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BAYES PROCEDURES FOR ROTATIONALLY SYMMETRIC
MODELS ON THE SPHERE

By ALBERT Y. I’_.ol AND JAVIER CABRERA

SUNY at Buffalo and Rutgers University

Consistency of Bayes procedures on the sphere is studied. Equivalent
conditions for the consistency of Bayes procedures for a rotationally symmet-
ric model are given. Equivalent conditions for that of an antipodally symmet-
ric model are also provided.

1. Introduction. The problem of estimating the direction of symmetry for a
rotationally symmetric model on a sphere has been studied extensively from a
frequentist viewpoint [for a good list of references, see Watson (1983a)]. A
popular estimate is the unit vector at the direction of the sample average
[Watson (1983a), Chapter 4]. A great advantage of this estimate is that the
central limit theorem can be applied to give the large-sample distribution and,
hence, large-sample frequentist inferential methods based on the sample mean
are possible. However, the following example shows that this method of estimat-
ing the direction of symmetry breaks down easily for a model identifiable in
terms of the direction of symmetry.

ExAMPLE 1.1. The zero-mean model. Let X,..., X, be an i.i.d. sample from
a rotationally symmetric distribution (with respect to a point p on the sphere)
on the sphere in R*, k& > 2. Let T, = n™'=X, be the sample mean and T, /|T,|
(Ja| denotes the length of the vector a) be the sample mean direction, i.e., the
unit vector at the direction of the sample mean. Suppose the mean of X is the
zero vector and the covariance matrix of X, is 2 with rank p > 1, then T,,/|T,|
does not converge to p in probability. To see this, it suffices to note that
according to the central limit theorem and the continuous mapping theorem,
VnT,/|Vn'T,| = T,/|T,| converges in distribution to Z/|Z| which has a nonde-
generate angular normal distribution on the sphere in R* [i.e., Z is an N(0, )
random vector; see Watson (1983a)]. For example, let £ = 2 and let the model
distribution be the mixture of a von Mises distribution with mean direction v
and a point mass distribution at —v. Assume there are appropriate mixing
weights such that the center of mass of the model distribution is at the origin; in
this case Z/|Z| has a uniform distribution on the two point set {—v,v}.
Nevertheless, this mixture model is (classically) identifiable in the sense that
different v’s correspond to different model distributions.

The estimation of the axis of symmetry for an antipodally symmetric model
(i.e., X and —X have the same distribution, defined in Section 4) is rather
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similar. A popular estimate, the sample mean projector, is studied in great detail
in Chapter 5 of Watson (1983a). Again, the central limit theorem is readily
applicable to give nice large-sample frequentist inferential methods based on the
sample mean projector. However, if the model has the identity matrix as its
mean projector, the sample mean projector invariably converges to the identity
matrix, which is not the “true” projector defining the axis of symmetry. The
following example illustrates a case in point.

EXAMPLE 1.2. The identity mean projector model. Assume ii.d. sampling
from a mixture of a two-point-mass distribution (giving 0.5 mass to v and —v)
and a Scheiddegger-Watson distribution [Watson (1983a)] such that the two
axes of symmetry are orthogonal. The mixing weights are such that the mean of
X, X} is the identity matrix. The resulting model is an antipodally symmetric
model on the sphere. The sample average is useless since the mean is zero. The
sample mean projector is not helpful since its limit is the identity matrix. Note
that this model is identifiable with respect to the axis going through v and —v,
i.e., the projector defined by vv*.

These estimation problems were also studied by Kim (1978). Kim proposed
the estimation of the direction and the axis of symmetry using the method of
moments and obtained the asymptotic distributions of his moment estimates
and the corresponding eigenvalues using the perturbation method; these large-
sample results imply Vn -consistency of his moment estimates. However, for
rotationally symmetric distributions with center of mass at the origin, his
method is applicable only to antipodally symmetric distributions and, hence, the
zero-mean model given in Example 1.1 eludes his theory. On the other hand, for
an antipodally symmetric model, the success of Kim’s moment method of
estimating the axis of symmetry depends on the fact that the sample mean
projector does not converge to the identity matrix and, hence, his method is not
applicable to the identity mean projector model in Example 1.2.

