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MODEL-FREE ONE-STEP-AHEAD PREDICTION INTERVALS:
ASYMPTOTIC THEORY AND SMALL SAMPLE SIMULATIONS

By Sinsup GHO! AND ROBERT B. MILLER
University of Wisconsin—-Madison

We show that the empirical quantile process from an ARMA(Y, g)
process which is strongly mixing A, and is either Gaussian or double
exponential, converges to a Gaussian process. This result is used to derive
model-free one-step-ahead prediction intervals for such processes. Simula-
tions demonstrate where the asymptotic theory can and cannot be applied to
small samples.

1. Introduction. Consider a strictly stationary sequence of random vari-
ables (r.v.’s) {X,, n > 1} from a stochastic process with marginal c.d.f. F(-). We
consider the prediction of a future observation X,,,, using prediction intervals.
Model-based approaches to forecasting have been suggested by many authors,
but, because of the sophistication and computational complexity of the model
building approach, simpler methods are increasingly demanded by practitioners
[Makridakis and Hibon (1979), Carbone, Anderson, Corriveau and Corson (1983)
and Brandon, Jarrett and Khumawala (1983)]. In this paper the simple forecast-
ing technique proposed in Butler (1982) is evaluated for prediction interval
construction in ARMA(1, q) processes. The need for prediction intervals instead
of just point prediction was emphasized eloquently by Keyfitz (1972).

Let F, denote the empirical distribution function (e.d.f.) based on a sequence
X, X5,..., X, that is,

(11) F(t)=n zilf(-w,,](xi).

Gastwirth and Rubin (1975a) showed that the empirical process n'/?[F(t) —
F(t)] converges weakly to a Gaussian process with a.s. continuous paths for a
strongly mixing A, process.

Define the ¢th sample quantile F, ' (¢) as

inf{x: F,(x) >t} fort>0,

(1.2) Fn_l(t) = {F'1(0+) fort = 0.

We will show in Section 3 that the quantile process n*/2[ F, (t) — F~(¢)] from
either the first order autoregressive Gaussian process (FOAGP) or the first order
autoregressive double exponential process (FOADP), which are strongly mixing
A, processes, converges to a Gaussian process.
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This convergence has an immediate application in model-free prediction for
dependent processes. In the context of an independent process Butler (1982)
constructed a 100y% prediction interval by locating the 100y% span of the data
which supports the smallest trimmeg variance. Our result permits extension of
this approach to serially correlated sequences. The approach does not require
any parametric models and can be applied to Gaussian or double exponential
sequences.

The contents of the paper are as follows. Mixing numbers are defined and the
weak convergence of empirical processes is reviewed under various conditions in
Section 2, and the convergence of the quantile process to a Gaussian process is
shown in Section 3. The final section shows how to obtain the model-free
prediction intervals and presents simulated comparisons of these prediction -
intervals with others constructed from the true parametric model.

2. Mixing conditions and the weak convergence of the empirical pro-
cess. Let {X,; —o0 <n < o} be a strictly stationary sequence of r.v.s.
Denote by p* _ and pg the o-fields generated by r.v.s {X,; n < k} and {X,;
n > k}, respectively. Let ¢, = 1, ay = 1 and for n > 1 define

(2.1) b = SUP{|P(E2|E1) — P(Ey)|: E\€ply, By € l‘orf}
and
(2.2) a, = sup{|P(E1E2) — P(E,)P(E,)|: E, €, E; € F’*orf}

In the definition of ¢,, we are adopting the convention that P(E,|E,) = 0 if
P(E,) = 0. A stochastic process { X} is called ¢-mixing if there exists a sequence
{¢,} such that

1>2¢;2¢, -+, Hm¢n=0
n—oo
and strong mixing if there exists a sequence {a,} such that
1y >a,> -+, lim a, = 0.
n—oo

The process {X,} is m-dependent if the random vectors (X,,..., X;) and
(Xy4n»---» X;) are independent whenever n > m. Such a process is ¢-mixing
with ¢, = 0 for n > m.

