lim,_,  ER(G, (7" 8")) = R(G), where E
denotes expectation with respect to the random vectors XM, ..., XN,

DEFINITION 4.2. A sequence of sequential decision procedures {(t",8")}
is said to be asymptotically superior relative to (7(G), 8(G)) if
limsup, ,  ER(G,(" 8") < R(G).
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5. Asymptotic results. In this section we compare the asymptotic be-
haviour of the unconditional Bayes risk ER(G,d") of the empirical Bayes
sequential decision procedure d” = (1", 8"), defined in the previous section, with
the Bayes risk R(G) [see (3.10)] defined in Section 3. Before presenting the main
results, we first state the following useful lemmas. Convergence of sequences of
functions on ™ is understood to be pointwise convergence. The proofs of the
lemmas are omitted. For convenience, the notations 2%, £ > 1, and © under the
integral signs that follow are suppressed in all future discussions.

LEMMA 5.1.  Assume that [|0|G(d0) < co. For k > 1, let the functions f(x*)
and a(x*) be defined by (4.1) and (4.2), respectively. If

Jlagy < 0oz, u(dr,.,)

(5.1)

—p /[ak+1 < 0]ay, u(dxy,,) asn— o0, k>1,
then
(5'2) Pz —)P Py asn— w,kZ 11

where p, and p}; are given by (3.6) and (4.5), respectively.

LEMMA 5.2. Let

Jr= 3 Jilf/ECi"Aj{([af <0] - [a;<0])(8 — 6) + c(i - j)}

Jj=2i=1

X fo(x™)um(dx™)G(dB),

m—1 m-1

=Y ¥ [[EcrA{([ar <0] - [a;<0])(6 - 8) + c(i - j))

J=1 i=j+1
X fy(x™)um(dx™)G(d6),
and
I = ¥ [ [BCrAL{([of < 0] - [o; < 01)(8 - 6,))
i=1
X fo(x™)pm(dx™)G(df).
If [16|G(d8) < oo, then lim,_ J"* =0, i=1,2,3.

LEMMA 5.3. Let

Kp="S T [ [ECrB{([af < 0] - [a< 0])(6 - ) + o(i - 1))

_ X fy(x™)u™(dx™)G(d0)
and
K= L [ [ECrBA([af < 0] - [ < 01)(8 - 6)) fo(x™)u™(dx")G(d0).

If [161G(d8) < oo, then lim, . _KP=0,i=1,2,3.

n—-ootti
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The following theorems give the main results of this paper concerning the
asymptotic risk equivalence and the asymptotic superiority of the empirical
Bayes sequential decision procedure d™ = (7", 8") defined in the previous sec-
tion. The conditions under which the theorems are stated will be discussed in the
examples at the end of this section.

THEOREM 5.1. Let d" = (7",8") be defined by (4.3), (4.4) and (4.5). For
k> 1, let f(x*) and a}(x*) be defined by (4.1) and (4.2), respectively, and,
further, assume a}(x*) satisfies (5.1). Let G be such that [|0|G(d8) < co. Then
limsup, ., ER(G,d") < R(G).

Proor. By Fubini’s theorem and [|0|G(df) < oo, the difference between
ER(G,d") and R(G) can be written as

(5.3) ER(G,d") — R(G) = i J" + i Kr,

where J%, J', J* and K[!, K} are as defined in Lemmas 5.2 and 5.3, respec-
tively, and

2 2 f/EC"B al < 0] —[ajso])(av— 8) + c(i - j)}

J=1i=j+1
X fo(x™)G(d8)p™(dx™).
We define

m
=YCr fork=j+1,....m,j=1,...,m—1.
i=k

Then observe that
cr=Cr—Cp, fork=j+1,....m-1,j=1,....,m—1,
=[pt<0] -+ [p3_, < 0]

and C} depends only on the first £ — 1 observations (X,..., X, _,). Using these
facts and the definition of C} we can write

K; mzl{ £ mn)- 5 8 )

J=1 li=j+1 i=j+1

+ T ofBCBfy(x b  (dxt )

k=j+1

—fEéj’ilBj[ajs O]ajpj(dxj) ,
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where
T(n, j) = /Eéi"Bj[a? < 0] q;p’(dx’)
and
S(n, j) = [ECL.\B)[a} < 0] awi(dx’).

Routine calculations yield

m—1
(5.4) K} = Z {(M(n, j) + My(n, N}
J=1
where
My(n, j) = Tpui(n, j) = [ECE.B;[a; < 0]aui(dx’)
(5.5)
+e [ECE fi(x/)n/(dx)
and
Mi(n,j) = ¥ {Tdn. i) = Sialn, )
(5.6) i=j+2

+o [ ECIBf ((x~)ui}(dxi ).

