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STRONG CONVERGENCE OF DISTRIBUTIONS
OF ESTIMATORS!

By P. JEGANATHAN
University of Michigan

It is shown that the convergence in law of estimators entails convergence
uniformly over all Borel sets whenever the estimators are asymptotically
equivariant in a suitable sense and the likelihood ratios of the sample are
appropriately smooth. This result generalizes a recent result of Boos in many
directions.

1. Introduction. In a recent paper, Boos (1985) has obtained the interesting
result that the densities of estimators of a one-dimensional location parameter
converge uniformly to the density of a Gaussian distribution whenever the
estimators converge weakly (in law) to a Gaussian distribution. (He also obtained
a similar result for the estimators of a scale parameter.) He assumed that the
estimators are location equivariant and that the Fisher information is finite. The
usual general method of establishing such convergence of densities is through the
method of characteristic functions and such a method seems to work well in this
context only when the estimators are smooth functions, independent of the
sample size, of sums of ii.d. observations. On the other hand, Boos’ method
works for any location equivariant estimator. The main purpose of this paper is
to introduce a method which results in improvements and generalizations of
Boos’ result in many directions. However, we shall obtain only the convergence
of distributions of estimators uniformly over all Borel sets and uniformly over
suitable neighborhoods of the parameter; this convergence will be referred to as
strong convergence and is weaker than the convergence of densities but sufficient
for many statistical purposes. Specifically, the present method gives the joint
strong convergence of estimators of any finite number of parameters, whereas
Boos’ method does not seem to generalize well to situations with more than one
parameter (see Section 3). Second, his condition of finiteness of Fisher informa-
tion is replaced by the more general condition of local asymptotic normality [cf.
Le Cam (1960)] of the likelihoods of the sample. Third, his method depends on
the exact equivariance of the estimators, whereas the present method uses only a
certain kind of asymptotic equivariance.

The crucial idea of the present method is that if one has the approximation
for the expected values of a suitable class of even- only extremely smooth
functions of the estimators and if the likelihood of the sample is sufficiently
smooth, then one can get the approximation for the expected value of any Borel
measurable function, provided the estimators are asymptotically equivariant in a
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suitable sense. One purpose of the present proof (see Section 2) is to make
explicit the preceding idea, which we hope to develop further to obtain higher
order approximations for nonparametric and robust estimators uniformly over
all Borel sets. Another advantage of the present proof is that it almost im-
mediately extends to the situation in which the likelihood ratios are locally
asymptotically mixed normal [see, e.g., Davies (1985)], a situation which arises if,
for example, one wants to prove the strong convergence of least squares estima-
tors of an explosive autoregressive process; this and other applications of the
present method can be found in Jeganathan (1986, 1987).

In Section 2, we state and prove our main result. In Section 3, we first recall
the result of Boos (1985) in order to compare it with our result. Incidentally, we
also point out in Section 3 that Boos’ result holds also for certain nonregular
location families treated, e.g., in Klaassen (1984), in which the Fisher information
is infinite. We then give a straightforward application of our result to obtain the
strong convergence of the estimators of location and scatter of an elliptical
family of distributions. OQur result can also be used, for example, to obtain the
strong convergence of general M-estimators of the parameters of an autoregres-
sive process, but the verification of our conditions in such a case requires more
elaborate and involved arguments, especially the verification of asymptotic
equivariance, since we require such equivariance to hold (uniformly) for all
measurable functions: See Jeganathan (1986) for the details.

The motivation for considering such a strong convergence is the following. As
explained by Le Cam in several papers [see, e.g., Le Cam (1975)], the information
contained in the estimators is asymptotically reflected in the limiting distribu-
tions only when the likelihood ratios of the estimators converge in law ap-
propriately to the likelihoods of the limiting distributions. In the present
asymptotic equivariant situation, such a convergence becomes equivalent to the
strong convergence of the estimators, as can be deduced from our main result
when the limits are Gaussian. In the case of exact equivariance, this equivalence
also follows as a very special case of a general result of Torgersen (1972). Further,
such a convergence of likelihood ratios entails that the estimators compare
asymptotically in the decision theoretic sense as described e.g., in Le Cam (1975),
in the same manner as the covariance matrices of their Gaussian limits.

2. Likelihood of the sample and the strong convergence of estimators.
For each n > 1, let {P; ,: 4 € O} be a family of probablhty measures (defined
on some measurable space), where the parameter space © is an open subset of
the k-dimensional euclidean space R*, k > 1. Py ,, usually stands for the joint
probability distribution of the sample.

