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ESTIMATING A DENSITY UNDER ORDER RESTRICTIONS:
NONASYMPTOTIC MINIMAX RISK

BY LUCIEN BIRGE
Université Paris X and U.A. C.N.R.S. 743

Let us consider the class of all unimodal densities defined on some
interval of length L and bounded by H; we shall study the minimax risk over
this class, when we estimate using n ii.d. observations, the loss being
measured by the L' distance between the estimator and the true density. We
shall prove that if S = Log(HL + 1), upper and lower bounds for the risk are
of the form C(S/n)'/? and the ratio between those bounds is smaller than 44
when S/n is smaller than 22071,

1. Introduction. Let us consider some interval I of length L on the real line
and the set © of all unimodal densities on I, bounded by H. More precisely, any
element f of ® should satisfy [f(x)dx =1, f(x)=0if x ¢ 1,0 < f(x) < H if
x € I, and there exists some m in I such that f(x) is nondecreasing on
] — o; m[ and nonincreasing on ]m; + oo[. Besides that, we do not assume any
smoothness and f could be discontinuous. Suppose that we want to estimate the
density f using n ii.d. observations. If f;(x) is any estimator, the loss will be
measured by the 1! distance between the two densities (this is also the variation
distance between the corresponding measures) and the resulting risk of f,(x) will
then be defined by

(1) RA(1, £) = & | [ A0) - i) ]
The minimax risk on 0 is given by
(1.2) R,(8) = inf sup R,( 1, fr)-

n f€O

Our main purpose in this paper will be to show that under some mild restrictions
on n and HL,

(1.3) 1(S/n)? < R,(©) <11(S/n)"?, S = Log(HL + 1).

This means that we get a nonasymptotic evaluation of the minimax risk for this
situation and, although the ratio between upper and lower bounds is not terrific,
it is the only result of this type that we know of. As an illustration, we get for
S =1.3 and n = 300 a lower bound of 0.04. Of course, in such problems the
choice of the loss function is widely arbitrary. The particular choice of 1'-dis-
tance rather than L?, with p > 1, is motivated by the fact that 1! is scale
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invariant (not L?) and intrinsic (it only depends on the two measures, not on the
choice of the dominating one). As a consequence the minimax risk depends only
on the product HL which is invariant by a change of scale. Those properties are
also shared by Hellinger distance, but ! is more tractable in this context.

The motivation for such a study is a paper by Kiefer (1982) who proved in
various situations that the rate of convergence in estimation cannot be improved
by order restrictions, but also suggested that the constants might change. The
“rate” means the factor depending on the number of observations (here n~'/3)
and the “constant” is a factor depending on the shape of the unknown density
(in our case it will be S'/3, which is some sort of an index of how peaked the
densities could be). In order to investigate this problem we shall consider some
classical family of densities with bounded variation. Let us denote by A the class
of all densities having their support on I and a total variation bounded by
V =2H. Then O is the subset of all unimodal densities in A and Kiefer’s
problem becomes, “Is estimation improved if we restrict the class of densities
from A to ©?” The treatment of A is rather classical and could follow the lines
of Bretagnolle and Huber (1979). Lower bounds are easily found using small
perturbations and upper bounds are given by kernel estimators or even simple
histograms. Such computations are classical and lead to bounds of the type

(1.4) C,(HL/n)"* < R, (A) < Cy(HL/n)">.

Obviously, the upper bound is also valid for R (0), but an attempt to extend the
lower bound would not be successful for the following reason: The monotonicity
restriction implies the replacement of sinusoidal perturbations by monotonous
ones which should also be equal according to Bretagnolle’s technique. This and
the fact that we should only consider unimodal densities imply that the density
to be perturbed should be triangular. If we build a system of small perturbations
around a triangular function we get a lower bound of the form

(1.5) R,(8) > Cn~ V3.

The explanation for the absence of HL in the formula is the fact that for a
triangular density the product of the basis by the height is constant. This also
means that there is a gap between this lower bound and the upper bound in (1.4).
It is also possible to check that the upper bounds for the risk of kernel
estimators, or histograms, as given in (1.4), are sharp and the only possible
improvement could be in the constant C,. This comes from the fact that the risk
is the result of a balance between a bias term and an error term and it is
impossible to make both of them simultaneously small. This means that in order
to get upper and lower bounds of comparable magnitude, new methods have to
be developed and this will be the purpose of this paper.