Now observe that M,(n, j) is equal to

(5.7) /E(i}'ilBj{f[af+l < 0] a;p(drxiy) — [aj < 0]a; + cfj}uj(dxj).

But 0 < B; < [p; = 0] and by the definition of p; [see (3.6)]

cfj— [aj < O]aj = —f[ajH < O] aj+1p(dxj+1) on [pj = 0].

Then from (5.7),

|My(n, < fE[P,‘ = O]U'[[aj-’ﬂ = 0]"‘j+1l‘-(dxj+1)

(5.8) _/[aj+1 = O] aj+1”'(dxj+1)

)uj(dxj)

< [E[lods — gl 2 lajunlJlajon/ (dx/* ).

1277

The r.hs. of (5.8) goes to zero as n — oo, since a},; >pa;,, as n = o by
applying the dominated convergence theorem (DCT). Thus M(n, j) = 0 as

n — oo.
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Now it remains to consider My(n, j) given by (5.6). Observe that the sum-
mand of My(n, j) is equal to

fEéinBj[“? < 0] ap(dx’) — fEéinBj[a?-l < 0]a;_p'~Y(dx'"1)

+fEéinBjcfi—l(xi_l)ﬂi_l(dxi_l),
i=j+ 2,..., m. The preceding sum can be written as
(5.9) _/EéinBj(f[“? < 0]ap(de;) — [af, < 0]y, + Cfi—1)ﬂi_l(dxi_l)-
Adding and subtracting the term [a;_; < 0]a,_, in the integrand of the preced-
ing integral (5.9), we get

(5.10) fEéinBj(f[a? = 0] au(dx;) — [a;, < O]ai_1 + Cfi—l)p,i_l(dxi—l)

+fEéinBj([“i—1 <0]a;_, — [af, < 0]a;_)p H(dx*1).
Using the DCT we see that
fEéinBj([ai—l <0]a;_; — [af, < 0] a;_ ) (dxh)
goes to zero as n — . The first integral in (5.10) can be rewritten as

JECrB Lo < 01 flaf < Olan(ds,)

_[ai—l < 0]"‘;’—1 + cfi—l)l‘i_l(dxi_l)
(5.11)

+ fEéinBj[pi—l > 0](_/[“? < 0] au(dx;)
—[a;-y < 0]e;_, + cfi—l)lii_l(dxi_l)-
By an application of the DCT again and 0 < CAi"[p,-_1 > 0] < [p}, <O0llp;_; >
0], one can show that the second integral in (5.11) goes to zero as n — oo. Notice

that the asymptotic behaviour of the first:integral in (5.11) is equivalent to the
asymptotic behaviour of the expression

JECBpicy 01 [[e 5 Olan(de) - Loy < O, + cfyJu~H(ax ).
That is [see (3.6)],
(5.12) JECB[p._, < 0]p,_ i (dx').

Expression (5.12) is nonpositive for all n. Therefore, limsup, _, ,ER(G,d") <
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R(G) now follows from (5.3)—(5.12) and Lemmas 5.2 and 5.3. This completes the
proof of Theorem 5.1. O

THEOREM 5.2. Under the same assumptions as in Theorem 5.1, let

liminfE [p} < 0] -+ [p}_, < 0] = [p; < 0] -+ [p;-, < 0],
(513)  n-e

i=2,...,m.
Then lim, _,  ER(G,d") = R(G), where p; and p} are defined by (3.6) and (4.5),
respectively.
ProOOF. First observe that, by the definition of (?i”, we have
[p, <0]-[p;_y < 0] < liminf EC"
< limsupEC* < [p, < 0] -+ [p,_, < 0],
1=2,....,m

Since
EéinBj[pi—l < O]pi—l 2 [pi—l < 0]pi—1’ l=.]+ 2a"-a m, J = 11-"a m — 11

and

JIoi 1w H(dx" 1) < oo,
an application of Fatou’s lemma yields

lim inf fEéinBj[pi—l < 0]p;_ '~ (dx*"Y)

> [liminf EC'B,[p;_, < 0]p,_p" (dx'").
Now using the definition [see (3.9)] of B; we obtain
liminfEC'B, =0 fori=j+2,...,m,j=1,...,m—1,
n— oo
provided that ,
liminfE[p? < 0] -+ [p7, <0] =[p, < 0]+ [pi_, <0], i=2,...,m.
n—oo

Thus, under the assumptions of Theorem 5.2, we have

liminf'/‘E(i."Bj[pi_1 < 0]p,_pi~Y(dxi"1) = 0,
(5.14) n-o
l=]+ 2""7 n, J= 1,...,m - 1.

