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OPTIMAL RANK-BASED PROCEDURES FOR TIME SERIES
ANALYSIS: TESTING AN ARMA MODEL
AGAINST OTHER ARMA MODELS

By MA/RC HALLIN AND MADAN L. Purr!
Université Libre de Bruxelles and Indiana University

The problem of testing a given ARMA model (in which the density of
the generating white noise is unspecified) against other ARMA models is
considered. A distribution-free asymptotically most powerful test, based on a
generalized linear serial rank statistic, is provided against contiguous ARMA
alternatives with specified coefficients. In the case when the ARMA model in
the alternative has unspecified coefficients, the asymptotic sufficiency (in the
sense of Le Cam) of a finite-dimensional vector of rank statistics is estab-
lished. This asymptotic sufficiency is used to derive an asymptotically maxi-
min most powerful test, based-on a generalized quadratic serial rank
statistic. The asymptotically maximin optimal test statistic can be interpret-
ed as a rank-based, weighted version of the classical Box—Pierce portmanteau
statistic, to which it reduces, in some particular problems, asymptotically and
under Gaussian assumptions.

‘1. Introduction.

1.1. Rank tests for time series analysis. Time series analysis is certainly one
of the areas in statistics whose development has been most impressive during the
past two decades, and its importance for practical applications, ranging from
economics to engineering has been widely recognized. However in spite of the
growing interest in the subject and in spite of the fact that the need for robust or
rank-based procedures has been emphasized by many authors, not much has
been done to introduce such procedures (especially the rank-based ones) in the
time series context.

This does not mean, of course, that no attempt was ever made to use
rank-based methods beyond the classical problems involving i.i.d. (independent
and identically distributed) observations. A very comprehensive bibliography on
rank tests for non-i.i.d. observations can be found in a paper entitled “Nonpara-
metric testing for time series analysis: A bibliography,” by Dufour, Lepage and
Zeidan (1982). This title however is somewhat misleading inasmuch as most of
the papers mentioned on rank-based methods deal with such problems as testing
for randomness (i.i.d. observations) against trend alternatives (trend in location,
in dispersion, ordered alternatives,...) under which observations are nonidenti-
cally but still independently distributed, whereas time series analysis is typically
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concerned with nonindependent observed data and their serial dependence
structure. Thus, it appears from this bibliography along with more recent
literature that, apart from some scattered and very piecemeal results on the
problem of testing for white noise against serial dependence [cf. Bhattacharyya
(1984) or Hallin, Ingenbleek and Puri (1985) for a review], the subject of rank
tests in time series analysis remains largely unexplored. ,

A first step toward a systematic treatment of this subject was taken in two
papers by Hallin, Ingenbleek and Puri (1985 and 1987), where locally asymptoti-
cally optimal and locally maximin-optimal rank tests (in the Pitman-Noether
sense) were derived for the problem of testing randomness against alternatives of
ARMA dependence. Two classes of serial rank statistics were introduced for
that purpose.

The first one is the class of linear serial rank statistics, of order p, of the form

n
(1.1) S™M=(n-p)' L a™(RM,RM,,...,RP,),

t=p+1

where R{™ denotes the rank of the observation X{® in an observed series
XM™ = (X™,..., X™) of length n, and a®™)(---) is some score function. Of
special interest is the particular linear serial rank statistic, namely, the rank
autocorrelation r{") [see (2.5) for definition] of order i associated with density
f(+) which enjoys most of the asymptotic properties of the usual sample autocor-
relation r{™ for Gaussian series [cf. Hallin, Ingenbleek and Puri (1987) and
Hallin and Puri (1987)].

The second class of rank statistics considered is that of quadratic serial rank
statistics, which are quadratic forms of linear serial rank statistics [cf. Hallin,
Ingenbleek and Puri (1987)]. Of particular interest are the rank portmanteau
statistics n¥;_\(r{"Y)? which provide a rank version of Box and Pierce’s (1970)
classical portmanteau statistic nX%_,(r{™)>.

1.2. Testing randomness against ARMA alternatives. Consider the sequence
of ARMA( p, q) models

p q
(1'2) X, - n~1/? Z a; X, ;=¢+ n~? E be,_;, telZ,

i=1 i=1

where {¢,} is an independent white noise, i.e., a family of i.i.d. random variables
with mean zero, unspecified variance 6% and density function f(-) (f has to
satisfy some mild technical assumptions; cf. Section 2). Let a; =0, i > p and
b;=0,1>q; put a=(ay,..., Aayp, q)) a0d b = (by,..., bpay(p, o)) and denote
by || - || the usual Euclidean norm. The vectors a and b and the density f
determine what we call here a specified ARMA alternative K ™(a,b; f). Denote
by H§™ the null hypothesis of randomness, under which X is a vector of i.i.d.
random variables with unspecified density function. Then an asymptotically
most powerful a-level test ¢(™"(a,b; f) (among all tests of given level a) for
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testing randomness against K ("(a, b; f) is given by

¢*(a,b; f) =1
(1.3)

max(p, q)
it Y (n—i)"%(a;+b)r{m > |a+b|k

i=1

l1-ar

where &, _, denotes the (1 — a)-quantile of the standard normal distribution. In
the Gaussian case [assuming E(X,) = 0], (1.3) can also be expressed, under
asymptotically equivalent ‘parametric” form, in terms of the sample autocorre-
lations r{™ = Zf_, | X{MX{"/Y7_(X{™)?, as

%")*(a,b; f) =1
(1.4)

max(p, q)
it Y (n—i)"a;+ b)r™ > |a+ bk, _
i=1

These results follow from Proposition 3.2 in Hallin, Ingenbleek and Puri
(1985); they can also be obtained as particular cases of Propositions 2.4 and 4.3
by letting p, = g, = 0 [hence A(L) = B(L) = 1] in (3.2) and (4.2).

Of primary importance from the practical viewpoint is the development of the
theory when the coefficients a and b in the ARMA model (1.2) are unspecified.
We thus consider the alternative K{*)(m) consisting of all ARMA( p, q) depen-
dencies (1.2) such that max(p,q) <m: K{™(m)= U{K™(a,b; f)la+b €
R™}. Also, denote by K{*(m|d), where d € R*, the family of all ARMA
dependencies in K[™(m) such that lla + b| > d.

Then an asymptotlcally maximin most powerful a-level test Y{™*(m; f)
(among all tests of given level a) for randomness against any alternative
K{™(m|d), d € R*, can be based on the rank portmanteau statistic of order m,

(1.5) YO (m; f) =1 if Z(n—z)( ) > %2 s

where x?n; 1 denotes the (1 — a)-quantile of the x? distribution with m degrees
of freedom. In the Gaussian case, (1.5) can also be expressed, under asymptoti-
cally equivalent *parametric” form, in terms of the classical Box—Pierce port-
manteau statistic

m
(1.6) Yrm f) =1 it Y (n—i)(r™) > X2 e

i=1

These latter results follow, as particular cases, from Proposition 4.3.

1.3. Testing an ARMA model against another ARMA model. Testing for
white noise (with unspecified density function) against ARMA dependence is
certainly a very important problem in time series analysis, mainly because the
nonrejection of a null hypothesis of randomness implies that complicated time
series analysis procedures can be safely replaced with much simpler and more
traditional devices such as the usual linear model methods. As pointed out by
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Dufour and Roy (1985), tests for randomness can also be used to check several
important economic hypotheses, such as market efficiency, rational expectations,
life cycle-permanent income hypotheses, etc.

The problem of testing a given ARMA model (with unspecified density
function) against other ARMA models is, however, even more important because
of its implications in the various identification and validation steps that are part
of any time series model-building procedure.

Denote by H™(A, B; -) the null hypothesis under which the observed series
X™ is generated by the ARMA( p,, q,) model

o A(L)X,= X, ~ A X, — - —A, X,_
' =¢+Bg,_,+ - +Bye,_, =B(L),, t€L,

where {¢,} is a white noise process with unspeciﬁed density function [ L denotes
the lag operator and A(L)=1- AL - --- -A,L"”, B(L) =

B,L + --- +B, L% are linear difference operators] Cons1der the filtered process
{Z [A(L)]/[B(L)]Xt} and the filtered series Z‘™ = (Z{"™,..., Z\™) associ-
ated with the observed series X(™ (at this stage, we disregard the “starting
values” problem involved in the definition of Z(™); as shown in Appendix 2, these
starting values do not affect asymptotic results). Obviously, X is an
ARMA(p,, q,) series generated by (1.7) iff Z(™ is a white noise series. At first
sight, the problem of testing H(™(A,B; ) for the original series X thus
reduces to the previously solved problem of testing for white noise (H§™ for the
filtered series Z(™). This is true, actually, as far as the null hypothesis is
considered; let us now turn to the alternative.

