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A SIEVE ESTIMATOR FOR THE COVARIANCE OF A
GAUSSIAN PROCESS!

By JAoy H. BEDER

University of Wisconsin at Milwaukee

Maximum likelihood estimation for the covariance R of a zero-mean
Gaussian process is considered, with no assumptions on the covariance or the
“time” parameter set 7. It is shown that the likelihood function is a.s.
unbounded in general, and a sieve estimator R is constructed. The distribu-
tion of R, considered as a process on T X T, can be described exactly if a
certain technical assumption is satisfied concerning the bivariate series ex-
pansion of R. It is then shown that R(s, t) is asymptotically unbiased and
consistent (weakly and in mean square) at each (s, t) € T' X T, and that Ris
strongly consistent (globally) in an appropriate norm.

1. Introduction. The likelihood ratio for the covariance of a Gaussian
process of known mean has been studied a great deal, but primarily for the
purpose of binary discrimination. For example, if an observed process {X,, t € T'}
is of the form X, =S, + N,, where, S and N are unobservable, independent
zero-mean Gaussian processes (signal and noise), with known covariance func-
tions K and K, respectively, then we may test for the presence of the
stochastic signal {S,} by deciding whether the covariance of {X,} is Ky or
K + Kp. In this case we are confronted with two simple hypotheses, and
whether we view this as a problem in testing or in discriminant analysis we are
led to form the density dPg . /dPy of the corresponding measures.

The likelihood ratio of two measures is a likelihood function evaluated at one
point of the parameter space (which in this case is the set of all permissible
covariances). In principal, we should be able to use the likelihood function to find
the maximum likelihood estimate (MLE) of the covariance. For certain classes of
covariances (all of them finitely parametrized), the MLE is known to exist
almost surely. [Aside from the case T = {1,..., n} of multivariate analysis, this
includes Anderson (1975), Section 5.4 of Anderson (1971), Azzalini (1981),
Goodrich and Caines (1979), Hasza (1980), Hasza and Fuller (1979), Kashyap
(1970) and Tugnait (1982) (see also Theorem 3.1).] Indeed, the only other cases in
which likelihood methods have been applied turn out to involve families of
mutually singular measures, for which perfect discrimination is possible [Bagchi
(1975), Beder (1988), Grenander (1950), pages 221-222, Grenander (1981), pages
444-447, and Kelly, Reed and Root (1960), page 498].
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We will study this problem in the most general possible context. In particular,
we will make no assumptions about the time-parameter set T. Thus, for example,
our analysis will be applicable to random fields and to nonstationary processes.
By using a convenient but general form of the likelihood, we will show that, for a
sample of n replicates of the process, the MLE exists (almost surely) if a certain
dimension is finite, and fails to exist (a.s.) if the dimension is infinite. This
situation suggests the use of Grenander’s theory of sieves [Geman and Hwang
(1982) and Grenander (1981)], and, in fact, the finite-dimensional case will
suggest an appropriate sieve. We will show that the resulting estimator is
strongly consistent and give its exact distribution.

In the interest of brevity, certain proofs and background discussion will be
omitted, but may be found in Beder (1987c). A more leisurely discussion of many
of the ideas in this paper is given in a companion paper, Beder (1987a).

NOTATION AND DEFINITIONS. We will view a stochastic process as a family
{X,, t € T) of (real-valued) random variables defined on a measure space (2, <),
where 7 is a ¢-algebra. We will assume nothing about the set T.

Let V be the vector space of all finite linear combinations of the X,. Under
the probability measure @ on (£, %) this becomes a vector space V,, of @-equiv-
alence classes of elements of V. We say that the process is Gaussian under @ if
V,, consists entirely of normal random variables. In this case, V, C L¥Q, «,Q),
and its completion H, C L? also consists of (possibly degenerate) normal ran-
dom variables.

We denote the norm and inner product in Hy by || |l and ( , )q, respec-
tively. Expectation and covariance under € are similarly denoted E, and Cov,.

One of our main tools is the reproducing kernel Hilbert space (RKHS)
# (K, T), whose kernel K(s, t) is a (real) positive symmetric function on T' X T
[Aronszajn (1950)]. In particular, if a second-order process has mean 0 and
covariance R, under @, then there is a natural isometry A = Agy: Hg—
H# (R, T), the Loéve map, given by Y — g, where g(t) = (X,Y)gforallteT
[Loéve (1948, 1977)].