Hence lim inf ER(G,d") > R(G) follows from (5.3)-(5.14) and Lemmas 5.2

and 5.3. Using —'i‘ﬁeorem 5.1 we then obtain lim ER(G,d™) = R(G). O

n-—oo
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For i > 2, by the definitions of N" and N, we have [N" > i]=[p? <
0]---[pf_; <0land [N > i]=[p, < 0] --- [p;_1]. Therefore, condition (5.13) is
equivalent to liminf, , E[N" > i] =[N > t], i > 2. This means that asymp-
totically the stopping time of the EBSD procedure is forced to behave like the
stopping time used in the component. Also notice that for 1> 2,
liminf, , _E[N">i]>[N > i] holds.

COROLLARY 5.1. If m = 2, then under the assumptions in Theorem 5.1,
lim,_ ,  ER(G,d") = R(G); that is, d" = (7", 8") is asymptotically optimal rela-
tive to (1(G), 8(G)).

PrOOF. If m = 2, then observe that ( 7(G), 8(G)) is optimal and R(G,d") >
R(G) for all n and G by the definition of the sequential component and the
construction of the EBSD procedure d”. Hence lim, ,  ER(G,d") = R(G) fol-
lows from Theorem 5.1. O

Notice that for m > 3 the stopping rule used in the component of this paper is
not the optimal stopping rule among the m-truncated procedures. Observe also
that when the optimal strategy is used, lim sup, _, ., ER(G,d") < R(G). That is,
R(G) is attained from below, implying the asymptotic optimality of the em-
pirical Bayes decision procedure. Therefore, in comparison with the results in the
literature, Theorem 5.1 is not unusual, or at least not surprising.

EXAMPLE 1. Let f(x)=60"'[0<x <f]forfc Q= 0,a],0 < a < o0, and
let G be a prior distribution on . Let G, be a sequence of distribution functions
on , where G(0) = G(0,XM, ..., X}»11) depends only on the random vectors
X", ...,XNy, such that G, converges to G in Lévy metric with probability 1.
For this model, an explicit method of constructing such a sequence of distribu-
tion functions is given in Fox (1970).

The EBSD procedure d” = (1", ") used in Theorems 5.1 and 5.2 is based on
the functions f;(x*) and aj(x*), & > 1. So we need only to find sequences of
functions {f;"(x*)},., and {a}(x*)},., for this example.

For k > 1, we define

fr(xk) = fﬂ fo(x*)G,(d6)
and
ap(x*) = fs2 (6 — 6)) fo(x*)G,(db).

Then the EB estimators f;*(x*) and af(x*) satisfy conditions (4.1) and (4.2),
respectively. Also by an application of the generalized dominated convergence
theorem, it is easy to verify condition (5.1) for these estimators.

EXAMPLE 2. Let fy(x) = e %9%(x!)"!, x = 0,1,2...,forf € Q = ©,al, a <
oo. Let m = 2. Then observe the following facts about f,(x*), k=1, 2, with
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x? = (x,, x,) and x! = x:

(5.15) fi(x,) = (x1!)_1fae‘00"1G(d0), x,=0,1,2...,
0
fo(x?) = (xlx,)) 7 X (k1) 7H(-1)
(5.16) k=0
X (%, + 2, + B) (2, + x5 + B).
Recalling (3.4),

=) = [((0 - G)f(x"a(ds), k=12,

we note that

(5.17) a,(x*) = gu(x*) — 6, f.(x%), k=12,

where f(x,) and f,(x?) are given by (5.15) and (5.16), respectively, and g,(x,)
and g,(x?) are given by expressions

(5.18) &(x,) = (x, + 1)f1(x1 +1)

and

T R GO O CE

X(x, + 2+ k+ 1) (2, +x, + &+ 1).

Notice that the first observations X,;, X,,,..., X,, from the past and present
repetitions are i.i.d. with common marginal density

f(x) = (x)" [(e%G(db).
0
Thus we define our EB estimator of f(x) by
f(x)=n'Y I(X,=x), x=0,1,2,....
i=1

Now EB estimators of f,(x*), k2 = 1,2, and g,(x*), k£ = 1,2, can be obtained
by putting f"(x) in place of f,(x) and in the expressions (5.15)—(5.19), respec-
tively, and it is easy to show. that the resulting EB estimators frx*), k=1,2,
and aj(x*), k = 1,2, satisfy (4.1) and (4.2), respectively, and that (5.1) holds for
aX(x?).
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