The question, then, is: Are there any estimates that are free of the erratic
large-sample behavior of the above-mentioned frequentist’s estimates under the
minimum condition that the rotationally symmetric model is identifiable? Re-
cently, Watson (1983b) suggested the posterior means (with respect to the
uniform prior) as estimates of the direction and the projector defining the axis of
symmetry. He showed that these estimates are equivariant and are optimal in
the sense that they are Pitman estimates with respect to the group of rotations.
Other small-sample optimalities (minimaxity and admissibility) of his estimates
are also obtained, whereas large-sample properties remain unknown. This paper
is the result of an investigation into the question of whether these Pitman
estimates, as well as other Bayes procedures with respect to smooth priors, are
consistent for identifiable rotationally symmetric models. The answer is affirma-
tive; our study reveals the strong consistency of Bayes procedures for all
parameter values in this model and find that identifiability is indeed a necessary
and sufficient condition for consistency.

The usual methods for proving consistency of Bayes procedures for all
parameter points [Le Cam (1953), Schwartz (1965), and Strasser (1981)] typically



ROTATIONALLY SYMMETRIC MODELS 1259

require the existence of densities and do not apply since the model considered
here is not assumed to be dominated, nor do the observations need to be
independent. Instead, the consistency phenomenon exemplifies a rule on in-
variant statistical models mentioned by Lo (1984): Subject to identifiability,
Bayes procedures are consistent for almost all parameter points [Doob (1949)]
and, hence, consistency has to hold for at least one parameter point. By
invariance, it ' must then hold for all parameter points.

Section 2 defines a direction of symmetry and gives the notation and some
technical preliminaries. In Section 3, we show the equivalence of identifiability in
the direction of symmetry, the consistency of the posterior distributions and the
consistency of the Bayes estimates (posterior means) for smooth priors; we then
give sufficient conditions for identifiability in the mean direction. If the model is
identifiable in terms of the axis of rotational symmetry instead of the direction
of symmetry, similar results for the consistency of Bayes procedures for the
projector defining the axis of rotational symmetry are obtained in Section 4.

2. Notation and preliminaries. Let & = {x: x*x = 1, x € R?} be the unit
sphere in R? and # the Borel o-field on ©; x* is the transpose of x. Denote the
group of real orthogonal transformations from R? to R? by H, and note that
H € H if and only if H*H = I, where I is the identity matrix. Denote points on
Q by x, y, p, v and A. For any n, let Hx = (Hx,,..., Hx,) for x € Q" and
HA = {Hx: x € A} for A € #™. Let X,,..., X,,,... be a sequence of random
vectors taking values on £ with joint distribution P,, where p € { is a direction
of symmetry in the following sense: For each n, the joint distribution of
X =(X,,..., X,) given u; denoted by P,(dx), satisfies

(21) P(A)=Py(HA), forall Ac %" all He Handall p € Q.
For each A € #", P(A) is assumed to be #-measurable in p. Note that (2.1) is
equivalent to
(2.1) X~ P(dx), ifandonlyif Y = HX ~ Py (dy) forall H € H.

Let p~ wq(typ), where 7, is the uniform distribution on . Define the
marginal probability @ on %" by Q(A) = [(B(A)7(dp) for all A € ". Q

satisfies Q(HA) = Q(A) for all He H and all A € #". Let P™(B|x) be a
function defined by & ® Q* such that

(2.2) for each x, P™(-|x) is a probability on %,
(2.3) for each B, P"(B| -) is #"™-measurable,
oa  J/rEwREx)m ) = [[rx ) P(dux)Q(dx)
for all nonnegative #"*!-measurable functions A
and

(2.5) P*(HB|Hx) = P*(B|x), forall Be #,all H< Hand all x € Q".