Parzen (1959), Neveu (1968), Kallianpur (1970) and Kailath (1974) discuss the
application of RKHS’s to the study of Gaussian processes.

For ease of reading we will use the notation f ® g for the function defined on
T X T by f®g(s,t)=f(s)g(t). The notation f ® g ® hA will similarly repre-
sent the function on T2 given by f ® g ® h(s, t, u) = f(s)g(t)h(u); we will
abbreviate f® f ® f ® f by f*® (a function on T*).

Finally, Z* will denote the positive integers. It will be convenient to write

12(A) = {a € I(A):inf{a,} > —1}.
Usually A will be a finite set or Z*. This will be clear from context, and, in

general, we will simply write /2 and 2.

" 2. The Gaussian dichotomy theorem (GDT) and its consequences. The
Gaussian dichotomy theorem [see, e.g., Neveu (1968), pages 175-187] leads us to
consider the model given by the largest set £ of probability measures on (£, <)
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such that

(B,) the process is Gaussian under every @ € %;

(B,) the mean function of the process is identically zero under every @ € 2;
(B,) # is homogeneous; and

(B,) the true probability measure belongs to Z.

Assumption (B,) means that the measures in # are equivalent [Halmos and
Savage (1949)]. We will arbitrarily single out a measure in & and denote it by P.
In general, when a subscript is suppressed [e.g.,

H,(X,Y),|IX|,Cov(X,Y), E(X)],
we will understand it to be P. 5 will denote the RKHS #(R,, T').
According to the GDT, for each @ € # we have the following:

(i) There are a countable orthonormal set {g,} in s and a sequence a =
{a;} € 12, both depending on @, such that

(21)  Ry(s,t) = R,(s,t) + Ya,gu(s)gu(t), foralls,teT.

Using the notation f ® g given in the introduction, we may write the
parameter space € (the set of covariances specified by the model) as

and orthonormal in 5# } .

(ii) There are a countable orthonormal set {U,} in H and a sequence b = {b,}
satisfying —b € 12, such that

deQ

(2.3) B exp2™' Y (5,U2 + In(1 — b,,)).
Here
(2.4) (1 + ak)(l - bk) =1 and 8r= AUk, for all &.

(iii) H and H, [and therefore # and #(Rg, T)] are isometric as Hilbert
spaces and equal as sets. In particular, they have the same dimension, which may
be uncountable; this dimension, as well as the set of observables H and the set of
functions 5, depend only on £, not on P and Q.

(iv) Let @"® denote the corresponding product measure on (2", &/ "®). Then
we have

dQn® n
5 = exp| = 2 (8,57 — In(1 = b)) |,

2. —_—
(25) dP" 25

where S,, is the second sample moment of U,,

1 n
(2.6) SZ=—Y UZ.
n;-
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Equation (2.5) gives the density based on n independent replicates of the
process. (Note that the sets {U,} and {S?} depend on Q.)

(v) The sequence {(U,/ 1 + a,} is iid. n(0,1) under @, and the correspond-
ing variables
nS?

2.7 =
( ) Zi 1+ a,

are ii.d. x%(n) under Q"°.
We will let 2™ = (Q"®,Q € #).

REMARK 2.1. Although a different likelihood function would arise by a
different choice of the measure P for the “denominator” of (2.3) or (2.5), it is
easy to see that the method of maximum likelihaod is not affected by that
choice.

3. MLEs. Given a sample of n realizations of the process, we wish to
maximize (2.5) by fixing © € Q" and allowing both the set {SZ, &k € A} and the
sequence —b € [%(A) to vary. Here A is either Z* or a finite set. Let us first
consider the maximization when {SZ, k£ € A} and the corresponding set {g,} are
fixed. It will, in fact, be useful to consider subsets B C A and perform the
restricted maximization over 2(B), the set of sequences that are zero off B. The
proof of the following is similar to that of Theorem 3.1 in Beder (1987a), and will
be omitted.