The family {P, ,: & € 0} is said to be locally asymptotically normal (LAN)
at %, € O if there exists a sequence {W,(¥,)} of random k-vectors and a p.d.
matrix B(d,) such that the differences

1
haW(Bo) = SR, B(So)h,
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converge to zero in P, -probability for every bounded {A,} of R*, where §,,
which may depend on #,, n > 1, are suitable p.d. matrices and the sequence
{W,(9,)} converges in law, under P, ,, to the k-variate Gaussian distribution
H (0, B(3,)).

Let {T,,} be a sequence of estimators of interest. Since ¥4, is fixed throughout,
it will be convenient to suppress 9, and set T.* = 8, (T, — 9,) and Py .5  , =
Qh, n*

We now state our main result, where sup,;, ., means supremum taken over all
Borel measurable functions bounded in absolute value by 1.

THEOREM 1. Assume that the LAN condition is satisfied at 3, € ©. Let {T,}
be a sequence of estimators of 3. Assume that the following two conditions are
satisfied:

(A) There is a sequence {M,} of almost surely p.d. (random) matrices
converging in Q, ,-probability to the unit matrix such that the quantities

sup sup IE[f(Tn* - h)IQh,n] - E[ f(Tn* —h- Mnu)IQh+u,n] |
|kl <a|f|<1
converge to zero as n = « for all a > 0 and for all u € R*.
(B) The random vectors T,* converge in law, under @, ,, to a probability
distribution Z.

Then the quantities

sup sup E[{(T.* - 2)I@Qx,.] - ff(x)i"(dx)l

converge to zero for all a > 0.

REMARK. Before going into the details of the proof it may be noted that
condition (A) is immediately satisfied with M, = I, the unit matrix, when ¢ is
the location parameter and 7, is location equivariant; similarly for the equi-
variant estimators of regression parameters of a linear model. The same is the
case for scale parameters but with random M,,. It seems that condition (A) is
inadequate to deal with the joint convergence of location and scale and, there-
fore, we introduce the following modification. An illustration of the use of this
modified condition is given in Section 3.

(A). Let p, 0 <p <k, be fixed. There are sequences {M,} and {M,,}
of almost surely p.d. (random) matrices, respectively, of orders p X p and
(k — p) X (k — p), converging in @, ,-probability to unit matrices. There is also
a sequence {T,*(u)}, u € R*, of random k-vectors such that the quantities, with
Mn = diag{Mnl’ Mn2}’

sup sup IE[ f(Tn* - h)lQh,n] - E[ f(Tn*(u) —h- Mnu)IQh+u,n] I

A <e |f|<1

converge to zero as n — o for all « > 0 and for all u € R*. Here T,*(u) is such
that the differences T,*(u) — T,* converge to zero in @, ,-probability for all
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u € R* and such that T*(u) = (T,*(u), T,%) with T,% being the (k — p)-vector
consisting of the last (¢ — p) variables of T,* and with 7,*(x) depending on u
only through the last (k2 — p) elements of u.

Note that the case p = 0 of condition (A’) means to coincide with condition
(A). Theorem 1 will be proved under conditions (A’) and (B).

The following lemma will be used in the proof of Theorem 1. It can be found,
at least implicitly, in Le Cam [(1974), Chapter 13], Hajek (1970) and Strasser
(1978). For the sake of completeness, we present a proof in the Appendix. To
state it, in addition to the notations introduced earlier, let p be the Lebesgue
measure in R* and let D, = {h € R*: |h| < a}, a > 0. Further, we set W,(0) =
W, and, for simplicity only B(#) = I, where the variables W (#) and the matrix
B(0) are the ones occurring in the definition of the LAN condition. Also, let
S(x) = 2m)~*%exp(—|x[*/2).

LEmMMA 2. Assume that LAN condition holds at 9, € ©. Then the differ-
ences

1
r(D,)

/;) E [g(u)lthﬂ,' n] du

1) A
- m—[[) f{kag(v)S(u +h,-W,) dv} dQp, 1y, n du

converge to zero, first by letting n - c and then a > «, for every bounded
sequence {h,} of R* and uniformly for all jointly measurable variables g(u)
such that |g| <1, n > 1.

In the following proof, “converge uniformly” means “converge uniformly with
respect to all Borel measurable f such that |f| < 1.”