A P satisfying (2.2), (2.3) and (2.4) is called a posterior distribution of p
. given X = x with respect to the uniform prior. It is called a Pitman distribution
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if, in addition, it satisfies (2.5). The existence of a Pitman distribution has been
proved in great generality by Le Cam (1972), Proposition 10, using the lifting
theorem. The choice of a posterior distribution, which is Pitman, is crucial in
generating consistent Bayes procedures for all parameter points. In fact, Exam-
ple 3.1 in Section 3 illustrates a case where a posterior distribution which is not
Pitman fails to be consistent at one parameter point.

In the rest of this section, we specialize the above model to the ii.d. and
dominated case and derive the posterior distribution given by Watson (1983b).
For a dominated family of rotationally symmetric distributions, it is customary
to compute the model density with respect to the uniform distribution [Watson
(1983a,b)]. The following lemma provides a justification of this computation [a
similar phenomenon for a location family on the line has been noted by Ferguson
(1962)].

Lemma 2.1, If P(dx,) is dominated by some o-finite measure a(dx,) for all
I, then it is dominated by m (dx,) for all .

PROOF. Since a is o-finite, there is a finite measure equivalent to a. Thus, it
suffices to prove the lemma for a finite a. Assume then a is a finite measure.
Suppose there is a B € # such that = (B) =0, but yet P(B) > 0 for some
e € Q. Then, Py, (HB) > 0 for all H € H, implying «( HB) > 0 for all H € H.

On the other hand, denoting the Haar probability on the orthogonal group by
d(dH), we have

fH o«(HB) 8(dH) fH [ 11, c umye(dx) 3(dH)

(2.6)
= fﬂ [ Lipe e 9(dH) a(dx),

by Fubini’s theorem and the H-invariance of d(dH). Denote the inner integral
Julpx < By 9(dH) by 7%(B). Notice that for each x, 7*(HB) = =*(B) for all H.
Thus, 7* is equal to =, since 7, is the unique H-invariant probability on Q.
Hence, [ya(HB)J(dH) = m,(B)[ga(dx). Clearly, m (B) = 0 entails a(HB) = 0
almost surely [ 3], contradicting a( HB) > 0 for all H € H. O

Suppose then P,(dx,) is dominated by a o-finite measure for all p. Denote the
density of P,(dx,) with respect to 7 (dx,) by g(x,, ). Furthermore, g(x,, p) is
measurable with respect to (x;, u). Note that for each p € @ and each H € H,
&(x, w) = g(Hx, Hy) almost surely [7,] [see page 254 in Eaton (1983)]. Routine
arguments [ Lehmann (1959), page 225] show that there exists a version g(x|u) of
&(x, p) such that g(x|u) = g(Hx|Hy) for all H, all x and all p, ie., g(-|n) is
rotationally symmetric with respect to a direction specified by u. Hence,
g(x|p) = f(x*u) for some nonnegative function f on the line [Saw (1978) and
Watson (1983a)].
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The natural posterior distribution of p given X = x is defined by
, JIlf(xfp)m(du)

Clearly, P" satisfies (2.5) and, hence, is a Pitman distribution. The posterior
mean [uP"(dp|x) is the Pitman estimate considered by Watson (1983b).

3. The identifiable direction of symmetry. We say that the model is
identifiable in p if p can be recovered (i.e., computed measurably) from the data
Xi...y X,y ... . Formally, this property is defined by p € %, = P-completion of
the o-field generated by X,,..., X,,... and P is the joint distribution of
w=(p,X,..., X,,...) defined in Section 2. The main result of this section
(Theorem 3.1) is that p € %, is a necessary and sufficient condition for estab-
lishing consistency of Bayes procedures of u for all u and is also equivalent to
the existence of a sequence of weakly consistent estimates of u. In the i.i.d.
situation, p € &, is also equivalent to the classical identifiability condition
(Proposition 3.2). First assume a prior #(dp) on © which is dominated by 7 (dp)
with density #'(pn). A posterior distribution of u with respect to this prior can be
defined in terms of #’(p) and P™(dp|X) as