The alternative hypotheses of interest here are those under which X(® is an
observed series from some ARMA model a(L)X, = B(L)g, distinct from (1.7). In
order to investigate locally optimal procedures, we shall consider sequences of
alternatives that are contiguous to the null hypotheses (see Section 2.2). Let

w9 a™(L)X, =X, — o™X, | — - _(,‘(n)Xt_p2
’ =g, + :B(n)et—l + . B(n)et &= B(n)(L)s , tez,
be a sequence of ARMA( p,, q,) models, with p, > p,, g, > q, and
a(n)={Ai+n‘ Yo 1<i<p,
13 — .
n~1%y, Py <1 =Dy,
(1.9)
.B‘(n) = Bi + n_1/28i7 1< i < 915
n~2%,, g, <i<q,.
Denote by y and 8 the vectors (yy,..., v,,) and (8;,..., 8,,), respectively, and by

K®™(A,B; v, 8; f) the sequence of ARMA( DP2sqs) alternatlves (1.8) correspond-
ing to specified v, 8 and f. If X(™ is an observed series from (1.8), it is easy to
see that the filtered series Z(™ is generated by the model

(1.10) «™(L)B(L)Z,= A(L)8"(L)s,, te,
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an ARMA(p, q) model with p, —p, <p <p, + q,and ¢, — ¢, < g < p, + q,.
The model (1.10) is not a model of the type (1.2) considered in Section 1.2, except
for the very particular case where a'™(L) and B (L) are of the form

a™(L) = A(L)(l -nV(a, L+ - +apLP)),

B™(L) = B(L)(1 + n%(b,L + -+ +b,L9)),

yielding, for the filtered series, the ARMA(p = p, — p,, ¢ - g5 — q,) model
Z,—nV¥aZ,_,+ - +apZt_p) =g +n (b, + - +bqet_q).

(1.11)

Consequently, the problem of testing an ARMA model (for the original series
X (™) against another one [viz. testing H™(A, B; -) against K ™(A,B; v, §; f)]
does not, in general, reduce to the previously studied problem of testing for white
noise (for the filtered series Z(™) against ARMA dependence [viz. testing H{™
against K (")(a,b; f)], and the results of Hallin, Ingenbleek and Puri (1985, 1987)
are no longer applicable to this new problem. The optimal tests indeed will be
shown to depend, in a very crucial way, on the tested model (1.7).

1.4. Outline of the paper. We first consider, in Section 2, the problem of
testing for randomness against contiguous specified alternatives of general linear
dependence. The asymptotic distribution of the log-likelihood ratio for this
problem is derived in Proposition 2.2, and an asymptotically most powerful rank
test is provided in Proposition 2.4. These results are then used in Section 3,
where we show that the model (1.10) describing the behaviour of the filtered
series Z(™ under the alternative, in the problem of testing an ARMA model
against some other ARMA model, is a particular case of the general linear model
considered in Section 2. An asymptotically most powerful statistic for testing a
given ARMA model against another one is given in Section 3.2, where we also
establish the asymptotic sufficiency [in the sense of Le Cam (1960) and Hajek
and Sidak (1967)] of a vector of max(p, + q,, p, + @,) rank statistics [see (1.8)
and (1.9) for a definition of p,, p,, ¢; and q,]. These statistics involve the
f-rank autocorrelations (of all available orders) and an arbitrary fundamental
system of solutions of the homogeneous difference equation A(L)B(L)Y¥, = 0,
t € Z, defined by the ARMA model (1.7) to be tested. The asymptotic normal
distribution of this sufficient statistic is provided in Proposition 3.3.

It follows (cf. Section 3.2) from the definition of asymptotic sufficiency that,
under certain conditions, asymptotically maximin most powerful tests can be
based on asymptotically sufficient statistics. We therefore introduce, in Section
4.1, a generalized quadratic serial rank statistic extending the concept intro-
duced in Hallin, Ingenbleek and Puri (1987). The definition of this quadratic
statistic, although involving an arbitrary fundamental system of solutions of the
homogeneous equation A(L)B(L)¥, =0, t € Z, is shown not to depend on the
particular system adopted (Proposition 4.1); examples are provided.

The asymptotic x? (under the null hypotheses) and noncentral x? (under the
alternative) distributions of this statistic are obtained in Proposition 4.2, and the
asymptotic maximin optimality of the corresponding test is proved in Proposi-



OPTIMAL RANK PROCEDURES FOR TIME SERIES 407

tion 4.3. The form of the maximin-optimal statistic is discussed in some detail in
Section 4.2. Section 5 provides some results on the asymptotic relative efficien-
cies of our rank tests with respect to some classical parametric tests (such as the
classical Box—Pierce or Durbin—-Watson tests).

The ranks used throughout the paper are the ranks of residuals whose
derivation may require the inversion of a moving-average operator. Such residu-
als in this case cannot be obtained from a finite series of observations, and
approximate residuals have to be substituted for the exact ones. Appendix 2
shows that this use of approximate residuals has no influence upon the results of
the paper. Appendix 1 provides a brief overview of some results on linear
difference equations which are used continuously throughout the paper. Appen-
dix 3 concentrates on the proofs of the propositions.

2. General linear processes.

2.1. The general linear alternative. Denote by {¢,; ¢t € Z} a discrete-time
stationary white noise, i.e., a sequence of independent and identically distributed
real-valued random variables with mean E(e,) = 0 and (unspecified) variance
E(£2) = ¢%. Assume that these random variables have a density function f(x)
(with respect to the Lebesgue measure) and that the following technical condi-
tions are satisfied:

1. ¢, has finite moments up to the sixth order.

2. f(x) is (a.e.) derivable [denote by f’(x) its derivative], absolutely continuous
on finite intervals [see Hajek and Sidak (1967), page 15] and satisfies
E[If'(e,)/f(e)|?*%] < oo for some 8 > 0 [this implies that f(x) has finite
Fisher information I(f): 0 < I(f) = E[(f'(¢,)/f(e,))?] < 0].

3. Denote by F(x) the cumulative distribution function associated with
f(x) and let F~Y(u) = inf{x|F(x) > u}, 0 < u < 1. Define ¢(x) as
—f(F~YF(x)))/f(F~%(F(x))). Assume that ¢(x) is a.e. derivable and that its
derivative ¢'(x) is (a.e.) Lipschitzian and square integrable: |¢'(x) — ¢'(y)| <
Kjx — y| (K, K’ and K” will be used throughout the paper to denote
constants—not necessarily the same), and [j¢’%(F~(u)) du < . Notice that
¢(x) is a.e. equal to —f'(x)/f(x).

4. f is strongly unimodal [cf. Hajek and Sidak (1967), page 15].

Let a = (a,, a,,...) and b = (b, b,,...) be two sequences of real coefficients
such that ¥ ,|a;| < o and £2,|b,| < oo. This implies that a and b are elements
of the Hilbert space /2 of the square-summable sequences, which ensures that,
for n sufficiently large (we henceforth shall assume that the following holds for
n € N), the functions 1 — n~ /2L |a,2* and 1 + n~1/2Lb,z are both analytic
inside and on the unit circle, as well as their inverses. The stochastic difference
equation (of “infinite order”)

0 ]
2.1 X,-nV2Y a,X, ;=¢+n"V%Y be,_;, tez,
t i i t i i

i=1 i=1
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therefore correctly defines a unique stationary general linear process { X{™}, i.e.,
a process of the form

0
(2.2) XM=¢+ Y cMe,_;,, tel,

i=1
with X2 (¢f™)? < oo [see, e.g., Priestley (1981), Section 3.5.7]. As can be easily
seen from (2.2), {X{™} has finite sixth-order moments if {e¢,} has. Notice,
however, that the coefficients ¢{™ in (2.2) are generally not of the form n=/%c,,
so that (2.2) is not a particular case of (2.1).

Let x™ = (x{™,...,x{™) be the value of an observed series X =
(X{™,..., X{™) of length n. Denote by K{™ the hypothesis under which X, is a
finite realization of some general linear process {X{™}, defined by (2.1) with
unspecified sequences a and b and a specified input white noise density f(x)
satisfying 1-3; let K()(a,b; f) be the subhypothesis obtained by specifying a
and b. Such hypotheses will be referred to as (specified or unspecified) general
linear alternatives. Clearly, general linear alternatives constitute a generalization
of the ARMA alternatives K ™(a = (a, -+ a,), b= (b, --- b,); f) previously
considered in Section 1.2 (and this is why we adopt similar notations); they also
include the hypotheses of the form K (")(A,B; v, 8; f) (see Section 1.3) we shall
be interested in when testing an ARMA model against other ARMA models—this
latter statement will be made clearer in Section 3.1.

In Sections 2.2 and 2.3, we mainly establish for general linear alternatives
some results (viz. contiguity and the form of asymptotically most powerful tests)
that will be needed in the problem of testing an ARMA model against other
ARMA models. First let us state a theorem due to Anderson [(1959); cf.
Anderson (1971), Theorem 7.7.1] which will be used repeatedly.

THEOREM 2.1. Let Y™ =Y™ + R™, neN, k € N. Suppose that R(™
converges to zero in probability, as k - oo, uniformly with respect to n [i.e.,
for any ¢ >0, ¢ >0 there exists a k,(€,¢&’) not depending on n such
that P[|R™| > ¢] <¢” for any k > k,] and that the distribution functions
E™(y) = P[Y™ < y] converge, as n — o, to some distribution function
E(y) such that lim,_,  F(y) = F(y) at every continuity point of F(y). Then
lim,_,  P[Y™ < y] = F(y) at every continuity point of F(y).

2.2. Generalized linear serial rank statistics. In Hallin, Ingenbleek and Puri
(1985), we established the contiguity of sequences of finite-order ARMA alterna-
tives and the white noise hypothesis H{™. Proposition 2.2 extends this result to
general linear hypotheses of the form K (™(a,b; f).