PRroOF oF THEOREM 1. By conditions (A’) and (B), it follows that #(T* —
ul@, ,), the distribution of (T,* — u) under Q,, »» converges in law to the
distribution #. Hence, since the sequence {A,} is bounded, it follows by
contiguity that Z(T* — h,|Q;  ») converges in law to % for every bounded
{h,}. Therefore, it is enough to show that for every subsequence {y} C {n},
there is a further subsequence {p} C {y} such that E[ f(Tx - hp)|th’ »] con-
verges uniformly. Therefore, we assume without loss of generality that A, —
h € R* and that (T,*, W,, M,) converge in law under Qo,, to (T, W, I) and
prove that E[ f(T,* — h,)|Q4, »] converges uniformly. According to condition
(A’), the differences between E[ f(T,* — h,)|Qs, »] and the Lhs. of (1) with
8(u) = f(T,*(u) — h, — M,u) converge uniformly to zero. Hence, by Lemma 2,
it is enough to show that the r.h.s. of (1) converges uniformly, with the preceding
&(u), for every fixed a > 0 to some limits as n — oo and that these limits
converge uniformly as a — oo.
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First, consider the case p = 0, that is, T,*(z) = T,*, so that the quantity
inside the brackets of (1) is given by

S J (T = by = Mp)S(0 + = W,) do
R

@) = M [ H)S(~M; (0 = T+ hy) + By = W,) do

= Jf(Myn Tn*’ "Vn), say.

Using the fact that S(x) is a Gaussian density, it follows readily that the family
of functions {J;(m, t,w): |f| < 1} is equicontinuous at all ¢ € R*, w € R* and
m positive definite; that is, the quantities

sup{|J,(m1, ty,wy) — Jj(my, 8, w2)|5 lm, — m| + |, — |
+w, —w| + |my—m| + |ty — t| + |w, — W <e}

converge uniformly to zero as ¢ » 0 for all ¢{, w and m as before. Also the
functions J; are bounded in absolute value by 1, uniformly in f, w, ¢ and m
positive definite. Further, since Z(T*, W,, M,|Q, ,) converge in law to
L(T,W, I) = Q,, say, contiguity implies that the laws Z(T*, W, Mn|th +un)
converge in law to (T, W, 1|1Q,,. ,), where @, is such that

dQy, , |hI®
:i'é—o = exp(hW— —2— .

Hence, in view of the preceding three facts, it follows from well known results
[see, e.g., Billingsley (1968), page 17, Problem 8] that the quantities
E[']f(Mn’ Tn*’ vvn)lth+u, n] converge unifomﬂy to E[JI(I’ T9 W)lQh+u] and,
hence, the r.h.s. of (1) converges uniformly as n — oo for every a > 0 to the
quantity

1
(3) e fD aE[J,(I, T, W)|@p. ] du.

But this is the r.h.s. of (1) with @, ., , = @, and (T.*, W,, M) = (T, W, I),
n > 1, so that the difference between (3) and the quantity [L.h.s. of (1)]

1
@ W(D,)
converges uniformly in absolute value to zero as a — oo. But since (T — h —
u|Qy,,,), which is the limit of L(T* — h — u|Q,,,, ,), does not depend on A
and u, the integrand of (4) does not depend on A and u. This completes the
proof for the case p = 0.

Now consider the case p > 0. Let v, (resp. v,) be the p-vector consisting of
the first p [resp. last (¥ — p)] elements of v € R* so that v = (v,, v,). Also,
write S(v + h, — W,) = S,;(v;, ©,)S,5(v,), Where, suppressing &, and W, S, is
the conditional Gaussian density of v, given v, and S,, is the marginal density

LEUHT = b= u)iQy,] du
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of v,. Also, take for simplicity that A, = 0. Then the quantity inside the
brackets on the r.h.s. of (1) can be written as

(5) j;%k_p{ '/;epf(Tn’{(v) - Mnlvl’ Tng - Mn2v2)Sn1(vl’ 02) dvl}SnZ(‘U2) d02.

Now observe that by condition (A’), 7,%(v) depends on v only through v, so that
by making a change of variable it can be brought into the exponent of the
density S,,(v,, v;). Now since the differences 7,*(v) — T,* converge to zero in
Q,, ,-probability, it follows easily from the preceding observation that the differ-
ences between (2) and (5) converge to zero in Q,, -probability and, hence, in
@, 1, n-Probability for all u € R*, by contlgulty Hence this case is reduced to
the case p = 0 and the proof of Theorem 1 is complete. O

3. Estimators of location and scatter. We first recall Boos’ (1985) result.
Let X,, X,,... be iid. variables with common density, with respect to the
Lebesgue measure, f(x, #) = f(x — #), x, % € R. Let T, be a sequence of trans-
lation equivariant estimators of 4, that is,