It is known [see, e.g., Theorem 17.3.2 of Ibragimov and Linnik (1971)] that a
stationary Gaussian sequence is ¢-mixing iff it is m-dependent for some m.
Gastwirth and Rubin (1975a) showed that the first order autoregressive process
is not ¢-mixing, introduced a new mixing process (strongly mixing A, process)
which is easier to calculate and showed that FOAGP and FOADP satisfy the
conditions of a strongly mixing A, process. For practical purposes, it is helpful to
think of these processes as strong mixing with a, = O(e ") for some 6 € (0, 1),
although the definition is much more general.

Doob (1949) suggested a novel approach to the study of the empirical process
(n*?[F,(x) — F(x)]; —o0 <x < o0}, where X,, X,,... areiid. r.v.s with dis-
tribution F(-) and Donsker (1952) justified Doob’s heuristic approach. Let v,*(y)
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be the continuous version of the empirical process of Y, = F(X;). Donsker (1952)
showed that

h(vH (7)) »p h(B(¥)), asn - oo,

for every continuous functional h: C(0,1) = R', where {8(y); 0 <y <1} isa
Brownian bridge. In the following E,(-) is defined as the e.d.f. of Y, = F(X,). We
can see that the sample functions of y,(y) = n'/2[E,(y) — y] do not belong to
C(0,1). This difficulty was solved by Prohorov (1956) and Skorohod (1956), while
working on the so-called D(0,1) function space.

For dependent processes Billingsley (1968, Theorem 22.1), showed that the
empirical process from a ¢-mixing process converges to a Gaussian process.

THEOREM (Billingsley). Suppose {X,)} is <b-m;'xing with ¥n%l/? < o, and
X, has a continuous distribution function F on [0,1]. Then

Yn D Y’

where Y is the Gaussian random function specified by (22.11) and (22.12) of
Billingsley and P(Y € C} = 1.

It was shown by Sen (1971) that under a weaker condition on the ¢-mixing
numbers, Yn¢l/? < oo, the same result can be obtained. Deo (1973) showed that
Billingsley’s result remains true for strong mixing sequences with Yn%al/?~" < oo
for some 0 < 7 < §. For a strongly mixing A, process Gastwirth and Rubin
(1975a), Theorem 3.1, obtained a similar result.

3. Convergence of the quantile process. For a sequence of independent
r.v.’s Bickel (1967) showed that the quantile process converges to a Gaussian
process. Let Z (t) be a piecewise linear sample quantile function defined as in
Bickel (1967). Bickel showed that n'/2Z,(t) converges to Z(t) in the sense of
Prohorov on [a, 8], 0 < @ < B < 1, where Z(¢) is a centered Gaussian process on
[a, B] with continuous sample functions and covariance

s - {F [F ) F[FY0)]},  s<t.

Mehra and Rao (1975) showed that if ¥n2¢/2 < oo, then the quantile process
converges in probability in sup norm to a Gaussian process when the sequence of
r.v.’s {X,} are from a ¢-mixing process. For a strong mixing process, Mehra and
Rao also showed that if Yn%® < co for some 0 < § <1, then the quantile
process converges in probability in supnorm to a Gaussian process. However,
their results were confined to the sequence of uniformly distributed r.v.’s. In this
section we will extend their results to the case when the underlying distribution
is not uniform.

In Babu and Singh (1978) the deviation between the empirical and the
quantile processes for ¢-mixing or strong mixing r.v.’s was given for the uniform
distribution. As an extension to general distributions, they gave the following
theorem. We say that a d.f. F with density f satisfies the condition (*) if for
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some interval I,
f(x)=0 forx eI,

inf{ f(x),x€I} >0
sup{f(x),x € I} < co.

THEOREM (Babu and Singh). Let {X,} be a strictly stationary ¢-mixing
sequence of r.v.’s such that Y¢./%2 < co and the underlying d.f. F satisfies the
condition (*). Then

(3.1) limsupb, 'R* < d, a.s,
n— oo N
where
(3.2) b, = n=3*(log n)"*(loglog n)"*,
(3.3) R} = sup |Rx(?)[,
0<t<1

(8.4) RX(t) = F;(t) — FY(¢) + [E(FY(¢)) - t]/f [F'(2)]
and d, is some constant.