Jpm'(p) P"(dp|X)
Jam' (k) P"™(dp|X) *

Thus, for priors differentiable with respect to the uniform distribution the
posterior distribution can be represented as a ratio. This representation is
important: It allows us to study the large-sample behaviors of the numerator
and the denominator separately, each of which depends only on the large-sample
behavior of the Pitman distribution and the smoothness of the prior density. In
this sense, the study of the posteriors is reduced to that of the Pitman distribu-
tion. The next theorem gives the main result. Denote the posterior mean
Jor7™(dp|X) by m,(X) and let m(X) be the Pitman estimate [ouP™(dp|X).
Denote a point mass probability at A by §,. We say that u is estimable if for
each n there is a Borel function (estimate) 7, of X, ..., X, such that for each p,
T, = p in P -probability. The main result of this paper (Theorem 3.1) is that the
following six statements are essentially equivalent:

(3.1) 7"(B|X) =

(S1) p is estimable.

(S?) pe Z,.

(S3) For each A, P\{P"(-|X) = §,} = 1.
(S4) For each A, A{m(X) > A} = 1.
(S5) For each A, P{n"(-|1X) = §,} = 1.
(S6) for each A, P\(m (X) > A} = 1.

.Let us comment briefly on these statements. (S1) states that there exists a
weakly consistent estimate of the mean direction whereas (S2) is the key
identifiability condition. (S4) states that the Pitman estimate of Watson (1983b)
is a strongly consistent estimate of the mean direction and (S3) depicts the
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Pitman distribution merging to a degenerate distribution at the mean direction.
(S5) and (S6) give analogous convergence statements for the posterior distribu-
tion and posterior mean with respect to the prior distribution .

THEOREM 3.1. Statements (S1)—(S4) are equivalent and, if ©’ is continuous
and positive, (S1)—(S6) are equivalent.

Proor. Assume (S1). Let {T,} be a sequence of weakly consistent estimates
of p. There is a subsequence n(k)1 co such that T, ,, — p almost surely [ P,]. By
Fubini’s theorem, P{w: T, ;) — p} = 1. Since T, ;) € #{X,,..., X, 1)}, b € Z,.

Next, assume (S2). By the forward martingale convergence theorem [Doob
(1953)], the posterior characteristic function of p given Xj,..., X, defined by
E[e*'™MX,,..., X,], converges to E[e**™X,, X,,...] almost surely [P]. Since
nE Fyy
(3.2) E[e®*™X,,..., X,] » e** almost surely [ P].

An application of Fubini’s theorem entails
(3.3) P{E[e*™X,,..., X,] - €**} =1 almost surely [7,].

Hence, there is an v such that

(3.4) P{E[e*™X,,..., X,] > e*} = 1.
By (2.5), for all He H
(3.5) B{E[e™"®"HX,,..., HX,] - e*™} = 1.

For each A, let H be an orthogonal matrix such that Hv = A. Since X ~ P,
implies Y = HX ~ Py, = P,, we conclude that for each s € R?

(3.6) P(E[e™mX,,..., X,] » UHINY = 1,

Hence, P,{P"(:|X) = §,} = 1, proving (S3). Statement (S4) follows from (S3)
since the identity map on Q is bounded and continuous. If (S4) is assumed, we
can let T, = m(X) and hence (S1).

Suppose 7' is continuous and positive. The posterior characteristic function of
p given X,,..., X, with respect to the prior #(dp) is given by
Jae** ' (p) P™(dp|X)
Ja'(p)P"(dplX)
~Assume (S3). For each A the numerator converges almost surely [P,] to
e*" '(\) whereas the denominator converges almost surely [P,] to #’(A) > 0.
Hence, E [e®*™*X,,..., X,] - e®*"* almost surely [P,], proving (S5). Again,
statement (S6) follows from (S5) since the identity map on € is bounded and

continuous and, if (S6) holds, Fubini’s theorem implies that P{m (X) - p} =1
and, hence, p € Z,. O

(3.7) E, [e*™"X,,..., X,] =

According to Theorem 3.1, for a smooth prior if the posterior mean does not
converge to the “true” direction of symmetry A (or if the posterior distribution
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does not converge to a point mass at A), no weakly consistent estimate of A
exists. This phenomenon may not be true if the posterior distribution is not
generated from the Pitman distribution as in (3.1). We illustrate this phenome-
non by the following example which also demonstrates what may happen if the
invariant condition (2.5) is violated.