Little is known about estimation of unimodal densities with unknown mode
[see Wegman (1970)]. When the mode is known, the problem is simpler because it
becomes quite similar to estimation of decreasing densities. This was studied a
long time ago [see, for example, Prakasa Rao (1969)]. Recently, estimation of
decreasing densities received a beautiful treatment by Groeneboom (1985) who
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found very sharp asymptotic bounds, but of a completely different type, since
they are not uniform with respect to the underlying density f.

The techniques used in the present paper involve a precise description of the
metric structure of our parameter space. We shall first derive lower bounds in
Section 2 using perturbation arguments, but in order to take into account the
size of our parameter space we need to use unequal perturbations. This will be
taken care of by the techniques developed in Birgé (1986). The idea is roughly as
follows: The parameter space being compact, one can approximate it with a
given error by a finite subset. This set has to be more dense around a very
peaked density than around a flat one. This means that estimation is more
difficult around peaked densities and that we should build our systems of
perturbations around such densities. Also, because of the similarity of the two
situations, we shall, at the same time, derive lower bounds for classes of
decreasing densities.

In Section 3 we shall compute upper bounds following the general method
developed in Birgé (1983): Take a finite approximation of the parameter space
and apply to this finite set a robust version of the maximum likelihood. Then
you get two error terms: one coming from the discretization and one from the
size of your finite set. The construction is optimal when the two terms are of the
same order. The only problem is the construction of the approximating sets. We
shall use step functions whose shape was suggested by the previous investigation
concerning lower bounds. The idea is that step lengths should be small and their
heights large when the density is large, and vice-versa when the density is small.
This is not very different from a balance between a bias and a variance term.

Putting upper and lower bounds together, we confirm (1.3) and Kiefer’s
suggestions: The rate is still n~'/3 [which was already clear from (1.4) and (1.5)]
but the effect of the shape is very different since HL has been replaced by
Log(HL + 1) in the formulas.

We shall conclude with various remarks and the evocation of some desirable
improvements and open problems.

All constructions and results are given in the core of the paper, but most of
the proofs are very technical and have been collected in an Appendix at the end
of the paper.

2. Evaluation of lower bounds. We shall treat simultaneously the cases of
decreasing and unimodal densities, which are very similar, in order to avoid
repetitions. We shall thus consider two classes of functions: ©,(H, L) will be the
set of all decreasing densities on [0; L] bounded by H and ©,(H, L), the set of
unimodal densities, on [ -L/2; L/2] bounded by H. The particular choices of
[0; L] or [—L/2; L/2] are obviously irrelevant because our problem is clearly
translation invariant. It is also scale invariant, as already mentioned, and the
risk will only depend on the product HL or on the more suitable quantity
S = Log(HL + 1). We shall therefore replace the notation ®,(H, L) by ©,(S) for
= 1,2. The similarity of the two problems comes from the following transfor-
mation: Starting from a decreasing density on [0; L], contract it into a decreas-
ing function on [0; L/2], the corresponding measure now having a total mass of
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1/2. Then take its reflection, with respect to the vertical axis, and put both
together. This gives a unimodal density on [—-L/2; L/2] with mode at zero.
Once the problem of decreasing densities is solved, applying this transformation
will give the solution for unimodal densities.

Since the construction is rather technical, we shall first try to give the main
idea for the decreasing case. We want to build perturbations around some given
density which will be a very peaked hyperbola (in order to get a maximum value
of H and a support of length L). Each perturbation is a step from some point M
of coordinates (x, y) to P: (x + h, y — k). Two choices will be possible:

(a) jump from M to (x, y — k/2), then go to (x + h, ¥y — k/2) and jump to
P; or
(b) go from M to (x + h/2, y), jump to (x + h/2, y — k) and then go to P.