Throughout the paper ¢, 2 and d;’s stand for constants.

Using the weak convergence of the empirical process, we can show that the
quantile process converges weakly to a Gaussian process following Theorem 4.1
of Billingsley (1968). Furthermore, we have

THEOREM 1. Let {X,} be a sequence of r.v’s from a strictly stationary
¢-mixing process such that Yn%pl/? < o and the underlying d.f. satisfies the
condition (*). Then

(3.5) sup |Z,(t) —Z(t)| >p0, asn — oo for some e > 0,

e<t<l—e

where
z,(t) = n2[FNe) - F2(8)],  Z(2) = Yo(8)/f [F(2)],
Yo(t) = —Y(¢),
and Y(t) is defined as in Billingsley (1968).

ProOF. Since
E(t) - ¢ = F[E(0)] - F[F(0)]
= f [FYe)][F 2 (¢) = F(8)] + £/ (n)[Fy((e) - F-Y(»)]%,

for a random point 7 in I,
FY(e) = FY(2) = [E;'(8) — ¢] /f [F(#)]
—f'()[EX(2) = )] */f [F(2)].
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Multiplying by n'/2 and subtracting Z(t), we obtain
s |Z,(0) - 2(0)| <dy sp |nAES(6) - ] - %(0)]

e<t<l-—e e<t<l-—e
L]

+d, sup n2[F;Y(¢) - F'(¢)]%
e<t<l-—e
By condition (*) and Lemma 4.2 of Babu and Singh (1978), the second term on
the right is O(n~'*(loglog n)). Since the first term goes to 0 in probability
following Mehra and Rao (1975), the result follows. O

For a strong mixing process with a, = O(e~?*), for some 6 > 0, Babu and
Singh (1978) also showed that

(3.6) sup |F;Y(t)—t+Fy(t)—t|= O(n=3/4(log n)(loglog n)’Y) as.,
0<t<1

where X, is uniformly distributed on the unit interval. We can give the following

theorem when the underlying distribution is not uniform.

THEOREM 2. Let {X,} be a strictly stationary strong mixing sequence of
r.v.’s such that a, = O(e~%") for some 0 > 0. Assume the underlying distribu-
tion F satisfies condition (*) and f'(x) exists and is bounded on I. Then

(3.7) limsup C,'R* <d, a.s.,
where
(3.8) C, = n~%*(log n)(loglog n)"*

and R* and R*(t) are defined in (3.3) and (3.4), respectively.
PROOF. Let R, (t) = E;¥t) + E(t) — 2t. Since E,%(t) = F[F;'(1)],
E.(t) = F,[F ()] and t = F[F~Y(1)],
R,(t) = F[F;}(¢)] + F,[F\(t)] - 2F[F(1)]

= f[F (O] R2() + F()[F(8) - F ()]

for every t € [0,1], where 7 is a random point in I. Using Theorem 4 and the
analog of Lemma 4.2 of Babu and Singh (1978) for a strong mixing process, it can
be shown that

ds sup |RX(¢)| < sup |R,(t)|+ dg sup [F;(¢) - FY()]?
0<t<1 0 1

0<t<l1 <t<

= O(n‘3/4(log n)(loglog n)l/4) as. m]

Again, using the weak convergence of the empirical process, we can show that
the quantile process converges weakly to a Gaussian process for the strong
mixing process. Also we can give the following theorem.
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THEOREM 3. Let {X,} be a sequence of r.v’s from a strictly stationary
strong mixing process such that a, = O(e™®") for some 0 <8 <1 and the
underlying d.f. satisfies condition (*). If |Corr(X,Y)| < Cal for some 0 < § <
1, where X and Y are measurable w.r.t. the o-fields pl ., and p%®, respectively,
then

(3.9) sup |Z,(t) - Z(t)| »p0, asn — oo for some e > 0.