THEOREM 3.1. Let {SZ, k € A} be fixed and let I%(B) be defined as before. If
B is finite, then the likelihood (2.5) may be maximized over 1%(B) almost surely
(P™), the maximum occurring at b = {b,} given by

(3.12) b,=1-S;2, keB,

=0, otherwise,
corresponding to R given by (2.1) with a = {a,) satisfying

4 — Q2 _
(3.1b) a,=8;-1, k € B,

=0, otherwise.
If B is infinite, then the likelihood is unbounded over I%(B) a.s. ™.

Now, letting not only b (resp. a) but also the set {S?, k& € A} (resp. {g,
k € A}) vary in (2.5) [resp. (2.1)], we immediately have

COROLLARY 3.1. If dim 5#= oo, then the likelihood for the covariance is
unbounded almost surely.

REMARK 3.1. As noted earlier, the criterion dim s#= oo does not depend on
the arbitrary choice of P € #. The almost sure unboundedness in the corollary
must be handled with measure-theoretic care; see Beder (1987a), page 71.
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4. The sieve estimator. The unboundedness of the likelihood function for
the covariance leads us naturally to consider the method of sieves. We will use
the following definition. Let # = {P,, § € ©} be a dominated family of probabil-
ity measures (so that densities exist).

DEFINITION 4.1. A sieve in O is a collection {%#,,} of subsets of ® indexed by
a parameter m such that

@m>m=%,>0%,
(b) U¥, is dense in O, and
(c) the likelihood can be maximized over each %,, (for some sample size n).

The restricted MLE § = 0:,”, over each %, for a sample of size n is called a sieve
estimator of 0.

Our parameter space ® = C (2.2) is a hugé set, involving not only the
coefficients a but also the choice of orthonormal set {g,} in #. A sieve in C is at
present unavailable, but we will instead consider a sieve in a set C, C C given by
a fixed, countably infinite orthonormal set {g,} in H#,

00
(4.1) CO= {RQEC: RQ=RP+ Zakgk®gk,aElc2.}.
' k=1

If 5# is separable, we may make C, as large as possible by letting the set {g,} be
complete in 5. Note that R, € C,.
Define the sets

(4.2) S,=f{aclla,=0fork>m}, m=1203,....

It follows from Theorem 3.1 that {¥,,m € Z*} is a sieve in 2, where the
resulting sieve estimator is

(4.3) a,,=(82-1,...,82-1,0,0,...);

here S? is defined by (2.6) with U, = A~'g,. The sieve estimator in C, is now
given by

m
(4.4) R=Rp+ Z dkgk®gk’
k=1

We will develop the properties of & and R under the assumption that
(C) the true covariance belongs to C,.

The set C, is parametrized in one-to-one manner by 2. Corresponding to C, is a
set of measures 2, C 2, also parametrized by 2. Thus (C) is the assumption
that the true measure is in Z,,.

REMARK 4.1. If we wish to specify two covariances, say Rp and R, which
are to belong to the set of candidates C,, then we must solve (2.1) for the
sequences {g,} and a; see Beder (1987b). If we only specify one, then {g,} can be
constructed in innumerable ways, such as by the Gram—-Schmidt process or (in
certain cases) by diagonalizing an integral operator as in Cartier (1981), page 295.
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Assumption (C) is discussed in Section 6.

We can describe the distribution of R(s, t) under assumption (C) by consider-
ing R as a stochastic process on T X T. For simplicity, we will assume that
dim 5 is countable [see (iii) of Section 2]; the inseparable case requires a minor
elaboration. Extending {g,, 2 € Z*} if necessary, we may assume that it is a
complete orthonormal set in J#. Then a straightforward application of Section
1(v) along with Halmos (1967), problem 30, yields

THEOREM 4.1. For eachm € Z* and for any a € 12, we have

m
(4.5) R=Q/n) X Z,(1+a,)8,® 8+ L 81 ® &
k=1 k>m
where the variables Z, are defined by (2.7). In particular, under Q € #, given
by (2.1), we have )

(4.6) EQ(R) =Rp+ Y 0,8,98,
k=1

and

(4.7) COVQ(R(s, t), R(s’,t')) = (2/n) 'zn: (1 + a,)’gt%(s, t, 8", t').
k=1

REMARK 4.2. The random variables Z, depend on m and n. Equations (4.5)
and (4.6) are to hold at every (s,t) € T X T.

From this theorem we can easily deduce the following pointwise result. In the
next section we will establish strong (and “global”) consistency in an appropriate
norm.