T.(X,+a,...,X,+a)=T(X,....,X,) +a

for all real a. Using the translation property,

P,,(T,,sy+t)=fI(Tnsy)f£f(xj+t—0)dxl o dx,
=

~ 1 [IT> ) TTf(x,+ ¢ - 9) dey - a,
=17

for all real ¥ and ¢. Then if f(x) is differentiable and if the differentiation can be
taken inside, the densities of &, T, when ¢ = 0 are given by

8.(9) = = [18;'T, > )8, 1 f(x)) dy -+ di,
(6)
= [1(s ‘T<y81‘[f(x,~)dx1--~dx,,,

where S, = § X7_ f/f(x) with f(x) the derivative of f(x). This identity was
obtamed by Klaassen (1984) under the condition [|f(x)|dx < oo, which allows
one to take the differentiation inside the integral. Now assume the stronger
condition that f is absolutely contlnuous with respect to Lebesgue measure and
that

(7) 0< f[f(x)] f(x)dx < oo.

Then under this condition Boos (1985) showed, using his lemma on the L _-com-

pactness of densities, that g,(y) converge to the Gaussian density (w1th 6,
~1/2) uniformly in y whenever yn T, converge in law to a Gaussian varlable
Our first remark is that, using umform integrability of S, which follows from

(7), one can also obtain the preceding result directly. First note that g, (y)
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converges pointwise, as can be seen from the rh.s. of Klaassen’s identity (6),
whenever (8, 'T,, S,) converge in law jointly, which can be assumed by passing
to a subsequence if necessary. Then one can show, by considering again the r.h.s.
of (6), that this pointwise convergence entails the uniform convergence; the
required arguments are essentially the same as the ones used to prove the
familiar fact that if a sequence of probability distribution functions converge
weakly to a continuous probability distribution function, then the convergence
will be uniform over the real line.

The reason for mentioning this remark is that according to Lemma 3.1 of
Klaassen (1984), the uniform integrability of S, holds also for many nonregular
families treated there and, therefore, Boos’ result extends to those cases also. It
may also be noted that, apart from the equivariance condition, since the only
requirement of Theorem 1 is the appropriate smoothness of the likelihood of the
sample, our main result also extends to the aforementioned and many other
nonregular families treated in Chapters 5 and 6 of Ibragimov and Hasminskii
(1981), since the required smoothness is studied in those chapters.

Now, the arguments leading up to Klaassen’s identity (6) do not extend well,
unfortunately, for the estimators of more than one location parameter since one
has to take more than one partial derivative and the required restriction on the
density f becomes severe as the number of parameters increase. Furthermore,
the resulting expression inside the integral of (6) becomes difficult to deal with.
We refer to Boos [(1983), Section 3] for further details on the difficulties
mentioned here. On the other hand, if one is interested, for example, in applying
our main result to obtain the strong convergence of equivariant estimators of %,
say, regression parameters of a linear model, then it is sufficient to assume that
the common density of the error variables satisfies (7) together with suitable
conditions on the design matrix to ensure the LAN condition.

We now discuss another straightforward, but important, example to illustrate
the need for introducing condition (A’). Let f(x) = f(|x|) be a spherically
symmetric density in RY. [A detailed treatment of spherical and elliptical
distributions can be found in Muirhead (1982)]. Let X;, X,,... beii.d. g-vectors
with a common density f(x, p, V) = |VIf(|V(x — w)|), where p = (py,..., n,) is a
g-vector and V = (V;;) is a p.d. symmetric matrix. Let [V] be the lexicographi-
cally written row vector of the lower g(q + 1)/2 entries of the matrix V, so that
© = {(1,[V]: p € R? and V is symmetric p.d.}; this clearly is an open subset of
R* with & = q(q + 3)/2. Let {U,} be a sequence of g-vector valued estimators
of p such that

(8) U(X,+a,..., X, +a) = U(X,,...,X,) + a
for all @ € RY and let {S,} be a sequence of symmetric matrix valued estimators
of V2 such that
9) S,(B(X, - a),..., B(X,— a)) = BS,(X,,..., X,)B’
for all p.d. B and a € RY.
NowﬁxyandVandletung p+g/Vn,g€ RlandV,, = V+ VHV/\/_

= (h;;) is symmetric. Without loss of generality, one can assume that V, , is
p. d for all H and n. Define G, = (I + HV/ /n). Now introduce the following
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two conditions:
(C1) The differences

‘/E[Un(GnH(XI - p’)""’GnH(Xn - p’)) - Un((Xl - ”‘)”“’(Xn - nu‘))]
converge to zero in probability for all H.