ExAMPLE 3.1. Assume a uniform prior. A posterior distribution generated
from a Pitman distribution as in (3.1) will itself be a Pitman distribution and,
hence, enjoys nice large-sample properties according to Theorem 3.1. On the
other hand, a posterior distribution which is not a Pitman distribution can be
inconsistent at a particular parameter point. Take for example, P, a point mass
at (p, p,...). Apparently, P{n"'3X, = X, = p for all n} =1 for each p and,
hence, p is estimable (by X,) and p € £Z,. For X, # (1;0,...,0), let P"(:|X) be a
point mass at X,; otherwise, let it be a point mass at (0,...,0,1). Clearly,
P*(-|X) fails to converge to a point mass at A for A = (1,0,...,0).

The condition to check for the validity of Theorem 3.1 is p € %, or, perhaps,
(S1). One easy sufficient condition is the following:

(A) There is a unit vector e such that n™!=X; — te in P,-probability for some
nonzero ¢t € [—1,1].

Condition (A) is far from being necessary for consistency; it is not applicable
to any zero-mean model (Example 1.1). Yet, it has the advantage of being easily
applicable to dependent observations in the presence of moment inequalities.
Condition (A) is equivalent to the fact that the sequence X,,..., X,,... obeys a
weak law of large numbers in the sense that n 'SX; —» C in P,-probability,
where e is some unit vector and C is some nonzero constant. Indeed, in this case
HC = C for all H € H such that He = e. Hence, C must be equal to te for some
nonzero ¢t € [—1,1].

PROPOSITION 3.1. Assume (A). Then p € %,

PrOOF. Assume (A) and let 7, = n”'2X,. There is a subsequence n(k)1 oo
such that T, — te almost surely [ P,]. In view of (2.1), for each p, T, ,, — tu
almost surely [ P,], where He = p. By Fubini’s theorem, P{w: Tory ~ t1} = 1.
Since T,y € #{X,,..., Xypy} and ¢ # 0, p €Z,. O

Theorem 3.1 states that Bayes procedures enjoy nice large-sample properties
if one presupposes the existence of a consistent estimate of u. However, in the
case that we do not know of the existence of a consistent estimate of p, this
theorem is useless (see, however, Proposition 3.3 which follows). This difficulty
does not arise in the usual i.i.d. case. In fact, it will be shown in Proposition 3.2
that in the case of i.i.d. sampling, p € Z_ is equivalent to the following classical
identifiability condition:

3B X,....X are iid. F, and p # v implies that there is a B € & such

e

that F(B) # F(B), where F, denotes the distribution of X,.
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Condition (B) states that different parameters correspond to different model
distributions. By the law of large numbers, it also implies that n~'2X; — te for
some ¢ € [—1,1], yet ¢ can be zero. Hence, (A) is not more general than (B).

ProposITION 3.2. Assume that X,,..., X,,... are i.i.d. F,. Then (B) is
equivalent to p € Z,.

ProOF. Assume (B). Then p € %, follows from the arguments of Doob
(1949) [see also Schwartz (1965) and Breiman, Le Cam and Schwartz (1964)].
Conversely, p € %, implies that (S3) holds by Theorem 3.1. That is,
B{mX) - p,} =1 and P{m(X) - A} = L.If p # A, P, and P, are then singular
on #{X,,..., . }. The proof is completed by notmg that for i.i.d. sampling,
P, and PA are smgular on #{X,,..., ..} for p # A is equivalent to (B). O

The following result is an immediate consequence of this proposition and
Theorem 3.1.

THEOREM 3.2. Assume that X,,..., X,,... arei.i.d. F,. Then (B), (S1)-(S4)
are equivalent and, if the prior density w' is positive and continuous, (B),
(S1)-(S6) are all equivalent.

Theorem 3.2 can be applied to the zero-mean model in Example 1.1. In
particular, the Bayes estimate (posterior mean) of p in the mixture model is
consistent.