Denote by L™(X™) the likelihood ratio for testing H{") (the white noise
hypothesis with specified density f ) against K (™(a,b; f ). Then Proposition 2.2
is proved in Appendix 3.

PROPOSITION 2.2. The log-likelihood ratio log L™(X™) is asymptotically
normal, with mean — 1L% (a; + b,)%62%I( f ) and variance ¥2 (a; + b,)%*I( f)
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(under H{™). The sequences of hypotheses K (m)(a,b; f) and H{™ are therefore
contiguous.

Linear serial rank statistics of order p defined in (1.1) consider successive
(p + 1)-tuples of observations and consequently cannot be expected to account
for serial dependencies of orders higher than p. This is confirmed by Proposition
2.3, which motivates the introduction of generalized linear serial rank statistics.

Consider the linear serial rank statistics S of order p given in (1.1). Let

(n-p-1! YooY an(ineesipe)

! X ;
n: 1<i# - #ip<n

(2.3) m™ =
be the expectation of S under H{™. Assume that there exists a function
J( -+ ) defined over (0,1)?*! such that

f [J(0, ..., 0y 1)F P doy -+ dv,, < oo forsome 8 > 0,
[o,117*!

satisfying (under H{™)
(24) lim E{[J(F(Xl(n)),..., F(Xz(;'i)l)) - a,,(Rg"),..., Rﬁﬁ)l)]z} —o.
n— oo /

J(--+) is called a score-generating function associated with S™. We further-
more may assume without loss of generality [cf. Hallin, Ingenbleek and Puri

1987)] that
f J(vy,.o s 0p) [1d;=0, i=1,..,p+1
[0,117*! J*i

The following result then generalizes Proposition 4.3 in Hallin, Ingenbleek and
Puri (1985).

PROPOSITION 2.3. nV/%(S™ — m™) is asymptotically normal, with mean 0
and variance V? under H{™, with mean L., (a; + b,)C; and variance V* under
K™ a,b; ), where

V= ./;0 1]2p+1{[J(Dl’°"’ OP+1)]2

P
+2 % J(v1,.0 0, 0y ) (0145 vp+1+j)} do, -+ doypiy
j=1

and

p—i
Ci = o 1],,+1J(vl"“’ 0p+1) Z ¢'(F_1(01+j))F—1(01+j+i) do, -+ dvp+1_
I j=0

For the proof, see Appendix 3.
Notice that this result implies that the asymptotic distribution of S
is exactly the same under K (™(a,b; f) as under the pth-order truncation
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of K"‘)(a,b; f) obtained by putting 0 =a,,, =a,,,= --- and 0=b,,, =
b,.o = -+ in (2.1). As a consequence, a finite-order serial rank statistic gener-
ally cannot capture all the available information for testing H{™ against
K ™(a,b; f).

Accordingly unless a and b are such that a; = 0 = b, for i larger than some
P < oo [in which case the general linear alternative K (®)(a,b; f) reduces to the
ARMAC(p,, q,) alternatives considered in Hallin, Ingenbleek and Puri (1985)],
the asymptotically most powerful test statistic for H{™ against K ™(a,b; f)
does not belong to the class of linear serial rank statistics anymore. Yet an
asymptotically most powerful test based on ranks does exist, as asserted by
Proposition 2.4, but its “order” increases with sample size n.

Define the rank autocorrelation coefficient associated with density f (or

f-rank autocorrelation) of order i as
(n) (n)
R F-1 R m™ | [sm
n+1 n+1 ’
with

(26) m®=(a(n-1)" TL ¢(F;(

1<i#i3<n

(2.5) ri‘;’?=[(n—i)_l E ¢(

t=i+1

and

r = e, ZE, ol () ()

1) 1<y #ip<n

i, B M)

2

(n—i) n(n-1)(n-2), %l <n n+
@7) X"’(F 1( :1))F_l(n:21)rl(nljl)
0w, EEEE ({3

iy iy iy

-1 -1 -1

X¢(F (n+1))F (n+1)F (n+1)]
~(n = i)(m).

If a and b belong to /%, we denote by (a,b) = £ ,a;b, their scalar product;

lall = {a, a)'/? stands for the corresponding norm.

PROPOSITION 2.4. Consider the test statistic

n—-1 n—1 1/2
28) 8™ =n 2 Y (n—i)"a; + b)ry / [ Y (a; + b,-)z] .

i=1 i=1
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Then:

@) n'2S™* is asymptotically normal, with mean 0 and variance 1 under
H{®, and with mean {(a + b),(@ + b)) ¢2I()]*/%/||a + b|| and variance 1
under K ™(&,b; ) (with &,b € 1?).

(i) S™* provides an asymptotically most powerful test for H{™ against the
general linear alternative K ™ (a,b; f) (among all tests of given level a):

e™M*(a,b; f) =1
n—1 n—-1 1/2
if E(n—i)‘/z(ai+bi)ri£';>>[ E(ai+b,»)2] -
i=1 i=1

where k, _, denotes the (1 — a)-quantile of the standard normal distribution.

(2.9)

For the proof, see Appendix 3.

REMARK 2.1. Unless there exists some p < oo such that a;+ b,=0, i >p
[in which case (2.9) reduces to (1.3)], S™" does not belong to the class of linear
serial rank statistics anymore. Its asymptotic distribution cannot be obtained by
the same techniques [viz. score-generating functions) as in Hallin, Ingenbleek
and Puri (1985). Call S™" a generalized linear serial rank statistic.

REMARK 2.2. The asymptotic distribution of n'/25(”—hence the asymp-
totic optimality of the corresponding test (2.9)—depends on a and b through the
sum a + b only: (2.9) is therefore asymptotically most powerful against the more
general alternative U{K (a, B; f)|a + B = a + b}.

REMARK 2.3. Just as in the case of finite-order ARMA alternatives, there
exist general linear alternatives K (&, b; f) against which the asymptotic
power of (2.9) is a (viz. those for which (& + b) L (a + b), where L denotes the
orthogonality relation in 72]. This motivates the consideration of generalized
quadratic rank statistics (see Section 4.1).

3. Testing an ARMA model against another ARMA model: Asymptotic
sufficiency.

3.1. The general linear alternative for residuals. Consider now the null
hypothesis H("(A,B; -) under which the observed series is generated by the
ARMA( p,, g,) model (1.7), where

(a) A(L) and B(L) are of orders p, and q,, respectively (i.e, A4, # 0 # B, ),

(b) the polynomials A(z) and B(z), z € C, have no common roots,

(c) the polynomials A(z) and B(z), z € C, have all their roots outside the unit
circle, ‘

(d) the unspecified density f(-) of {e,} satisfies the assumptions of Section 2.1.

Denoting by Z, the filtered observations (A(L)/B(L))X, [i.e., the observed
residuals with respect to (1.7)], we have seen that, under the null hypothesis,
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{Z,} is a white noise process. Let us show that, under the alternative
K™(A,B;v,d; f) [see (1.8) and (1.9)], {Z,} is generated by a general linear
model of the form (2.1) we investigated in Section 2. We shall assume that
a™(L) and B"X(L)

(e) are such that the polynomials a®)(z) and B(*)(z2), z € C, have no root which
is common for any value of n € N.

For n sufficiently large, a{”(2) and B(")(z) have all their roots outside the unit
circle and (1.8) uniquely determines a sequence of stationary ARMA processes;
of course, we still assume that the density function f(-) of {e,} satisfies the
assumptions of Section 2.1. Suppose p, > 0 and ¢, > 0, and denote by G, and
H,, u € Z, the Green’s functions of the operators A(L) and B(L), respectively
(for definition, see Appendix 1). Under the preceding assumptions (a), (b) and (c),
we have [A(L)]"'=1+X* G, L* and [B(L)]"'=1+ X% H,L* with
% 1|IG,| < o and X2_,|H,| < o0; (1.10) then can be written as

oo min(py, u)
1-n"2% Y vG, L*|Z,
(3.1) umto el
o min(gg, u)
=|1+n"12 Z Z 6,H,_,L" e,
Let
min(py,i+p; —1)
(38.2) a; = > Y,Gi—;
Jj=1
and
min(gy,i+g;—1)
bl = Z 8jHi—j’ t= 172:
Jj=1
Because G_, = G_,= -+ = G_lerl =H_ ,=H_ ,= -+ = H_q1+1 =0, (3.1)

is of the form (2 1). Let us show, moreover, that X% ,la;] < o and
Y2.b| < oo. For i <p,—p,+1, the a;’s are a linear combination of
Gi_1,Gi_y...,G;_,, which are solutions of the homogeneous equation
A(L)G, =0, t S & because of assumption (c), such solutions are decaying to
zero, as i — oo, at an exponential rate, which implies that ¥ ,|a;| converges.
The same holds for the b,’s and operator B(L). Equation (3.1) thus constitutes a
particular case of a general linear alternative, and testing H(™)(A,B; -) against
K (")(A,B; v, §; f) reduces to the problem of testing H{™ against K ("(a,b; f),
with a and b given in (3.2).
If py=0 and/or q, =0, put a;=v, i=1,...,p, and/or b,=9, i=
1,...,q,.

3.2. Asymptotically most powerful test and asympiotic sufficiency of f-rank
autocorrelations. An asymptotically most powerful test for H((A,B; )
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[ARMA model (1.7)] against K™Y(A,B;y,38; f) [alternative model (1.8)] can
now straightforwardly be obtained from Proposition 2.4.