If we have p successive steps with such choices for each step, this will result in
27 different functions. They will be densities because our steps follow a density,
and although the steps are unequal, we shall design them in such a way that for
each step both Hellinger distance and variation distance between solutions (a)
and (b) are constant. This is the idea. In order to be more precise, let us just fix
some notation: We shall denote by oJ; the sets J;, = {1;2;...; p} and J, = J; U
{—1; —2;...;— p} for some integer p which will be explicitly defined later.
Recall that S = Log(HL + 1) and define

L/

e = i(51'S/n)”3, U= ——5——, q=Jp
5 1+e"-1 ’

2

5¢
2.1 A=|1+—
(21) 1+ %

£\ ~2 3e 7¢?
(1+§) 1—-—+ —

N 1+e
h uqe(1 + ¢/2)°

For each i in o), the length [; of I, =[x, ,; x;,[ is ue(l + €)' .. Let m; be
(x; + x,_1)/2 and define two functions f,(x) and g,(x) on I, by

xi=u[(1+s)i—1], 0<i<p.

f(x) =M1+ &)1 + £/2),

A1+ &) " forx < m,,
A1 +¢)7" for x > m,,

&8i(x)

f;» 8 being zero on If. For negative i we define I, f, and g, analogously, by
symmetrization,

= l;

f-x) =f(=x), &-ix)=g(-x).
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Using Lemma A.1 we get
ule(l + ¢/2)

-1
’

[ 1x) dv= [ gi(x) dx =

1+e¢
Aue? €
[0 st = 505 = 'y =
! 2 5e?
2 (1) — /@) de < o1+ 6—4) =8

For j = 1 or 2 we may consider the sets of 279 density functions defined by

F = {f =X Nfi+ (- Ai)gil}‘i =0or l,Vi},
ied;

and check that F; € ©, as soon as A < H. For such systems of perturbations as

F,, we can get lower bounds for the minimax risk using Assouad’s lemma as

explained in Assouad (1983) or Birgé (1986). Let R (n) be the minimax risk on F;

when the loss function is the L!-distance and n is the number of i.i.d. observa-

tions at hand. Then Assouad’s lemma implies that

Rj(n) 9;[1 _ (1 —a- B)zn)1/2]

I\

(2.2) . s
=m—jr72)[1—(1—(1—/3)")/].

This also gives a lower bound for the minimax risk over ©,(S) as soon as F; is
included in @, i.e., when A < H. This inequality will be satisfied for a convenient
choice of p.

ProposITION 1. If S > 1 + 3¢/4 and ¢ < 1.12, then A < H when p is given
by
(2.3) SA/e<p <SA/e +1,

A being defined in (2.1).

We now just need a convenient evaluation of the right member of (2.2). One
possibility is

PROPOSITION 2. Assume that ¢ <7/4, n > 3 and p is given by (2.3). Then

R;(n) = 0.207( jS/n)"* - 0.137jS/n.

The proofs of these propositions rely on elementary calculus and will be
sketched in the Appendix. Now let us denote by R!/’(S) the minimax risk for
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estimating a density of ©,(S) using n i.i.d. observations, i.e., for j = 1,2,

RY(S) = inf sup E,[flf(x)—fn(xﬂd” :
fo(x) fe8,(S)

A convenient rewriting of the assumptions of Propositions 1 and 2 leads to

THEOREM 1. Suppose that S and n satisfy the inequalities

(2.4) 1+0.6(5/S/n)"* < S <055n/.
Then
(2.5) RYN(S) = 0.207(jS/n)"? - 0.137jS /n.

We can see that (2.4) is not a severe restriction and will hold, if, for instance,
16 < S <n/(5)).

3. Upper bounds for the risk. Our techniques are derived from the metric
theory developed by Le Cam (1973) and Birgé (1983). This involves a discretiza-
tion of the parameter space @,(S), which will be replaced by an enet N and a
robust version of the maximum likelihood on N. It works as follows: The set F
of nonnegative bounded functions on [—L/2; L/2] is a metric space with
distance d given by

d(f,8) = [1(x) - g(z)| dz.