e<t<l—e

Proor. Following Theorem 3.1 of Mehra and Rao (1975)
sup |n'2[E;Y(¢t) — t] — Yo(¢)| >p0, asn— oo.
e<t<l-—e

The remaining part of the proof is exactly the same as the proof of Theorem 1. O

Following Gastwirth and Rubin (1975a), ||A(R)||, = O(|p|*), for FOAGP and
FOADP. Since ||A(k)|l; = Olexp(% log|p|)] = O[exp(—08k)], where 8 = -log|p| >
0 for 0 < |p| < 1, we can show that a, = O[exp(—0k)] for FOAGP and FOADP,
using a,, < ||A(k)||;/4, and obtain the following corollary.

COROLLARY 3.1. For FOAGP and FOADP

sup |Z,(t) — Z(t)| »p0, asn — oo for some & > 0.
e<t<l-—e

4. Use of quantiles in prediction. Butler (1982) proposed a randomly
located interval for a future observation from a location model. If F is strictly
increasing over the interval of support, then the class of the 100y% prediction
interval is

(4.1) (1(8) = [F~Y(8), F (8 +v)];0<8<1~-7}.

Given a random sample X,, X,,..., X,, if F' is known, we consider predicting
X,, ., with the interval (4.1), which supports the smallest trimmed variance, i.e.,
we use I(6*) where 8* = 6*(y) is the value of 8, which minimizes

(4.2)  o%(8) = y—lfrl(“”x?dF(x) - {y-lfrl‘“”xdF(x)}
F1(8) F~1(8)
If F is unknown, an estimator of 8*, §* say, is obtained when F~! in (4.2) is

replaced by F, !, the sample quantile function. Then the 100y% span of untrim-
med data,

2

(4.3) 1(8%) = [F;1(8%), B (8" + v)],
provides a tolerance interval predictor of the next observation from the location
sample.

It is natural to use the center of [(§*) as a point predictor of X, ... Butler
showed that the center of f(8*) is asymptotically the mean of the data spanned
by f(§*) and represents the mean of the remaining data after the elimination of
the 100(1 — y)% “most outlying” subset of the data. In this section we will
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extend Butler’s result to the dependent case and will present a simulation result
for FOAGP and FOADP.

Let {X,)} be a sequence of r.v.’s from a ¢-mixing or a strong mixing process.
Butler specified sufficient conditjons for the uniqueness of §*, Lemma 2.1, which
are still applicable to our problem. By the following lemma we can show the
consistency of §*.

LeEMMA 4.1. Let F be continuous, strictly increasing on interval support with
a finite mean and a differentiable density f that is unimodel. Then, for a
¢-mixing process under the same conditions as in Theorem 1 and for a strong
mixing process under the same conditions as in Theorem 3, 5 > pd¥asn — oo.

ProoF. If we use Theorems 1 and 3, instead of Lemma 2.2 of Butler, then
the proof is exactly along the same lines as in Butler (1982). O

Let P(y)= F[F;,‘l(g* +v)— F[Fn‘l(g*)] be the coverage of [(§*). Then,
following the proof of Theorem 3.1 of Butler (1982), we can obtain the following
theorem.

THEOREM 4. Under the same conditions as in Lemma 4.1
(4.4) n2[P(y) = v] »p N[0,0(8*7)], asn— oo,
where

o(8%,7) = E[{¥(s* + v) - ¥(8")}].

For FOAGP, using Lemma 2.1 of Gastwirth and Rubin (1975b), we have

o(8*,y) =y(1-v)+ {exp[F (8 +v)] Z Z HE [FY(8* + v)]ol/R!

n=1k=1

vexp[~F1(897 ¥ ¥ HE,[F(8%)] ot k!
(4.5) n=1 k=1

—2exp[— F1(8* +y)* + F1(8%)° /2]

[} [oe]

oAU ANt 78
n=1k=1

where p¥ is a correlation coefficient between X, and X, ., in FOAGP and Hy(a)

is the £th Hermite polynomial [for the definition, see Hochstadt (1961)].