PROPOSITION 3.1. An asymptotically most powerful test for H™(A,B; )
against K ™(A, B; v, §; f ) is given by (2.9), where the rank autocorrelations r{")
given by (2.5) are computed from the ranks of the filtered series Z™, and the
a;’s and b;’s are given in (3.2). Under the same conditions, the asymptotic
distribution of the generalized linear serial rank statistic (2.8) remains the same
as in Proposition 2.4(i).

Unless otherwise specified, all the ranks and rank statistics we refer to in the
sequel are computed from the filtered series Z(™.

Consider the general problem of testing H(™ against K V), where H(™ = {I{™}
and K™ = {I{™} are families of densities for some observed series X defined
over a sample space (Z™, /(™). Recall that the envelope power function
B(a, H™, K ™) for this problem is defined as

(3.3) Bla, HP,K™) = sup inf Eum[y™],
ym g ek

where the supremum is taken over all the tests (™ satisfying, for fixed
« € (0,1),

(3.4) Eplv™] <a, 1M eH™.

Let T™ be some statistic from (Z ™, &/ (™) to some range space (7 (™, ™).
Define the envelope power function B,(a, H™, K () associated with T by
taking the supremum in (3.3) over the set of all 7'(™-measurable tests Y™
satisfying (3.4). If we denote by H{™ and K{® the families of densities
[on (7™, ™)) induced from H™ and K™ by T, then clearly
Br(a, H™, K™) = B(a, H{™, K{M). Obviously, we also have

(3.5) B(a, H®, K ™) > Br(a, H™, K™);

if, however, an equality in (3.5) is achieved for every a € (0, 1) [this happens, e.g.,
if T is sufficient for the structure (2 ™, &, H™ U K ()], then T™ can be
considered, in some sense, as sufficient for the problem of testing H™ against
K ™. Accordingly, [Hajek and Sidak (1967), Chapter 7], we say that T™ is
asymptotically sufficient for the problem of testing H™ against K™ if

(36) lim [B(a, H™, K™) - Bp(a, HM,K™)]| =0, a€(0,1).

An important consequence is that if T is asymptotically sufficient for H™
against K (™, then any asymptotically maximin most powerful test ™" for H{™
against K{" is also asymptotically maximin most powerful for H™ against
K™,

Let us consider now the problem of testing H™(A, B; -) against unspecified
ARMA alternatives. Denote by

(8.7) K™(A,B;R”,R%; [) = U{K™(A,B;v,3; f)ly ERP2, 8 € R%},
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the alternative under which the observed series X(™ is generated by some
ARMA model [(1.8) and (1.9)] where y and & take on unspecified values,
although being of specified dimensions p, and ¢,. Let also d € R*, and denote
by 2(d) the set of values of (y,8) € RP2 X R? such that |la + b|| > d, with a
and b given in (3.2). In order to obtain asymptotically maximin most powerful
tests, we shall need to consider subhypotheses of the form

(3.8) K™(A,B;R”,R%; fld) = U{K™(A,B;v,3; f)|(v,8) € 9(d)}.

We then have the following sufficiency result.

PrOPOSITION 3.2. Let {¥D,..., ¥{P1*9)) denote an arbitrary fundamental
system of solutions of the homogeneous equation A(L)B(L)¥,= 0, t € Z. Writ-
ing m for max(p, — Py, qgs — q,), consider the max(p, + g, P, + q,)-tuple of
rank statistics [assume n > max(p, — p; + 3,9, — q; + 3, p; + q; + 2)]

n—1 n—1
(39) T =|rM,..,r", X YO, Y gerapmy
i=7+1 i=w+1
Then, for anyd € R*, T{Y, is asymptotzcally sufficient for the problem of testing
H™(A,B; -) against (3 8)

The proof (see Appendix 3) consists in establishing that the sufficient condi-
tions for asymptotic sufficiency of Hajek and Sidak’s (1967) Theorem 7.1.1 are
satisfied.

3.3. Asymptotic distribution of Tg¥;. We conclude this section by establish-
ing the asymptotic multinormality of any asymptotically sufficient vector T(”)
The proof of the following proposition essentially follows along the same hnes as
in Proposition 2.4 and is only briefly sketched in Appendix 3.

PROPOSITION 3.3. n'/>T{}); is asymptotically normal, with mean 0 under
H™(A, B; -), mean ((a1 + b),..., (a,+b,), X2_,.¥Y(a; + b)),
oo Dy ‘I'(Pl+q1)(a + b, ))’[oZI( )12 under K(")(A B;v,3; ) and full-rank
covariance matrix

I, O

0 W2

under both where W= (Wy,,,) and Wy, =2, ¥O¥D < 00, k1=
1"'°’pl + ql'

4. Testing an ARMA model against another ARMA model: Asymp-
totically maximin most powerful tests.

" 4.1. Generalized quadratic serial rankstatistics. Quadratic serial rank
statistics, providing rank-based versions of Box and Pierce’s (1970) portman-
teau statistic were introduced in Hallin, Ingenbleek and Puri (1987). Since
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however the asymptotically most powerful test for H(”(A,B;:) against
K™(A,B; v, 8; f) cannot, in general, be found within the class of linear serial
rank tests, quadratic serial rank statistics cannot be expected to provide optimal
tests against unspecified values of y and 8 (unless, e.g., p, = 0 = g,), and a more
general type of quadratic rank statistics has to be considered: generalized
quadratic serial rank statistics.

Let 8™ — m™ = (8( — m{™,..., 8/ — m{™Y be a column vector of gener-
alized linear serial rank statistics centered about their means [under
H™(A,B; -)]. Assuming that n!/%2(8™ — m(™) has an asymptotic covariance
matrix V2 of full rank, we define a generalized quadratic serial rank statistic as a
statistic of the form Q™ = n(S™ — m™ )V -34S — m™),

Since we have shown that asymptotically sufficient statistics Ty, exist for
testing H(™(A, B; -) against K ((A, B; v, §; f), it is intuitively quite natural to
consider generalized quadratic serial rank statistics of the form
(4.1) Q"4 5, = TS, WG TED), .

Actually, we shall establish in Section 4.2 that Q. ; provides an asymptoti-
cally maximin most powerful test for our problem. We first justify the notation

by establishing the important property that Qg ;, unlike T{?, does not
depend on the particular fundamental system {¥("} adopted.

PROPOSITION 4.1. The quadratic statistic Q4”5 ; does not depend on the
fundamental system {¥{"}.

For the proof, see Appendix 3.
Let us illustrate Proposition 4.1 by means of two examples.

EXAMPLE 4.1. Denote by Ay -+ A, ., the roots of A(z"")B(z7') =0,
2z € C, and assume that they all are distinct (hence of multiplicity 1—also recall
that they all lie inside the unit circle). Then a fundamental system of solutions is
provided by (¥ = N, ("*D te Z; j=1,..., p, + ¢;}. Q{"p is thus a quadratic
form involving the rank autocorrelations of orders 1 through 7 and geometrically
weighted sums of rank autocorrelations of orders 7 + 1 through n — 1. W is
then given by (Wy, ;) = (1 — AA)7Y).

ExaMPLE 4.2. Denote by ¢, = 9(t, t — u) the Green’s functions associated
with the difference operator A(L)B(L). Then (see Appendix 1) another funda-
mental system of solutions is {¥)=¢, . teZ;, j=1,...,p, +q,}.
Recalling that ¢, =9¢ ,= ... =9_, __ ., =0, we obtain Wy, =
L3209 k-1+i9-1-1+0 hence

-Y(O)ay(l) . ¢Y(P1+q1‘1)
-Y(l) :
'Y(l) ’

-Y(pl +qi-1) e -Y(l)-Y(O)
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where we denote by y©,...,y(P1*%~D the first p, + ¢, — 1 autocovariances of
the AR(p, + q,) process {£,; t € Z} characterized by the AR(p, + q,) model

(4.2) | A(L)B(L)¢, =, tez

[(n,; t € Z) a second-order standardized white noise]. This matrix W2, which has
also the nature of a Casorati matrix (cf. Appendix 1), is the one that appears in
the usual Yule-Walker equations associated with (4.2).

We now give the asymptotic distribution of nga;; I

PROPOSITION 4.2. Under H™(A,B; ), QY. ; is asymptotically x* with
max(p; + g3, Py + q,) degrees of freedom. Under K ™(A,B;v,8; f), it is
asymptotically noncentral x2, with the same degrees of freedom and with
noncentrality parameter

(4.3) Af(v,8) = 3lla + b|I%’I( f ),
where a and b are given by (3.2).

For the proof, see Appendix 3.

4.2. Asymptotically maximin most powerful tests for testing an ARMA model
against unspecified ARMA alternatives. Let us define an asymptotically maxi-
min most powerful test for H(™)(A, B; -) against an unspecified ARMA( p,, g,)
alternative as a test which is asymptotically maximin most powerful (among all
tests of the same level) against any alternative of the form K (")(A,B;R 7z,
R?; f|d) [cf. (3.8)], d € R*, f specified up to a scale parameter. We then have
the following result.