0,(S) being a compact subset can be approximated by a finite subset N of %,
and N will be called an e-net for @,(S), if for any f in 8,(S), we can find g in N
such that d(f, g) < e. Suppose that we have found N; the construction of a
robust maximum likelihood on N is described in Birgé (1983) and involves only
the possibility of testing between two balls of radius e. In the case of n ii.d.
observations and the distance d (which is variation distance), this possibility has
been proved in studies about robust testing as can be seen in Huber (1965),
Huber and Strassen (1973) or Birgé (1984a). The only result we need is this one:
Given two balls of probability measures with respective centers f and g in &
and radii ¢, there exists a test between these balls using n i.i.d. observations, and
the supremum «,, of both errors of this test satisfies

(3.1) a, < exp| - (n/8)(d(f,g) — 2¢)°].

Such results are explained in detail in Section 4 of Birgé (1983). We have only to
find some N with a cardinal as small as possible. We shall first build nets for
unimodal densities, when the mode is approximately known, and then put all
nets corresponding to the various positions of the mode together. The construc-
tion is as follows: Assume some integer p > S is given and fix

e =exp(S/p) - 1,

(3.2) . _
yj=L'1[(1 +¢)’ - 1], 0<j<p, Y={%:; )
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Then we cover the interval I = [ - L/2; L/2] which serves as a support for the
densities in B4(S) by % intervals of length [, with
LH LH
— <k<—+1, l,=¢/H.
€ €

Take one of those & intervals for I, and starting with I, = [x_;; x,] define
X = min(x,- + 11 + e)i; L/2), L=[x;x.,], i=1,
Xi1 = max(xi — (1 + 8)_i; —L/2), L=[xi_y;x] i<-1

We get a new covering of I by the intervals I, for —p, < i < p,, p; and p, being
the smallest integers such that

X, 1=L/2 and x_, ,= —L/2
Then by construction if /; is the length of I,
(83) Li=(+e)l_,, O0<is<p, Li<Q+el,, —-py<i<O.
Let us consider the family of all unimodal functions g on I satisfying for
—Py=l=py
ifxel, g(x)=g€<Y,
8ii1<8, fori >0, and g,_,<g;, fori<O,

i.e, functions taking their values in Y, constant on each interval I, and having a
mode in I,. Obviously, this family depends on the initial choice of I, among %
possibilities which imply that we can get & such families. The union F(e) of
these & families of unimodal functions has the following properties:

PROPOSITION 3. Suppose that p > 13.5S. Then if 3n = 7.51¢, F(¢) is an n-net
for ©4(S) which means that for any f in ©4(S) we can find some g in F(¢&) such
that

(3.4) [li(x) - g(x)|dx < n = 7.51e/3.
Moreover, p > 10 and the cardinal of F(¢) is bounded by
(3.5) card F(e) < 0.336S 'exp(2pc?), ¢ = (Log4 + 1/27)"2.
The proof can be found in the Appendix. Actually F(¢) is too big for what we
really need because there are functions g in F(¢) such that [g(x) dx is far away

from 1 and cannot be used for approximating densities. If we restrict ourselves to
the subset N of F(¢) defined by
).

N = [g< RO fa(x) @ -1

N will also be an n-net for ©4(S) and, obviously, satisfies (3.5). We shall then
base the construction of the estimator on this net N as indicated in Birgé (1983).
Starting with n ii.d. observations, this construction provides us with some
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estimator g,, with values in N, which means that the estimator is not neces-
sarily stochastic but only satisfies

1—nsf§,,(x)dxsl+n.

Bounds for the risk of such estimators are easily computed as soon as you have
inequalities like (3.1) on the errors of the tests and (3.5) on the cardinality of N.
The technique of Birgé (1983), Theorem 2.4, applied to our particular case leads
to the following:

THEOREM 2. Assume that n > 63S and choose p satisfying

(3.6) p—1<(751S/(2¢))”°n'/? + 28/3 < p,

¢ = (Log4 + 1/27)"% = 1.19.
Then
up €| [11(x) - £,(x)] s
(3.7) 1€6x(S) ! f
<105(S/n)"? + 0.82(S/n)*> + 2.48 /3023,

REMARK. The restriction n > 63S does not matter because (3.7) becomes
uninteresting for smaller values of n.