It is noted that, because of the condition in Lemma 4.1 and the structure of
0v(8*,v), we need a “nice” form for F to apply Theorems 2 and 3. F is not
always nice when we have a nonnormal error distribution in the MA process. In
FOADP we have to have the following error distribution to get the double
exponential marginal distribution, f(x)=e /2, —o0 <x < o0, Gastwirth,
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Rubin and Wolff (1967):

(4.6) f(e) = {

We have seen, for any pure MA process, the quantile process converges to a
Gaussian process following Billingsley (1968), since any MA process is m-depen-
dent. By Corollary 3.1 the quantile process converges to a Gaussian process for
FOAGP and FOADP. It will be seen later that the quantile process converges to
a Gaussian process for the mixed autoregressive moving average process of order
1 and ¢ (ARMAC(1, q)), ¢ = 1,2,..., with normal or double exponential errors.
Hence for these processes we can use the class of 100y% tolerance intervals to
predict the next observation. We have not been able to extend this to the general
ARMA( p, q) process with p > 2.

Consider an ARMA(1, ¢) process, q > 1,

0 with probability p?,
e !l/2  with probability (1 — p?).

(4.7) Xo=pX, 1 +e,— 06,1~ —l, .
It is not too hard to show that (4.7) can be rewritten
(4.8) X, = p"X, + U,,
where
U=¢e,+(p—0)e, . + (92 - pb, - 02)%—2
+ . +(pq-1 — 72, — .- _0q—1)3n—q+1
(4.9) * [pq =T~ _041] [8n-q tPE, gt +p(n_2q)€q]

_p(n—2q+l)[pq—101 4+ .- +0q]8q_1

_p(n—2q+2)[pq—202 + ... +0q]€q_2

— =" g,
with e,_; = -+ = e, = 0, E[U,] = 0 and
var[U,] = {1 +(p— 01)2 + ... +[pq-1 — 72, — .- ‘0q-1]2
(4.10) + [pq — Pl — - _gq] [1 — p2n-2a+D] s

(1 — p?)}Var(e,).

With Var[e,], which satisfies (4.10), we obtain Var[U,] = 1/(1 — p*>*) and
Var[X,] =1 and we can show that the mixing number of (4.7) satisfies
IACR)Il, = O(lpl*).

We present a simulation result comparing the performances of the B-J
method [e.g., (5.2.6) of Box and Jenkins (1976)] and the simple method in which
the quantile function is used to choose a pair of order statistics to form a
predictive interval (P.I.). Coverage frequencies of one-step-ahead P.I.’s are com-
pared for FOAGP and FOADP for three different sample sizes, n = 10, 20 and
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100, and for p = —0.9-0.9 in increments of 0.1. Although the B-J method is
usually not recommended for small samples of sizes n = 10 and 20, P.I’s are
obtained by both methods for comparison purposes. The study favors the B-J
method because the correct madel is always used. There is no identification
error.

To obtain the P.L’s for n =100 (20 and 10) we generate 101 (21 and 11)
observations from FOAGP and FOADP for p = —0.9-0.9 in increments of 0.1.
Using the first 100 (20 and 10) observations 90% (90% and 80%) P.I. is obtained
by the B-J method. For the simple method we use the fifth and the 95th
observations for n =100 and the smallest and the largest observations for
n = 20 and 10. For the B-J method, the number of times we have significant (5%)
residual ACF’s or PACF’s after AR(1) fitting are obtained. ACF and PACF stand
for autocorrelation function and partial autocorrelation function.

Although the sample quantile functions suggested by Butler (1982) and
Parzen (1979) have been recommended because of their accuracy for small
samples, we use the sample quantile function (1.2) in using the simple method.
The reason we choose (1.2) is that this one is the most conservative one in the
sense that if we use the same order statistics it gives the largest coverage
probability. For example, if [ X, X10)] is used with n = 10, (1.2) ensures 80%
while Butler’s and Parzen’s methods ensure 90%. In the independent case, Hall,
Prairie and Motlagh (1975) showed that its coverage probability is 81.82%
instead of 90% using the hypergeometric function. We are deliberately avoiding
the piecewise linear quantile function for the sake of simplicity. Also, we use the
symmetric P.I. because the simulation is performed on normal and double
exponential distributions. As Butler (1982) indicated, §* picked out the “most
symmetric” 100y% of F by centering the interval mean. Since both normal and
double exponential distributions are symmetric the interval will also be symmet-
ric about the mean of the distribution, which is not the case with the asymmetric
distribution.