PROPOSITION 4.3. An asymptotically maximin most powerful test for
H™)(A, B; -) against an unspecified ARMA( p,, q,) alternative is provided by

(4’4) ‘I/an)*(A’B; p2’ q2; f) =1 lf Q(n)* B; f > Xmax(pﬁ—q2 pP2taq);l—a®

Accordingly, the envelope power function
B(a, H™(A,B; -), K™(A,B;R?2,R%; f|d))

converges, asn = 00, 001 = Koo p, g, p2+q1)(XmaX(p1+qz paraps1-a 3 G0 I(f)),
where X2, _, denotes the (1 — a)-quantile of the x* distribution with m degrees
of freedom and F,(-; \) the distribution function of the noncentral x> with m
degrees of freedom and noncentrality parameter \.

COROLLARY 4.4. The rank portmanteau statistic nXf.(r{?)? (cf. Hallin,
Ingenbleek and Puri, 1987) is asymptotically maximin most powerful against
unspecified ARMA(p,, q,) alternatives if and only if p,=q, =0 and p =
max( Py, 9)-

For the proof, see Appendix 3.
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REMARK 4.1. Denoting by Q{™ = n¥7_,(r{?)? the rank portmanteau statis-
tic of order 7 = max(p, — p;, q, — q,), maxmun-optlmal quadratic statistics
Q5. ; can be decomposed into Qg"),; ;= Q™ + Qg ;. Because Q™ only
depends on ri",...,r{?) whereas @ A")B ; only depends on ASOTPIS 3 NPT
Q™ and Q(")B ; are asymptotlcally independent x2-distributed statistics [under
H®™(A,B; )] Q}") contributes for max(p, — p,, ¢, — q,) degrees of freedom,
the maximal number of possible higher-order terms (autoregressive terms of
orders larger than p, and/or moving average terms of orders larger than gq,).
Q(”) 5, ; has the form of a weighted rank portmanteau statistic and contributes
for (p, + q,) degrees of freedom, one for each tested coefficient A,,..., 4,,
B,,..., B,. The consideration of this decomposition in case H(™(A,B; ) has
been reJected may provide a useful insight into the reasons why rejection
occurred, and thus suggest alternative model specifications.

REMARK 4.2. The noncentrality parameter A¥(y, 8) of the asymptotic distri-
bution of @{p. ; under alternatives of the form K (")(A, B; v, 8; f) also can be
decomposed into 1X7_(a; + b;)%2I(f) (contribution of the “unweighted part”
Q™) and X2, (a; + bi)2o2I( f ) (contribution of the “weighted part” @4, ;).
A study of the relation between these two quantities and the coefficients of
the tested model (1.7) provides an interesting insight into the importance of
the respective contributions of the “weighted” and “unweighted” parts to the
asymptotic power of (4.4). As a general rule, the contribution of the “ unweighted
part” does not depend on A(L) and B(L), whereas the contribution of the
“weighted part” is an increasing function of the “closeness to the unit circle” of
the roots of A(z)B(2) =0, z € C. To show this, let us consider a simple
example.

ExaMPLE 4.3. Consider the problem of testing the AR(1) model X, —
pX,_ ,=¢, t € Z, where |p| < 1, against ARMA(2,1) alternatives. Here 7 = 1
and

Y1 1=1

a;= i1 i—2 .
27 o Y - M 122,
b. = {81’ i=1,
‘o, i>2,

if an alternative of the form K ™(A,B; y = (v, ¥5), ® = (8,,0); f) is considered.
The noncentrality parameter (4.3) accordingly decomposes into (y, + 8;)% (con-
tribution of the “unweighted” @{™), which does not depend on p, and
T2 (1107 + ¥90 %)% = (110 + ¥2)%(1/(1 — p?)) (contribution of the “weighted”
Q. ;). Clearly, this latter contribution is approximately y; if |p| = 0—and the
optimal test (4.4) is then approximately equivalent to the test based on an
“unweighted” rank portmanteau statistic of order 2; if |p| = 1, then the contri-
bution of @y, ; can be arbitrarily large.

The absence of the weighted part QY. ; in the classical portmanteau
statistic is possibly responsible for the somewhat disappointing performance of
the Box-Pierce test (see also Remark 4.3).
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REMARK 4.3. Corollary 4.4 characterizes the only case [viz. A(L)=1=
B(L)] where an unweighted rank portmanteau statistic Q}") is asymptotically
maximin most powerful against the whole unspecified ARMA( p,, ¢,) alterna-
tive. Q}") can be shown however to provide maximin most powerful tests for
more general model operators A(L) and B(L) if this alternative is restricted in
an adequate manner. It can be shown, for example, that the unweighted rank
portmanteau statistic of order 7 is asymptotically maximin most powerful for
testing H(™(A, B; -) against the set of all ARMA( p,, g,) models of the form
A(L)a™(L)X, = B(L)b"™(L)e, considered in (1.11), where a™(L) =1 —
n~Y%(a,L+ -+ +a,L™) and b")(L)=1+ n"Y*b,L+ --- +b,L") are un-
specified, i.e., against alternative models which differ from the tested one only
because of the existence of 7 additional roots to the characteristic equations.

This latter type of alternative generalizes the’ ones considered for purely
autoregressive processes with Gaussian generating white noise by Hosking (1978),
who shows that in this particular case the parametric Box—Pierce portmanteau
test asymptotically coincides with the likelihood ratio test.

REMARK 44. QY B depends on p, and g, only through A = max(p, —
D1;92 — q,); (4.4) is thus actually asymptotically maximin most powerful against
the whole unspecified ARMA(p, + A, g, + A) alternative.

REMARK 4.5. Q{5 ; depends on the operators A(L) and B(L) only through
the symbolic product A(L)B(L), and thus takes the same form whether the
tested model is A(L)X,= B(L)¢, or B(L)X,= A(L)¢, or A(L)B(L)X, = ¢,
etc.; but the filtered series Z(™ from which @{z. ; has to be computed is not the
same.

REMARK 4.6. The coefficients appearing in the “weighted part” Q(”)B ; of
QY. ; (see Remark 4.1) are computed here from the asymptotic covariance
matrix W2 of Té,”) For small sample sizes, an exact orthogonalizing matrix could
possibly be introduced.

ExaMPLE 44. Consider the problem of testing the null hypothesis that an
observed series X(™ was generated by the ARMA(1,1) model X, — X, |, =
&, + 3¢,_,, t € Z, against unspecified ARMA(2, 2) alternatives [or, equlvalently,
against ARMA(2,1) or ARMA(1,2) alternatives; cf. Remark 4.4]. Let Z") =
Z{ =0 and Z{" =X - X - 1Z("), t=1,...,n; denote by r{p the
corrwponding f-rank autocorrelations. A fundamental system of solutions of
(1 —4L)1 + 1L)¥, =0, t€Z, is {(¥O=H"%¥D=(-1)"2) and 7=
max(p, — P;, ¢, — q,) = 1. The covariance matrix W? (see Example 4.1) here is
of the form

Sk of9

-] [+g™
W= =
- L+2]™ -] (

Wi e
S~ ——
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The statistic @5, ; is thus

Q.= nlri) ol (0" T (1) |

|

S ofR

(45) (-9
=n(rm)* + (1 436)n[n¥2(§) ri | + (19.600)n [gz(—%)in‘;"f]

n—1 .
-3 937)n[ 2 (3) r‘"’][ )» (-%)’n‘;’?]-
i=2
If ARMA(3, 3) [or ARMA(3,2), ARMA(3,1), ARMA(], 3),...] alternatives are to
be considered, (4.5) has to be modified to

n(r )2 + n(rgn;) (2.243),1[21(%)%27]2 + (78.400)n[nz—:1( ‘ l(nf)]z

=3

+(9.844)n[nf(%)" ][ > (-3 ‘"’]

i=3
5. Comparison with existing procedures: Concluding remarks.

5.1. A brief overview of some existing procedures. Tests of time series
models adequacy have been extensively studied, and a general survey on the
literature on this subject is certainly not possible here. A common feature of the
most frequently used procedures is that they do not pay much attention either
to the particular model to be tested or to any specific type of alternative. The
typical appreach consists indeed in computing residuals from the model to be
tested, then applying to those residuals some existing test for white noise.
Classical examples are the Durbin—-Watson test, its higher-order generalizations
[Evans and King (1985)] or the popular Ljung-Box—Pierce portmanteau test
[Box and Pierce (1970); Ljung and Box (1978)].

More recently, attempts have been made to bring some optimality considera-
tions into the problem. Several authors [see, e.g., Hosking (1978)] have char-
acterized some restricted alternatives against which existing procedures—such as
Quenouille’s or Box and Pierce’s—achieve optimality. A more direct approach
has been undertaken by some others, who derive optimal tests for some specific
situations [mostly, Gaussian Lagrange multiplier tests—see Godfrey (1979),
Hosking (1980), Poskitt and Tremayne (1980); multivariate results are also
available: Hosking (1981) and Poskitt and Tremayne (1982)]. A complete result
for Gaussian AR(1) series has been obtained in Dufour and King (1986), where
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locally best invariant tests are shown to rely on exponentially weighted sums of
sample autocorrelations—a test statistic which is a parametric first-order Gaus-
sian version of our asymptotically sufficient statistic (3.9).

Whereas existing parametric procedures thus either belong to the category of
pure significance tests or address restricted classes of Gaussian alternatives, our
weighted rank portmanteau tests are providing a locally asymptotically optimal
solution to the problem of testing for time series models adequacy in its most
general form. Moreover, the proposed solution enjoys all the additional ad-
vantages of nonparametric procedures: it is robust and distribution-free.