REMARK 3.1. Foriid. sampling, the classical identifiability condition (B)
holds if and only if {B,} is a pa1rw1se orthogonal family (i.e, p # A implies B,
and P, are orthogonal), hence, pairwise orthogonality of the joint distributons i 1s
a necessary and sufficient condition for p € %,. For dependent observations,
characterizations of p € %  in terms of orthogonal properties of the joint
distributions P, can be obtained by appealing to some recent work of Mauldin,
Preiss and We1zsacker (1983) on orthogonal Markov kernels. The fannly (B} is
orthogonality preserving, if for any pair of mutually orthogonal prior d1str1bu-
tions =, and m,, the two marginal distributions [P, (dp) and [P,my(dp) are also
mutually orthogonal. The family {P,} is completely orthogonal if there is a Borel
set B of (u,x),i.e., BE Z® F>, such that for each p, B(B,) =1 and 1fy # A,
then B,N B, = @ (B, denotes the p-section of B). The famlly {B,} is com-
pletely orthogonal nnphes that it is orthogonality preserving [Mauldm Preiss
and Weizsacker (1983), Theorem 1.8]; the latter implies p € %, [Mauldin, Preiss
and Weizsacker (1983), Theorem 4.1]. Moreover for a rotationally symmetric
model, our Theorem 3.1 and Theorem 1.8 in Mauldin, Preiss and Weizsacker
(1983) can be applied to prove that p € %, implies that the family is completely
orthogonal. We collect these results in the following proposition:

PROPOSITION 3.3. The family {P,} is orthogonality preserving if and only if
it is completely orthogonal if and only if p€F,.
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4. The identifiable projector defining the axis of symmetry. In this
section we assume the model specified by (2.1) is also antipodally symmetric in
the sense that for each n,

(4.1) P(A) = P(~A), “forall A€ #" andall p € Q.

Roughly speaking, (4.1) means the direction of symmetry defined by p and that
defined by —p are the same, i.e., p and —p cannot be distinguished. In this case,
assumption (A) fails to hold, because, if n~'2X; converges, the limit must be the
zero vector. In the ii.d. case, condition (B) is not satisfied since both p and —p
correspond to the same distribution. In fact, the next result states that weakly
consistent estimates of p do not exist for an antipodally symmetric model on the
sphere.

PROPOSITION 4.1. Assume (4.1). p is not measurable with respect to %,

ProoF. The proof is based on a contrapositive argument. Suppose p € Z,..
By Theorem 3.1, (S4) holds. Then there is a p € @ such that B{m(X) - p} = 1.
Note that m(HX) = Hm(X) for all H € H and, in particular, m(—X) = —m(X).
Hence, “{m( X) - —p} = 1. According to (4.1), B{m(X) - —p} = 1, imply-
ing p= —p,ie, p=(0,...,0) contradicting u € 2. Hence, p is not measurable
with respect to %,. O

Even though one cannot recover p from the data, the data may still provide
information about some functions of u. A natural function to look at is the axis
going through p and —p, or equivalently, the projector pu* into the direction of
. In what follows, we discuss consistent Bayes procedures for the projector pp*
defining the axis of p [Watson (1983a, b)]. A necessary and sufficient condition in
establishing consistency then is pu* € %, i.e., the model is identifiable in pp*.
As in the last section, this identifiability is guaranteed by one of the following
two conditions:

(A”) There is a unit vector e such that n™'SX, X} — ee* in P,-probability.
B) X,,..., X,,... areiid. F, and pp* # w* nnphes that thereisa B€ %
such that F,(B) # F(B).

PROPOSITION 4.2.

() (A') implies pp* € Z,.
d If X,,..., X,,,... arei.i.d. P,, then (B) and pp* € Z, are equivalent.

PrOOF. Assume (A’) and let 7, =n"'SX;X}. There is a subsequence
n(k)1 oo such that T, — ee* almost surely [P] In view of (2.1), for each g,
Tyxy — Hee*H* = uu* almost surely [ B, ], where He = p. By Fubini’s theorem,
P{w: Typy = pp*} = 1. Since T, 4, € f{Xv Xow) bu* € Z,.