To judge the significance of the ACF of the residuals, we use the result of Box
and Pierce (1970) for the distribution of the residual ACF. We have obtained a
similar result for the residual PACF in the AR(1) model.

Numerical results. We summarize the coverage percentage of both methods
in Tables 1 and 2.

For n = 100, it is observed that the percentages of the 101th observation
covered by the 90% P.I.’s obtained by both methods range from 87-92% in both
processes. No significant difference is found in the performance of the methods
for FOAGP and FOADP (Figure 1). The coverage percentages of the simple
method are observed to be somewhat lower than those of the B-J method only in
the neighborhood of p = —0.9 and p = 0.9 in both processes. The differences are
less than 2.5% in both processes. The average widths of P.I. by the B-J method
are found to be narrower than those of the simple method. For small p values
around 0, the difference is slight, while the difference gets larger as the absolute
value of p gets larger. This is expected since the criterion in the B-J method is to
minimize the mean-square errors, which in turn results in the minimization of
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Coverage percentages of one-step-ahead P.1. Normal distribution (FOAGP)

TABLE 1

1073

n 10 (80%) 20 (90%) 100 (90%)

) B-J Simple . B-J Simple B-J Simple
- 09 0.7275 0.8000 0.8675 0.8825 0.9100 0.8900
-0.8 0.6900 0.8075 0.8850 0.9075 0.8975 0.9050
-0.7 0.7125 0.7950 0.8425 0.9050 0.8875 0.9050
-0.6 0.7050 0.7925 0.8775 0.9300 0.8800 0.9125
—-0.5 0.7225 0.8100 0.8625 0.8950 0.8875 0.8850
—04 0.7250 0.8200 0.8575 0.9175 0.8900 0.9025
-0.3 0.7400 0.8500 0.8700 0.9275 0.8950 0.8950
—-0.2 0.7400 0.8625 0.8375 0.9050 0.8825 0.8875
-0.1 0.7450 0.8475 0.8525 0.9025 0.8950 0.8950
0.0 0.7300 0.8100 0.8600 0.8850 ° 0.9000 0.8875
0.1 0.7375 0.8075 0.8275 0.8975 09175 0.9150
0.2 0.6900 0.8075 0.8650 0.8975 0.8700 0.8825
0.3 0.7350 0.8250 0.8850 0.9225 0.8975 0.8950
04 0.7050 0.8050 0.8475 0.8750 0.9050 0.9050
0.5 0.7075 0.7675 0.8775 0.8925 0.8850 0.8725
0.6 0.6975 0.7600 0.8400 0.8625 0.9000 0.8925
0.7 0.7075 0.7300 0.8650 0.8900 0.9100 0.9050
0.8 0.7100 0.7125 0.8575 0.8625 0.9175 0.8975
0.9 0.7100 0.7325 0.8550 0.7975 0.9050 0.8800

TABLE 2

Coverage percentages of one-step-ahead P.1. Double exponential distribution (FOADP)