5.2. Efficiency comparisons. A quantitative comparison of the asymptotic
performances of our nonparametric tests with those of existing parametric ones
can be achieved through the computation of asymptotic relative efficiencies,
whereas small-sample comparisons require extensive Monte Carlo experiments.
We therefore limit ourselves to asymptotic considerations; a study of small-sam-
ple situations is the purpose of an ongoing research [see Hallin and Mélard (1987)
for some results]. Two particular problems, for which an “optimal” parametric
Gaussian procedure is available, are considered in some detail: (a) testing the
coeflicient of an AR(1) model and (b) testing for additional AR or MA roots. For
a comparative discussion of weighted rank-based and classical portmanteau
tests, we also refer to the end of Section 4.

(a) Testing the coefficient of an AR(1) model. Seven procedures are considered
for testing H{™: p = p,, 0ol < 1, against H{™: p # p, in the AR(1) model
X, — pX,_, = ¢, All correlation coefficients are computed from the residuals
ZM™ = XM — p, X{™) or from their ranks R{™. For the sake of convenience, all of
the following tests have been given an asymptotic 1 degree of freedom chi-square
form. The noncentrality parameters (5.2), (5.4), (5.6), (5.8) and (5.10) are those of
the asymptotic noncentral chi-square distributions of the test statistics under
the local sequence of alternatives associated with X, — (p, + n”2d)X,_, = ¢,
where ¢, has density f(-). x2_, stands for the (1 — a)-quantile of the chi-square
distribution with 1 degree of freedom.

(i) Two-sided first-order sample autocorrelation test, two-sided Durbin-
Watson test, von Neumann’s ratio test, Ljung—Box—Pierce test of order 1 (all
these tests are asymptotically equivalent):

(5.1) ‘ reject H if (n — 1)(r{™)" > x2_.,
(5.2) noncentrality parameter: d?/2.

(ii) Two-sided Dufour and King test: reject H{™ if
2
69 (- @)| T i) ) / (1= ) > X

(5.4) noncentrality parameter: d?/2(1 — p2).
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(iii)—(v) van der Waerden, Wilcoxon and Laplace (weiéhted) rank port-
manteau tests: reject H§™ if

n—1 2
(5.5) (1- p%)l Y (n- i)l/zpé‘l"z‘;'?] /(1 ~ i) > X

i=1

noncentrality parameter: d? [flcpg(G'l(u))cp,(F' Y(u)) du
0

(5.6) 2
x/OlG—l(u)F—l(u)do] /2(1 - 03)1(g);

here g, G, ¢, and I(g) denote the standard normal, logistic and double
exponential densities, distribution functions, scores-and Fisher information,
respectively.

(vi) Spearman (weighted) rank portmanteau test: reject H{™ if

n—1 2
CORN p%)[ X (n—i) 2p3‘lfi‘”’] / (1= 6§ 0) > xi-as
i=1

noncentrality parameter: 144d* [ / lu<1>(F‘1(u)) du
0
(5.8) ) 2
xf oF~}(v) dv] /2(1 = p2);
0

7™ stands here [and in (5.9)] for the Spearman—Wald—Wolfowitz rank autocor-
relation coefficient; see Hallin and Mélard (1987), Hallin and Puri (1987) and
Dufour and Hallin (1987).

(vii) Bartels’ (1982) two-sided rank version of von Neumann’s ratio test:

(5.9) reject H{™ if (n — 1)(%™)* > x2_,,
. 1 1 2
(5.10)  noncentrality parameter: 144d 2[ f up(F~Y(u)) du f oFY(v) dv] / 2.
0 0

The asymptotic relative efficiencies (ARE) of all these tests with respect to each
other can be obtained, under various densities f, as the ratios of their respective
noncentrality parameters. Table 1 provides some numerical values.

(b) Testing against additional AR or MA roots. The problem considered here
is a generalization of the one studied in Hosking (1978); see Remark 4.3 for
description. Five procedures are compared here: the Ljung-Box-Pierce para-
metric portmanteau test (of order « if # additional roots are to be tested) which
is also, asymptotically, the Gaussian likelihood ratio test and four rank-based
Dportmanteau tests (of order 7; in this particular case, they are of the unweighted
type). According to Proposition 4.3 (and using the same notation), their asymp-
totic powers, against contiguous alternatives of the form considered in Remark
4.3 and such that X7_(a; + b;,)* = d?, are of the form 1 — F(x2.,_,; A?), where
A2 is obtained by letting p, = 0 in the noncentrality parameters (5.4) (for the
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TABLE 1
Asymptotic relative efficiencies of various parametric and nonparametric test procedures for problems (a)
and (b) (denoted by superscripts (a) and (b), respectively) under various density types. For each density
type, the ARE’s are computed with respect to the locally asymptotically optimal test(s) (ARE value of 1).

Parametric Nonparametric
van der
Dufour-King® Waerden® .

Density r{m Ljung-Box- vander Wilcoxon® Laplace® Spearman® Bartels®
type f - Pierce® Waerden® Wilcoxon® Laplace® Spearman® —
Gaussian a-ed) 1 1 0.948 0.613 0.912 0.912(1 — p)
Logistic 0.912(1 — p3) 0.912 0.954 1 0.741 0.912 0.912(1 - ¢)
Double

exponential 0.500(1 — p2) 0.500 0.613 0.741 1 0.613 0.613(1 — p2)

Ljung-Box-Pierce portmanteau test), (5.6) (for the van der Waerden, Wilcoxon
and Laplace unweighted portmanteau tests) and (5.8) (for the Spearman
unweighted portmanteau test), respectively.

Some numerical values are provided in Table 1.

An inspection of Table 1 reveals the excellent asymptotic performances of
rank portmanteau tests: the van der Waerden tests perform uniformly strictly
better than the optimal normal-theory tests [viz. the Dufour-King test in
problem (a) and the usual Ljung-Box-Pierce portmanteau test in problem (b)]
—except of course in the case of Gaussian series, where they perform equally
well. The ARE of optimal normal-theory tests with respect to Laplace port-
manteau tests can be as low as 1. Note that the Wilcoxon portmanteau tests
uniformly dominate the corresponding Spearman-Wald-Wolfowitz procedures.
As for the Durbin—-Watson and von Neumann ratio tests, their relative perfor-
mances in problem (a) with respect to optimal rank-based procedures can be
arbitrarily bad as |py| — 1.

APPENDIX 1

Difference operators and difference equations. ARMA models char-
acterize stochastic processes as solutions of stochastic difference equations. We
briefly review here some basic results on difference operators and difference
equations that are used throughout the present paper. These results are uni-
variate constant-coefficient versions of more general results given in Hallin (1986)
[see also Miller (1968)].

Denote by ©,,...,0, a p-tuple of real coefficients with ©, # 0 and by L the
lag or backshift operator (Lz, = z,_,). These coefficients characterize a linear
difference operator of order p: ©(L) =1 + LP_,0,L". Such an operator defines
difference equations O(L)¥, = w,, t € Z, the solutions of which are completely
determined by p successive “initial” values.

The Green’s function G, associated with the operator ®(L) is the solution of
the homogeneous equation O(L)G, = 0, t € Z, taking on initial values G, = 1,
G(-1)= - =G(-p+1)=0.
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It is easy to see that the set of all solutions of the homogeneous equation
O(L)¥,= 0, t € Z, constitutes a vector space of dimension p. A basis of this
vector space is called a fundamental system of solutions. Two fundamental
systems are particularly convenient:

(a) Denote by A,...,A,, the roots of the polynomial ©(z7'), ie., the
solutions of 1 + ®,27" + -+ +@,277 =0, z € C. Assume that all these roots
are of multiplicity 1. Then {X,,..., X’} constitutes a fundamental system of
solutions.

(b) Another fundamental system is provided by the p-tuple of Green’s
functions {G,, G, ..., G;.,_1}; see Hallin [(1986), Theorem 1.1].

Using this latter fundamental system, the general solution of @(L)¥, = w, is

t—1
Y Gyt (GorGraryeovs Gy )C (¥ ¥y, ¥,
u=0
t>1,
‘I’té —p
Z Gy + (Gt’Gt+1’"’1Gt+p—l)C—l(‘I'0’\I,-—-l’“"\P—p+1),’
u=t
t< —-p,
where
G, G, G,_.|™' [1 e, 0, ,
ci-| G G Gpz| _ |0 :
. ‘. . . 91
G—p+1 G—p+2 Tt GO 0 0 1

[C is the value for ¢ = 0 of the Casorati matrix associated with the fundamental
system {G,, G,,,,..., Gy p_1}]

APPENDIX 2

Exact and approximate residuals. The exact residuals Z™ =
(Z™M, ..., Z™M), where Z{™ = [A(L)/B(L)]X{™, 1 < t < n, cannot be derived
from the observed series X(™ [unless B(L) = 1]. From Appendix 1, we have
indeed

t—1 P .