COROLLARY 4.1. For @ € #, and for each (s,t) € T X T, ﬁ(s, t) is asymp-
totically unbiased as m — oo, and is weakly and mean-square consistent for
R (s, t) if in addition we have m = O(n).

PROOF. Asymptotic unbiasedness follows immediately from (4.6).
For consistency, it suffices to show that Varg(R(s,?)) >0 as m —> oo if
m = O(n). But from (4.7) we have

m
(4.8) VargR(s, t) = (2/n) ¥ (1 + a,)*(8x(s)&x(9))".
k=1
Now Xg,(s)g,(t) converges for every s, ¢t € T [in fact, it equals R (s, t)], so we
have (g,(5)g,(t))? = 0 as k — oo, whereas La} < co implies that (1 + a;)* > 1
as k& — co. Thus the summands in (4.8) go to 0 as £ — o, and an application of
Lemma 4.1 shows that VargR(s, t) —» 0. O

'The lemma needed in the proof of Corollary 4.1 is an easy application of the
Toeplitz lemma [Loéve (1977), page 250], and will be useful later.
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LEMMA 4.1. Let x, = n"'L}_,x, for sequences {x,} and {m} = {m,}. If
x, = 0 and m = O(n) as n —> oo, then x, > 0. If x, > x and m/n - B as
n — o, then x, — Bx.

5. Consistency in /2. We continue to use the notation of the previous
section, based on assumption (C) with a fixed orthonormal set {g,, k€ Z*} in
. Parametrizing C, by /2, we wish to show that ||a,,, — a|| = 0 a.s. (P,) for all
a € 12, as long as m increases at an appropnate rate with n.

Let us fix a € [%; then

A 2
18, — all* = Z (Gnr —ax)" + X af
k>m
= Wmn + Z az’ Say'
k>m
Clearly, we must have m — oo for the latter term to vanish. The stochastic term
W, is positive, and it is easy to see that

(5 W= (1/0%) ¥ (4 @)"Z = n)’,

where the variables Z, are defined by (2.7). We thus have the following weak
result, the latter part of which rests on Chebyshev’s inequality, Lemma 4.1 and
the fact that a, — 0.

LEMMA 5.1. Under P,, the distribution of W,,, is given by (5.1), where the
variables Z, are i.i.d. x*(n). In particular, if m/n — B < o as n — o, then
W,.. = 2B in P,-probability.

This result sets “best possible” limits on strong consistency results. In
particular, if we choose m so that m/n — B, then it will certainly be necessary
to have B = 0, that is, m = o(n). Note that the pointwise consistency result of
Corollary 4.1 required only that m = O(n).

Now strong consistency is equivalent to the condition that for every ¢ > 0 we
have
(5.2) P(W,,>¢eio0.)=0
since W,,,, is nonnegative. From the Borel-Cantelli lemma, then, it suffices to
pick m = m,, so that for every ¢ > 0 we have

(5.3) Y P(W,,>¢) < co.
n=1
First let us get a simple bound on each term in (5.3).

LEMMA 5.2. For each € > 0 and forr =1,2,3,..., we have P,(W,,, > ¢) <
C,mn(€), Where

(54)  cpmnle) = (4/ns)§1(1+ak>2 ‘@) (n/(n — D)™
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The extra “parameter” r will give us the necessary leverage to force {c,,,(¢)}
to be summable and thus (5.3) to hold. We will, in fact, let r as well as m depend
on n. The proof of Lemma 5.2 rests on the following fact, which is derived from
problem 16.3 of Kendall and Stuart (1969).

LEMMA 53. LetZ be x%(n), n > 2, and let s be a nonnegative integer. Then
(5.5) E[(Z - n)*] < (4n)*(2s)! n/(n - 1).
Proor oF LEMMA 5.2. By Markov’s inequality we have, for every r,
P,(W,,, > ¢) = P,((n°W,,)" > (n%)")
(5.6) E[(n*W,,,)"]
2
(n)

(expectation taken under P,). To get a bound for the numerator, let us rewrite
(5.1) for simplicity as

n*W,,= ¥ d:Y,
k=1

where d = (1 + a,)? and Y, = Z, — n. Now the Y}, are independent, and so for
every r € Z* we have