(C2) The density f is absolutely continuous with respect to Lebesgue measure
and

f' l2 f 2
0< [{—=(x])| dx <o and 0< [|jx|>—=(|x|)| dx < 0.
M7 da
COROLLARY 3. Let P, y, , be the distribution of the sample with the common
elliptical density f(x, n, V). Assume that conditions (8), (9), (C1) and (C2) are
satisfied. Further, assume that the distributions £(Vn U, - n), Vyn (S, -

V‘2)|PF’ v,n) converge in law to a probability distribution £. Then the differ-
ences

B[ {1 (U = g )V (8, = Vi | By v ] = 1) ()

converge to zero uniformly for all Borel measurable f such that |f| < 1 and for
all bounded sequences {(g,,[ H,])}.

Proor. First, note that (C2) entails the LAN condition as was noted in
Bickel (1982). Second, with the notation V4, = V., + V. ,ZV/ Vn, Z is symmet-
ric, so that V, JV%, = G, ,, we have by (8) and (9) that

Z (Un(Xl""’Xn)_“’S;/z)

Bngs Von

e e
= gﬂn(luenw ny(Un(GnZ(Xl - ,u,) - ﬁ PR GnZ(Xn - ‘u,) - ﬁ)’ GnZS;ﬂ) ’

forall g, e, H and Z, where e, = G, je. Note that G, ,S,/? = SV/2 + ZVS}?//n.
Further, G,, - I and Vn(V%, — Vam+z)) = 0, so that, e.g.,, by the exponential
approximation result of Le Cam [(1960), Theorem 3.1], condition (A’) is verified
with T, = (U,, S;/?). This gives the conclusion Corollary 3 for (U,, S!/2) and,
hence, the required result for (U,, S,) can be obtained. O

REMARK. Note that in many situations, one has, in addition to (8),
UJ(BX,,...,BX,) = BU(X,,..., X,) for every p.d. B, so that (C1) is satisfied.
If one is interested in the convergence of U, alone, then (C1) is not needed.
Similarly, if the convergence of S, alone is of interest, then the location
invariance in (9) is not needed.

APPENDIX

PrROOF oF LEMMA 2. We present the proof only for 2, =0, n> 1; for
arbitrary A, only notational changes are required. In view of the exponential
approximation result of Le Cam [(1960), Theorem 3.1], one can assume without
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loss of generality that

de, . ul?
(10) o = Cwess| s - )
where the functions u — C,(u) are Borel measurable such that
(11) sup [C,(u) — 1] -0
|lu| <a

for all « > 0 and the differences W, — W,* converge to zero in Q,, ,-probability
for all u € R*. (This result also entails that the measurability of the functions
u— @Q, , involved in the statement of Lemma 2 is not a restriction.) One can
also easily check that, since S(x) is just a Gaussian density, in the r.h.s. of the
difference (1) the variables W, can be replaced by W, *. Therefore, one can,
without loss of generality, take W, and W,* to be the same. With this observa-
tion and by (10) and (11), the Lh.s. of (1) of Lemma 2 can be approximated
uniformly in g by (for A, = 0)

1 Jp,&(v)exp(v'W,, — [v]?/2) do
(12) n(D,) fn.,f { Jo.exp(v'W, — |0]*/2) dv

Now rewrite the ratio inside the brackets of (12) as

_[Dg(v)S(v -W,) dv/fDS(v - W,)dv =a/b, say.

} dq,, ,du.

Let
fkg(v)S(v - W,)dv=a+c, say.
R

Then, since |g| < 1, |a| < b and

|c|s1—b=fS(u—W,,)du=d, say,
DC

o

so that
l(a/b) — (a +c)| =|(a/b) — (a+¢)/(b+ d)| < 2d.

Thus the difference between (12) and the r.h.s. of (1) is bounded in absolute value
by

E(i)_)fl,ff S(v — W,) dvd@,, , du.

Using the LAN condition and the resulting contiguity [cf. Theorem 2.1 of
Le Cam (1960)], this quantity converges, as n — o, to

,11,(_2D7,/;, fmfpcs(” —w)doS(u - w) dwdu
2
n(D,)

(13)

f N« N(DE - u) du,
Dﬂ
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where 4" denotes the Gaussian measure with mean 0 and covariance matrix I, *
denotes the convolution and Df —u = {h — u: h € Df). Now if ue D -
then Dy C D, — u so that for any probability measure P on R*,

1 1
M(—D—)—-[DP(D;—u)du=1—;(D—)fDP(Da—u)du

_ P(Dg)u(D,- )
- w(D,)

Thus, by taking P = A"+ 4", (13) converges to zero as a — oo. This completes
the proof of the lemma. O

-0 asa— oo.
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