Assume (B’). Then F,(B) is a function of pu 1t then follows from Theorem 3
in Blackwell (1956) that for each B, F(B)isa Borel function of pp*. Hence, the
arguments of Doob (1949) can be apphed to conclude pp* € Z,_. The arguments
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of Proposition 3.2 can also be applied to prove the converse (with Theorem 4.1,
to follow, instead of Theorem 3.1). O

Condition’ (A) is not difficult to check for dependent observations. In general,
n~'2X;X} may not converge and, if it converges, the limit can be a projector
not depending on p (see Example 2.1). This last phenomenon is particularly
irritating since in this case and for ii.d. observations, neither the eigenvector
method of Watson (1983a), Chapter 5, or the moment method of Kim (1978) is
applicable; it is comforting that in this situation the Bayes procedures remain
consistent, subject only to the (necessary and sufficient) identifiability condition.

The next result gives the analogy of Theorem 3.1 for the projector pp*
defining the axis of rotational symmetry. If the posterior distribution of p|X is
P™(-|X), we denote the posterior distribution of pp*|X by .Z(-|X). Define
&.(-|X) similarly. Since = is absolutely continuous with respect to =, its image
under the map p — pp* is also absolutely continuous with respect to that of .
Denote the density of the image measure by #”. Consider the following six
statements that correspond to those for Theorem 3.1:

(S1) pp* is estimable.

(S2") pp* € £,

(S3) For each A, P\{Z(-|X) = §)y+} = 1.
(S4) For each A, P{E[pp*|X] = AN*} = 1.
(S5) For each A, P(Z,(-|X) = §,)+} = 1.
(S6") For each A, P\{E, [pp*|X] = AN*} = 1.

THEOREM 4.1.

(i) Statements (S1')-(S4’) are equivalent and, if =" is continuous and posi-
tive, (S1)—(S6’) are equivalent. '

(ii) If the observations are i.i.d., (B*), (S1*)-(S4) are equivalent and, for a
continuous and positive 7", (B"), (S1*)-(S6') are all equivalent.

PROOF. Statement (S1’) implies (S2) is clear from the proof of the analogous
part in Theorem 3.1. Assume (S2'). The posterior characteristic function of pp*
given X,,..., X,, defined by E[etr(iMpp*)|X,,..., X, ] for any symmetric ma-
trix M, converges to etr(iMpp*) almost surely [ P]. Hence, there is an v such that

(4.2) P{E[etr(iMpp*)\Xy,..., X,] = etr(iMvv*)} = 1.
By (2.5), for all H € H,
(4.3) P{E [etr(iMH*pp*H)\HX,,..., HX, ] - etr(iMw*)} = 1.

For each A, let H be an orthogonal matrix such that Hv = A. Then (4.3)
“becomes

(44)  P{E|[etr(iMH*pp*H)\Xy,..., X,| - etrGMH*AN*H)} = 1.

That is, for each A there is an orthogonal matrix H such that for all symmetric
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matrices M,
4.5) P{E|etr(iHMH*pp*)|X,,..., X, | - etr(GHMH*A\*)} = 1.
A

Denote HMH* by N. Note that N is a symmetric matrix and the map M — N is
one-to-one. This concludes the proof of (S3).

The proofs for other implications in (i) are similar to that of Theorem 3.1 with
obvious modifications and will not be given. Part (ii) is a direct consequence of (i)
and Proposition 4.2. O

Theorem 4.1 can be dpplied to the mixture model in Example 1.2 to conclude
that the Bayes procedures for the mean projector are consistent.

REMARK 4.1. Watson (1983b) also suggested estimating a projector II pro-
jecting into an s-dimensional subspace of R? by the Pitman estimate with
respect to the uniform distribution on the Grassmann manifold [James (1954)
and Eaton (1983)]. By selecting an invariant posterior distribution, i.e., a Pitman
distribution satisfying an analogy of (2.5), one also obtains consistent Bayes
procedures for all IT (subject to the identifiability condition). That is, Theorem
4.1 remains valid in this case. The proof is the same and will not be reproduced.
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