(5.7) E[(n2W,,m)r] = Z(rl r , )d{n e d""tmE(Y?rl) ... E(Y”%rm)’
where the sum is over all m-tuples (7, ..., r,,) which sum to r and satisfy r, > 0

for each k. But Y, = Z, — n is a centered x* random variable with n d.f. under
P,, so from Lemma 5.3 we have

B(v) - B(r2) < ny( =25 T @n)
(5.8) k=1

< (ny' (=) @

the second inequality due to the fact that the ratio (2r)!/T1(2r,)! is a multi-
nomial coefficient and so is at least 1. Substituting (5.8) into (5.7), we get

E(n’W,,)" < (4n) ( ) (2r)'Z( rm)d{l T
= (4n)’ ( ) (2")'(de) (summing over k = 1,..., m)

= (4n2dk)r(%) (2r)!,

and substituting this into (5.6) finally yields (5.4). O
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Our goal now is to choose r = r,, and m = m,, so that the bounds c,,,,,(¢) form
a summable sequence for each ¢ > 0. While our interest is in choosing m = o(n),
that order of growth will not yield summability by the present method of proof,
and we must instead require that m = o(n°) for some ¢ € (0, 1). Actually, it will
cost us nothing to consider m such that m/n° — g > 0.

LEMMA 5.4. Suppose {r,} and {m,} are chosen so that for some o, >0
such that ¢ + 21 = 1, we have

(i) m/n° - B >0 and
(ii) (r/n")'nY* is summable and r > n for n large.

Then the bounds c,,,(e) given by (5.4) form a summable sequence for all
e > 168/e2.

PRrROOF. We continue using the notation d, = (1 + a,)? note that since a, is
square summable we have d, —» 1 as k - oo.

Fix ¢, and let ¢, = c,,,(¢). First, condition (i) implies that (n/(n — 1))" > 1
as n — o0, so that

[ 4rd,
C, ~

ne

]'(2r)!,

where ¢, ~ b, means that c,/b, — 1, and summation is over k = 1,..., m. By
Stirling’s formula, (2r)! ~ 2V (4r%/e*)'r'/?, so that

16r2xd,\”
c,/2Vm ~ (———5) ri/2,

ne?e

which we write as

59) ( 16 1

T, pro\2r 2
e —_— 1
328 n° de) (n'r) ree.
From Lemma 4.1 and condition (i) we see that (1/n°)Ld, — B as n — oo, so that
the first factor in (5.9) is bounded by 1” = 1 for large n as long as 168/e* < e.
Thus ¢,/2V7 is summable by comparison with (r/n")?r'/2, which is summable

by comparison with the sequence in (ii). O

There are many sequences satisfying condition (ii) of Lemma 5.4; see Exam-
ples A.1 and A.2 in the Appendix. Thus we have established the following.

THEOREM 5.1. Let m — oo and m/n° - B < oo for some o € (0,1). Then
for any e > 16B/e* we have P,(W,,, < ei.0.) = L.

From this we immediately get our main result.

COROLLARY 5.1. If m— o and m/n° —> 0 for some o € (0,1), then
la,., — all = 0 a.s. P,.
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In other words, & is strongly /%-consistent for a, for every a € 2, and so for
every covariance R € C,. The rate m = o(n°) of Corollary 5.1 is almost best
possible in the sense we have discussed. On the other other hand, if m/n® —»
B > 0, so that we do not have even weak convergence, we can still gain some
insight into what is happening.

COROLLARY 5.2. If m/n° — B > 0 for some o € (0, 1), then W, is almost
surely bounded by € when n is large, for any ¢ > 168/e2, and the square error
la — a||? is almost surely bounded as n - .

REMARK 5.1. An alternative method of proof [see Antoniadis and Beder
(1988)] does show that o = 1 is attainable. This is certainly not a matter of
direct practical importance, since the growth rate of m is merely a guide to the
proper choice of sieve size m, for a given sample ‘size n, and in any finite
experiment it would be impossible to distinguish m = o(n) from m = o(n%%),
say. However, it is of theoretical interest that when the parameter space is
(contained in) a Hilbert space and m is the dimension of a subspace, the method
of sieves seems to produce m = o(n) as an optimal rate [see McKeague (1986),
page 580, and Beder (1987a)].