Zm= Y Hu(l - ZA,LJ)X;fz,
u=0 Jj=1

(A2.1)

+(Hypoo Hy g 1)C7Y (25,0, 27 L), >0,

where the values of X(™, —p, + 1 <t<0and Z{™, —q, + 1 < t <0 are not
available from the observations. Approximate residuals Z§”) can be obtained by
putting X{W = X = . = X0 —0=ZM=ZMW = ... =Z™ _ in
(A2.1) or, equivalently, by applying, from the previous initial values, the recur-
sion formula Z( = X — L2 A X" — L% B,Z(™. More sophisticated
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devices yielding better small-sample properties such as backforecasting can also
be used [see, e.g., Box and Jenkins (1970), pages 199-200], but the effect of the
chosen initial values is asymptotically negligible. Under assumption (b) (Sectlon
3.1), the difference A = 2™ — Z{™ is O )(A), as t > oo, where A < 1 is the
modulus of the largest root of A(z 1)B(z“) =0, z € C. Denote by S"™* the
value of the optimal statistic (2.8) when the ranks R{™ of the exact residuals
Z{™ are replaced by those R{™ of the approximate res1duals Z{™. Our objective
is to show that, as n - o, S(") and S™" are asymptotlcally equivalent [i.e.,

n/3(§m* — S(")*) = 0,(1)], so that the results of the paper are not affected if
approximate residuals are used. Consider the problem of testing H(™(A,B; f)
against K ("(A,B; v, 3; f). Referring to the proof of Proposition 2.2 (A3.1), we
have

log L(™(Z™) — log L™(Z™
(A22) g LI"(Z™) — log L™(Z™)

= IogE[A(")(Z(”) + AM X)) — >\<n>(z<n>,xgn>)|z<">].

Carrying on Taylor’s expansion of A™)(Z™ + A™ X{™) (with respect to the
A’s), it is easy to see that under H(™(A, B; f), the difference (A2.2) is 0,(1) as
n — oo [the arguments involved are essentially the same as in the proof of
Proposition 2.2 with the additional fact that quantities of the form a; A}V, are
0,(AY]. Denote by H (")(A, B; f) the hypothesis under which (Z(", ..., Z{™) are
lndependent and 1dent1cally distributed with density f(-). H (")( -) and
H{™(---) are contiguous [because the sequences of the dlstnbutlons of
):;'_ log(f(Z{™)/f(Z{™)) are relatively compact under both H (M(---) and
H (™(---); Le Cam (1960)]. Taking (A3.9) into account, it follows that

ni/2(S™" — 8™7) = [log L*(2) ~ log L™(Z™)]
(A2.3) x[lla + bY%%I( £)] V% + 0,(1)

=0,(1).

(A2.3) holds under H")(A, B; f) and, because of Le Cam’s third lemma, it also
holds under K (")(A,B; v, §; f ), which establishes the desired result.

APPENDIX 3
Proofs.

PROOF OF ProPOSITION 2.2. The proof mainly consists in decomposing
log L‘™(X(™) into

o0
(A3.1) log L™(X™) = £M(X™) = 1 ¥ (a; + b,)*0”(f) + R + o,
i=1
where LX) =p~1V/ ZZ,S,‘ (X)X (a; + b)X,_, is asymptotically nor-

mal with mean 0 and variance I5_(a; + b;)%%I( f ) [this follows from Proposi-
tion 3.1 in Hallin, Ingenbleek and Puri (1985)], and R{™ converges to zero in
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probability [under H(”)] as k — oo, uniformly with respect to n. Since the
asymptotic distribution of Z "‘)(X(")) clearly converges, as k — oo, to the normal
distribution with mean zero and variance 2 (a; + b,)%%I(f ), the asymptotlc
normality of log L™(X™) follows from Theorem 2.1. Contiguity then im-
mediately stems from Le Cam’s first lemma [HaJek and Sidak (1967), page 204].

A decomposition of the desired (A3.1) form is obtained by considering a
Taylor expansion of the log-likelihood ratio. In order to avoid purposeless
intricate computations, we are treating here in some detail the case where
b = (0,0,...). (2.1) then takes the form of an AR(c0) model. The general case can
be treated along the same lines by introducing the AR(c0) form of (2.1),
X, — L2, d{™X,_; = e, then showing that it is asymptotically equivalent with a
model of the form X, — n~2L% (a; + b;)X,_; = ¢, [see Hallin, Ingenbleek and
Puri (1985), Appendlx 2b].

Denote by X{™® = (X{™, X,...) the stationary solution (for ¢ < 0) of (2.1)
and by X™ an n-tuple of i.i.d. variables with common density f(x), independent
from X‘™. Under H{"), the log-likelihood ratio can be expressed as

(A3.2) log LM(X™) = log E [A™(X™,X{)X™],

with XXM, X(M) = TIr, f( X — n~ VL2 10, X{")/f(X(). Expanding
log A(X ™, X (M) yields

log XO(X, X) = 12 5 o(X(7) £ 0,02
t=1 i=1
(A3.3) N - " .
~em* £ o{x - on £ o) Eaxin),
t=1 i=1 i=1

with 6 = 6(X™,X{™) € [0,1]. First let us consider the second-order term in
(A3.3). Since ¢’ is Lipschitzian,

n 00 00 2
ED [¢'(X§n> —on Y aixxlz) - qs'(X;n))H > aiX§fz]

= i=1 i=1

(A3.4)

o0
Z aiXt(-’—l% .

i=1

n
<n %KY,
t=1
But, under H{"), X{™ has finite moments of order 6, both for ¢ > 0 as for ¢ < 0.
Since X2, |a; | < o0, the variance of (A3.4) is O(n~!) and the second-order term
in (A3.3) reduces to

n 0 2
_en)t Y ¢'(x,<">)( 5 ax®)| +o,
t=1 i=1
n K 2 n
A35)  =-@n)' Y ¢'(X,<">)( 3 aix;fz) ~ ) T e (X™)
t=1 i=1 t=1

0 2
y aiX,(fz) +0,.

i=x+1

K 0
X [2 Y a, X" Y o XM+

i=1 i=xk+1
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The first sum on the right-hand side of (A3.5) is a sum of identically distributed
k-dependent terms; it therefore converges, as n — oo, to (¢ > «)

_ [qs(X("))(iéaiX,‘i‘QY] - o) L at.

As for the remainder term, let us show that it converges to zero, as k¥ — o0,
uniformly with respect to n. Taking into account the fact that X{™ has finite
fourth-order moments, as well for ¢ > 0 as for ¢ < 0, we obtain

2

n 0 2
E{(zn)“ 2¢'(X§"’)[ r aiX;fg}}
t=1 i=k+1
o0 \4
(£ aix,<fz)]
i=k+1

s(xo)| ¥ oaxel]{ a"Xs(g)ﬂ}

ﬁ {ZE [(¢(x))] &

+2 Y'Y E[¢(X™)|E

l<s<t<n i=k+1 i=x+1

IA

—E[ (x™))’| x (igolan+;+il)4

+4()E|(/(x™))]* (§|ax+1+,-|)4

i=0

) 4
< K( Y |ai|) .
i=K
In a very similar way,
n K [o0] 2 o0 4
slem™ £o(x)| Lexen)| £ o)) <k Lrai];
t=1 i=1 i=k+1 i=x
the two constants K’ and K” do not depend on n. The right-hand side of (A3.5)
therefore satisfies the assumptions of Theorem 2.1 in the particular case where
the limit distribution is degenerate [ F(z) = 1 forz > — 1Y% ,a%%I(f), F(z) =0
elsewhere] and the second-order term in (A3.3) converges in probability to
— 1Y% 1a26%I(f) as n — oo. (A3.3) consequently takes the form

log A®(X™,X{V) = n~1/2 Z o(X™) Z a; X" —1 2 af?I(f) + o,

i=1 i=1
0
= 2ME®) + a2 T ¢(X) T aX0)
t=1 i=k+1

0
-1 Y al®I(f) + o,

i=1
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Because E[¢(X{™)¢(X ™)) = 8,I(f), t,s =1,..., n, we have

n o0 2
E{n/ S o(x) 3 a,x;fz}

t=1 i=x+1

1 » 2 o 2 0 2

~ L Eloxm)]E|| £ exen] | x| Lia

n t= i=k+1 i=kK
the latter quantity again converges to zero as k — oo, independently of n. Going
back to (A3.2),

(=]

log LM(X™) = £M(X™) - 1 ¥ q%2]( f)

0

n
+logE[exp{n‘1/2 Yo(x™) ¥ aiX,(fz}lX(")] +o0
t=1 i=k+1
which is of the required form (A3.1). In the general case, Y2 ,a? has to be
replaced with % ,(a; + b,)%. O

PROOF OF PROPOSITION 2.3. Consider the log-likelihood ratio log L{™(X (™)
for H{") against the xth-order “truncation” K of KXa,b; f), k = p. We
know from Hallin, Ingenbleek and Puri (1985) that the joint distribution of
(log L™, nl/ 2(S(”) — m™)Y is asymptotically normal (under H{")), with mean
(-1 l_l(a + b;)%2I( f),0) and covariance matrix

% (a,+ b a*I( 1)

i=1

» .
Y (a,+ b,)C; v?

i=1

Now the decomposition we obtained in (A3.1) is, up to o, terms, of the form

e}
(A3.6) log L™M(X™) =log L{W(X™) + R(™ — 1 Y (a; + bi)2021( f)-
k+1
Since V2 is finite and does not depend on 7 or on «k, Theorem 2.1 can be applied
again to an arbitrary linear combination of log L{™(X(™) and n!/3(S™ — m™),
It follows that the joint distributlon of log L™ and n'/4(S™ — m(™) is asymp-
totically normal, with mean (— X% ,(a; + b,)%2I(f),0) and the same covari-
ance matrix as before, except for the first diagonal element, which is now
T (a; + b)%2(f). Proposition 2.3 then straightforwardly follows from
Le Cam’s third lemma. O

PROOF OF PROPOSITION 2.4. (i) The proof of part (i) of the proposition
readily follows from Le Cam’s third lemma by applying Theorem 2.1 and
Proposition 3.2 in Hallin, Ingenbleek and Puri (1987) to an arbitrary linear
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combination of log L™(X™) and n'/25(™", where

n1/2 n—1 9 1/2
nt/2g{m” = S™ Y (a;+by)

lla + bl i=1

n—1 Ve (nf)
- Y (n—i)"(a;+ b .
i=k+1 i+ 5) lla + bl

(i) Write K™ for K ("(a,b; f). It follows from (2.9) that the asymptotic
power of the test based on S™* for H{™ against K™ is 1— ®(k,_, —
la + b||[a2I( f)]'/?), where ® denotes the standard normal distribution func-
tion. Using classical notation ( Section 3.2), let 8(a, H, K ) be the envelope power
function for testing H against K at level . Then B(a, H{"), K ™) is the power
reached by the likelihood ratio test. Using Proposition 2.2, we obtain

lim B(a, Hif), K®) =1~ @[k, ~ la + bil[o®1(1)]").