n 10 (80%) 20 (90%) 100 (90%)
) B-J Simple B-J Simple B-J Simple
- 09 0.8550 0.8575 0.9075 0.9325 0.9250 0.9025
-0.8 0.8150 0.8425 0.8800 0.8975 0.9325 0.9125
-0.7 0.7700 0.8375 0.8750 0.9050 0.8800 0.8875
—-0.6 0.7525 0.8125 0.8525 0.8900 0.8975 0.8900
-0.5 0.7475 0.8075 0.8950 0.9175 0.8975 0.8975
—-0.4 0.7975 0.8350 0.8675 0.8900 0.8825 0.8700
-0.3 0.7475 0.810C 0.8675 0.8950 0.8800 0.8725
-0.2 0.7750 0.8625 0.8575 0.8875 0.8575 0.8700
-0.1 0.7650 0.8575 0.8425 0.8950 0.8975 0.8725
0.0 0.7775 0.8375 0.8875 0.9400 0.8925 0.8925
0.1 0.7725 0.8600 0.8400 0.8975 0.9075 0.8825
0.2 0.7450 0.8375 0.8975 0.9275 0.9250 0.9275
0.3 0.7600 0.8275 0.8575 0.8825 0.9000 0.8825
0.4 0.7775 0.8125 0.8375 0.8925 0.8950 0.8950
0.5 0.7650 0.8025 0.8650 0.8775 0.9000 0.9175
0.6 0.7225 0.7950 0.8325 0.8850 0.9050 0.8850
0.7 0.7625 0.7725 0.8675 0.9100 0.8900 0.8825
0.8 0.8050 0.7600 0.8675 0.8700 0.8850 0.8850
0.9 0.8250 0.6250 0.8850 0.8050 0.9075 0.8850




1074 S. CHO AND R. B. MILLER

p——
~ 2 AN ENTN - —_—
o o - = = = y e Re 2K = S Al e
2 W;“ ==
~ A y
)

o
o

s I
g o
5 —— N 100 B-J
o ] ——
g) g N 100 S
§ —— DE 100 B-J
Q o
o s I —— DE 100 S

N=100

n

g C 1 1 1

-1.0 -0.5 0.0 0.5 1.0

RHO

Fi16. 1. B-J method versus simple method one-step-ahead P.1., n = 100.

the width of P.I. Variance of width is also found to be larger in the simple
method than in the B-J method. The same pattern is observed, i.e., for small p’s
there is no significant difference but as |p| gets larger the variance gets larger.

To judge the significance of the residual ACF’s or PACF’s we use intervals of
the form est.+ 2s.e. Standard errors (s.e.’s) are obtained from

V[fl] = V[61] =p/n,

(4.11) V[@] — V[62] = (1 - p2 + p4)/n,

and
VI#]=VI[6,]=1/n, fork=3,4,...,

where 7, and 0, stand for the residual ACF and PACF, respectively, and p must
be estimated. It is noted that about 30-40% of the residual ACF’s or PACF’s we
obtained after AR(1) fitting are found to be significant (Table 3). The percentage
of significance is about the same over all lags. No significant difference is
observed in the percentages of significance in both processes when the B-J
method is used. The consequence of a high percentage of significant residual
correlations is that one would too often be tempted to fit higher-order models to
the data if one were not in a situation where the model is given.

For n = 20, it is observed that the performance of the simple method is better
than that of the B-J method over all the values of p except p = 0.9 (Figure 2) in
both processes. In contrast to the n = 100 case, the simple method outperforms
the B-J method when n = 20. About 90% of the 21st observations are captured
by the 90% P.I. (minimum and maximum of 20 observations) using the simple
method except for p = 0.9, while the 90% P.I.’s capture only about 83-88% of the
21st observation by the B-J method. The coverage percentage of the simple
method is worse than that of the B-J method only for the case of p = 0.9. As in
the case of n = 100, the average width of P.I.’s by the simple method is larger
than that of the B-J method.
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TABLE 3
Percentage of significant ACF or PACF by the B-J method