6. Interpreting the metric. Grenander (1981), pages 444-446, suggests
studying the covariance estimation problem by considering operator norms, but
under very strong assumptions about sample paths and about the family of
covariances (in fact, in his case a sieve is not even necessary, as he points out).
The present approach allows us to avoid his assumptions. At the same time, the
distance ||& — a|| used in Section 5 has a natural interpretation as a distance
between covariances. We state the main result here without proof.

THEOREM 6.1. Let R, and R, be two covariances in C,, corresponding to
" sequences a, and a, € I7. Then |ja, — a,|| = |R, — R,|, where the first norm is
that of 12 and the second is that of #*°

Here 5#%° is the second symmetric tensor power, or second Wiener chaos, of
H=H(Rp, T). [The general theory of tensor powers is given in Neveu (1968);
see also Guichardet (1972) and Kallianpur (1980).]

Theorem 6.1 apphes in particular to R, = R, and R2 R, say, where R is a
sieve estimator in C; and R, € C,. Since the norm in #%° is coordinate-free, it
might be useful in elnmnatmg assumption (C), which depends upon our fixing a
coordinate system {g,} in . But this remains to be seen.

Using an isometry given in Beder (1987b), the norm given previously can
sometimes be interpreted as a norm in L%(T'2), bringing it closer to Grenander’s
original idea.

- 7. Conclusion. We have constructed an estimator of the covariance of a
general Gaussian process based on n realizations of the process. This estimator
is straightforward to compute, is analytically tractable and behaves well
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asymptotically. The price we have paid for our generality is the use of replicates
and the assumption (C) that the true covariance belongs to a subset C, of the
original parameter space C.

Unlike stationarity, which by its very nature allows us to reuse a single
trajectory to estimate the covariance at different lags, nonstationarity of a
process would seem to require us to observe several trajectories (replicates) of the
process for covariance estimation. The method proposed here certainly rests on
the availability of such data. Although not an assumption in the same sense as
our assumptions (B1)-(B4) and (C), this is a design constraint. A discussion of
its use in both the theoretical and the applied literature is given in Beder (1987c¢).

Finally, our consistency results leave open the questions of the rate of
convergence of our estimator, and of the optimal choice and ordering of the
orthonormal set {g,} in 5. These are typical problems in sieve theory, and we
can expect the availability of an exact distribution theory to aid us in investigat-
ing them.

APPENDIX

In this section we give some examples of sequences {r,,} of the type needed in
Section 5. _

The summability of a sequence of form (r/n")", where r = r, = oo, and more
generally of (r/n")'n?, is somewhat delicate. If r grows too fast, then the terms
r/n" may grow so fast that (r/n")" fails to go to 0, whereas if r grows too slowly,
r/n’ may go to 0 at a reasonable rate but (r/n")" will fail to decrease fast
enough [note that it is not bounded by the summable sequence (r/n")"].

Let us say that the sequence r is in class (1,a), 7 > 0, a > 0, if as n = o0 we
have

@) r/n" — 0, and
(i) n*" — 0 for some & > 0.

Of course, if (ii) holds for some §,, then it holds for all & < §,.

LEMMA A.1. If the sequence r is in class (7, @), then r - oo and (r/n") =
o(n™*) as n = 0. In particular, if « —y > 1 and if r is in class (7, a), then
(r/n")'n" is summable.

PrROOF. The fact that r — oo is immediate from (ii), taking & < 1.

From (i) we see that for all § > 0, we have r/n” < for n large, so that
n%(r/n") < n°8" for n large. Thus condition (ii) implies that n*(r/n")" — 0 as
n — o0, as desired.

Finally, summability is seen to hold by comparison with the sequence n~(*~ 7.

O

ExampLE A.l. If r=n”,0 < B8 <1, then r is in class (1, a) for 7> B and
for every a. Condition (i) is easy to see, whereas (ii) holds if we take § < 1. Thus
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the sequence

B\ nf
(n_) — -1t
n‘f

is summable, and so is
B\ nf
n
- B
(_) nY = pB-"n +y

for any y > 0, as long as 7 > .
ExXaMPLE A.2. If r =Inn, then r is in class (7, ) for every 7 and «. Here

again condition (i) is obvious, whereas (ii) holds for any given a > 0 if we take
8 < e~ Thus such sequences as
Inn Inn
)

n‘f

are summable for any y > 0.
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