Since B(a, H§™), K™) > B(a, H{™, K ™) for every n, we have
lim B(a H{™, K(")) > limsup B(ea, H{™, K™).

n—o0 n— oo
Therefore, '
limsup B(a, H™, K™) 21— ®(k,_, — |l + bli[e*I( {)]"?)
n— oo ’
= L , HM K™,
oo '3("‘ 0; )
which implies that lim, . B(a, H{™, K (™) exists and equals the asymptotic
power of (2.9). O

PROOF OF PROPOSITION 3.2. Let I{"}(X™) = I1/, f(Z{™). The objective is
to show that there exist T{") -measurable variables h(" such that the functions

(43.7) Ky = TR
are densities for all (v, §) € 9(d) and n (n sufficiently large), and satisfy
(A3.8) lim sup ”l(”) -1 2)3”1, =0,

n—00 g(d) 1

where || p — q||,, is the L,-distance [|p — g| dp for densities defined with respect
to the o-finite measure p.

Consider the optimal rank statistic S( we introduced in Propositions 2.4
and 3.1. It follows from the proof of Proposmon 2.4 that asymptotically the joint
distribution of log I{}/I§") and n'/2S{y" is normal, with covariance matrix

lla + by %%I( f)
lla + bi[o21( )]
from which we deduce that
(A3.9) log[L{)/16% ] + Hia + bl%2I( ) — n'/2ja + b|[o%I(f)]/* S’

2
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converges to zero, in probability, under H™(A,B; f). Moreover, this conver-
.gence is uniform with respect to the y;’s and §,’s, (v, 8) € 2(d). Hence writing
s{®" for n'/%||a + bl|[o%I( f)1*/2S{R)" [with a and b given in (3.2)], we have

(l‘"&/l"”) _ exp(sl(,f’ﬁ* - illa + b||2o2I( f ))I > e] =0

lim sup Py [

n—o0 gd

for any ¢ > 0, which is equivalent to Hajek and Sidak’s equation (10) [(1967),
page 246].

Defining 2("} as
B exp[s{y — flla + bi%*I(f )],
0, if [s¢y'] > ¢,

W=

where B{"} is a normalizing constant such that (A3. 7) is a probability density
functlon, and reproducing Hajek and Sidak’s proof of Theorem 7.1.1 [(1967),
pages 247248, including their definitions of constants C(™] leads to the conclu-
sion that (A3.7) and (A3.8) are satisfied.

In order to complete the proof, it remains to show that the variables s{%)’,
hence the A{"}’s are T{?)-measurable. Notice therefore that, for t > p, — p, + 1
and t' >q,—-¢q,+1, a,=X22yG, ; and b, = X%, §;H,_;. Now
{G,_1,..-,G,_p } and {H,_,,..., H,_, } constitute fundamental systems of solu-
tions of A(L)¥,=0, t € Z, and B(L)¥,= 0, t € Z, respectively (see Appendix
1), and G,_, _,,...,G,_p,, and H, , _,,..., H,_, are solutions of the same
equations, respectlvely Hence fort>a + 1 A(L)a,= 0 = B(L)b,, from which
we deduce that A(L)B(L)(a,+ b,) =0, t > 7 + 1. It follows that

(A3.10) (a;+ b;) = (ky,.., by o J(EQ,.., ¥PHO) > a+1,

where the constants k%,,..., kp1+ @, depend on y and & only (for given ¥{)’s).

Going back to the definition of s{*);, we finally obtain
a+b

lla + bi[o*1(£)]"

[Z?=_11(ai + bi)2] 2

which completes the proof. O

sy =

((ay+8)yeens(@y + B,), kyyeny By g JTSY),

PrOOF OF PROPOSITION 3.3. Let x> 7 and consider an arbitrary linear
combination of log L™(Z(™), nl/ 2r(",) c,n2rim), nt 2y O, L., and
n'/2Ls_, WP r(), The asymptotic normahty of this 11near combination can
easily be estabhshed along the lines of Proposition 3.1 in Hallin, Ingenbleek and
Puri (1987). Theorem 2.1 can then be applied to obtain the asymptotic normality
of this linear combination in the case when k = 0. Proposition 3.3 finally follows
from Le Cam’s third lemma.
The nonsingularity of W2, hence that of W2, results from the fact that the
¥{/)’s are linearly independent solutions of

(A3.11) A(L)B(L)¥,=0, tel. O
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PROOF OF PROPOSITION 4.1. Let {8®,...,0{P1*®} and {¥O,..., ¥(Pr+aw)
denote two arbitrary fundamental systems for (A3.11). Then

(09,...,0p %) = (¥O,.. ., ¥+ 0K, te Z,
where K is some nonsingular constant matrix of dimension (p, + q,) X (p, +
q,). Hence

I n ,
T - (5 RN WE- KWK

and

I 0

To(;nf)’ﬂe_zTé;n}=T\§'n)f, )(0 K- lw 2K/ 1)(0 K)T‘g;l)f
)f

= Té'n)ffw 2T\§,n O

PrRoOOF OF PROPOSITION 4.2. The proof straightforwardly follows from
Proposition 4.1. Notice indeed that on account of (A3.10), letting k' =

((a; + b),...,(a, + b,), k,..., k, ), the asymptotic mean of n'/>T{?)} un-
der K ™(A,B; v, §; f) takes the form
(A3.12) Wik[o®I(f)]'.

On the other hand, k'WZk = ||a + b||?, yielding the noncentrality parameter
“.3).0

PROOF OF PROPOSITION 4.3. We know from Section 3.3 that Ty?) is asymp-
totically sufficient for testing H (”)(A B; -) against (3.8). n'/?Wy 'T{?, is thus
also asymptotically sufficient since W¢ is a full-rank covariance matrix.

Under H™(A, B;v,8; f), the asymptotic distribution of n/?Wg ‘T@") is
normal with mean p(y, 8) = Wy k[o2I( f)]'/2 [ (A3.12)] and identity covariance
matrix.

Let us show that when (y, 8) describes R”2 X R, k and thus p(y, 8) describe
R™mex(Pi+92. P2+ a) Any value of (a,,...,a, _,) € RP27” can be reached by
choosing appropriate values of v,,..., yp —pp @and a,, t>p, —p; + 1, can be
made equal to any solution of A(L)‘I’t =0 by adjusting the remaining p,
components Y, _, 1.+, Yp, of v. A similar result holds for b and 3. Further-
more, any solution of A(L)B(L)¥,=0, t >« + 1, can be decomposed into a
solution ¥ of A(L)¥, = 0 plus a solution ¥2 of B(L)¥, = 0. This follows indeed
from the fact that A(z) and B(z) have no common root: A fundamental system
of A(L)B(L)¥,=0 can thus be formed by juxtaposing a fundamental
system {¥®, ..., ¥PI} of A(L)¥,= 0 with a fundamental system
(P g Pitad} of B(L)Y, = 0.

Now, under the condition (v, 8) € 2(d), i.e., |a + b||2 > d?, the values of
p(y, ) are restricted to those satisfying p'(y,d)p(y,d) = k'Wike%I(f) >
d?%I(f). Thus the family of asymptotic distributions of n'/?Wy 'T{?) under
K™(A,B; R?2, R%; f|d) is the set of all normal distributions with mean p and
identity covariance matrix such that p'p > d%2I( f ), whereas under H™(A, B; )
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the asymptotic distribution of n'/?Wy 'T¢?) is normal with mean 0 and identity
covariance matrix.

It follows from an invariance argument and the Hunt—Stein theorem [see, e.g.,
Lehmann (1959), Section 8.4] that the maximin most powerful test for this
problem is based on the test statistic nT{?; Wy, *T{")—which is precisely @{"%, ;.
Because of the asymptotic sufficiency of T&,';’),, this test is also maximin most
powerful for H(")(A, B; -) against any K ""(A,B; R?2, R%; f|d), d€ R*. O

Corollary 4.4 gives the particular form of the asymptotically maximin most
powerful statistic Q5. ; in the case where p, = ¢, = 0 and 7 = max(p,, g,).
This is the only case where Q{. ; turns out to be a quadratic serial rank
statistic in the sense of Hallin, Ingenbleek and Puri (1987).
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