Normal distribution Double exponential distribution
Distribution (FOAGP), (FOADP)
0 \ n 10 20 100 10 20 100
- 09 0.0950 0.1725 0.2950 0.0625 0.1525 0.3625
—-0.8 0.0875 0.1850 0.3350 0.0675 0.1850 0.3575
-0.7 0.0975 0.1850 0.3425 0.0625 0.1425 0.3675
—-0.6 0.1000 0.2075 0.3725 0.0650 0.1550 0.3400
-0.5 0.0800 0.2000 0.3725 0.1075 0.1925 0.3900
-04 0.1075 0.1975 0.3600 0.1075 0.2000 0.3750
-0.3 0.1125 0.1900 0.3325 0.1000 0.1550 0.3725
-0.2 0.0975 0.1875 0.3775 0.1225, 0.1675 0.3625
-0.1 0.1000 0.1350 0.3650 0.1150 0.1850 0.3800
0.0 0.0925 0.1875 0.3775 0.0950 0.1725 0.3550
0.1 0.0925 0.1700 0.3700 0.1250 0.1925 0.3575
0.2 0.1000 0.1775 0.3825 0.1275 0.1750 0.3550
0.3 0.1000 0.2025 0.3825 0.0850 0.1675 0.3675
0.4 0.1200 0.1900 0.3400 0.1050 0.1900 0.3500
0.5 0.1200 0.2025 0.3625 0.1275 0.1575 0.3950
0.6 0.0850 0.1600 0.3725 0.1150 0.1700 0.3325
0.7 0.1100 0.2200 0.3650 0.0950 0.1525 0.3475
0.8 0.1625 0.1600 0.3975 0.0975 0.1775 0.3325
0.9 0.1550 0.1775 0.3600 0.0750 0.1775 0.3975

About 14-22% of the residual ACF’s or PACF’s are found to be significant
(Table 3). Since we used (4.11) to judge the significance of residual ACF’s or
PACF'’s, for small n, it is hard to obtain the significance of the residual ACF’s or
PACF’s, especially, at larger lags. To check the effect of (4.11), we use

(4.12) VI#A]=VI[6,]=1/n, fork=1,2,....

This time about 8-15% of the residual ACF’s or PACF’s are found to be
significant. Though we achieved some reduction in the percentage of the signifi-
cant ACF’s or PACF’s using (4.12) this still implies that, if we followed the B-J
script, we would reject the model too often. No significant difference is observed
between the FOAGP and FOADP processes.

The conclusions for n = 10 are about the same as for n = 20. The perfor-
mance of the simple method is better overall than that of the B-J method
(Figure 3). In FOAGP, the coverage percentage by the simple method is always
better than that of the B-J method for all p’s. The 80% P.I. by the simple
method covers more than 80% of the 11th observation except for the case of
p = 0.5-0.9, while the 80% P.I. by the B-J method covers only about 70-74% of
the 11th observation. In FOADP, the coverage percentage by the simple method
is better than that of the B-J method except for p = 0.8 and 0.9. The 80% P.I. by
the simple method covers more than 80% except for the case of p = 0.7-0.9, while
the coverage percentage of the 80% P.I. by the B-J method is less than 80%
except for the case of p = 0.8 or 0.9. The performance of the B-J method is better
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Fi1c. 2. B-J method versus simple method one-step-ahead P.1., n = 20.

than that of the simple method only for p = 0.8 and 0.9 in FOADP. About
6-16% of the residual ACF’s or PACF’s are found to be significant using (4.11).
When (4.12) is used only 2-4% of the residual ACF’s or PACF’s are observed to
be significant.

Since both methods are based on asymptotic results, the coverage percentage
of P.I. is not expected to be consistent with the asymptotic coverage probability
for small samples of size like n = 10 or 20. We noted that the performance of the
simple method is relatively good for either p < 0 or small positive p’s for small
samples. For large positive p’s like 0.7-0.9, the coverage is lower than the
asymptotic coverage probability. Also, the width of the P.I. varies quite a lot for
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Fi1G. 3. B-J method versus simple method one-step-ahead P.1., n = 10.
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small samples. The width is stable for intermediate p’s like —0.7-0.7 and
increases quickly for a large |p|. This is not the case for a large sample like
n = 100, where the width of P.I. is much more stable in both processes and the
coverage probability is also conformable to the asymptotic results.

From the above simulation study, we conclude that we can use the simple
method for both large and small samples. As is expected, the B-J method does
not perform well for small samples of size n = 10 or 20. The simple method does
not perform well for large positive p’s like 0.7-0.9 when the sample size is small.
But this problem is not confined to the simple method. We observed that the B-J
method also has some trouble for these p’s. While neither method can be applied
without risk, the simple method appears to be a better bet in small sample
situations.

N
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