Proor. We first notice that (3.6) and the requirement on S/n imply that
p = 13.5S. Then Proposition 3 is valid and p > 10. Consider the sequence {¢};.
given by
4Log2 4c
t,=2+t+a(i-1), i21, a=—5—, t=—|[(p-1)/n]"
nn°t n

Now for some g in N such that d(f, &) < n denote by N, the number of points
g’ in N such that

tm<d(gg) <t
then using (3.1) we get from Birgé (1983), Lemma 2.1,

BLd(f;8,) = (6 + 1] < ¥ Newp| - 5 (5, - 2)"72),

J=i
which implies
E[d(f;8)] <(ti + Dn+n ) (40— t)P[d(f; 8,) = (¢ + 1))
i>1
n 2
<(t, +1)n+an Eijexp[— —S—(tj— 2) n2].
Jj=1

Our choice of a implies that the sequence jexp[ —(n/8)(¢; — 2)*7°] is decreasing
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and we finally deduce, using the bound (3.5) for ¥ N, that

N
4Log2

n 0.336
_ 2 2] 2}
ot exp[ n ( 3 exp(2pc ))

8

E,[d(f; 8,)] <n(¢t+3)+

Replacing n and ¢ by their values and noticing that p > 10, we get
0.336 Log 2 exp(2c?)
eS(n(p - 1))

—-1\2 S np)~?
$4c(pn ) +7.51[exp(;)—1]+3.55L.

p 1/2
E,[d(f;8,)] < 40( ) + 7.51e +

n

S
The choice of p and Lemma A.2 imply

3 1/3
E,[d(f; 8,)] < 5(32 X 7.5102;)

1( 32¢% S\¥? 2¢ \V3
t—| 2| 4355 —| S
8(7.511/2n) 3 (7.51) §7n

and then the conclusion. O

4. Final remarks.

REMARK 1. The first thing to notice is the fact that our estimator g, is
theoretically computable but not practical because its computation involves
more than 167 tests with p behaving like n!/3. It is a mere technical tool to get
bounds for the minimax risk. Moreover, as we noticed in Section 3, it is not even
a stochastic estimator in the sense that generally [£/2,8,(x) dx # 1. It would be
possible to remedy that: N being an n-net for ©4(S), every point in N can be
replaced by a point in ©,(S) which is at a distance smaller than n and we would
then get a 27n-net for ©,(S) having the same cardinality. A similar construction
would lead to a true stochastic estimator with slightly bigger constants in (3.7).
Increasing the constants is certainly not desirable here and since we know that
these estimators are not practically useful it is not a serious drawback if they are
not stochastic.

REMARK 2. We restricted our proofs for upper bounds to the case of
unimodal densities but similar results hold for decreasing ones. A previous
version of this paper led to

RO(S) < 7.66(S/n)"> + 0.55(S/n)** + §~%/3n=5/8,

These bounds are actually superseded by the performance of a more practical
estimator, a histogram with unequal bin widths. These results will be developed
in a forthcoming paper.
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REMARK 3. Let us denote the minimax risk for unimodal density estimation
by R,(S) [= R®(S)]. Assuming that n > 220S, Theorem 3 holds as well as
Theorem 1 if S > 5/4 in order to satisfy (2.4). Then (2.5) and (3.7) hold together,
which leads to the following inequalities for R (S):

(2S/n)"*[0.207 - 0.137(28/n)*"]
< R(8) < (S/n)"*[105 + (S/n)"*(0.82 + 2.4572)]
and, finally,
0.25(S/n)"? < R (S) < 10.9(S/n)"?,
which implies (1.3).

REMARK 4. The restriction to classes like 8,(S) may look strange at first
sight. Why not take the class of all unimodal densities? The answer is simple:
There is no uniform rate of convergence over such a big class whatever the choice
of the estimator. This is actually a consequence of our lower bounds (2.5). Since
the class of all unimodal densities contains all classes ©,(S) for all values of S,
we can fix S arbitrarily in (2.5) as soon as (2.4) is satisfied. The choice n > 8,
S = n/4, leads to the lower bound 0.095. The minimax risk for estimating an
arbitrary unimodal density is then always larger than 0.095 no matter how large
the number of observations is. This result still holds if we restrict the class to
uniformly bounded densities with unbounded support or unbounded densities
with a fixed compact support. This means that if we want to get uniform rates of
convergence, we have to restrict the size of the class of densities at hand by
putting some restrictions on the tails and the growth of the densities. The same
holds for decreasing densities. The choice of classes @,(H, L) is not the only
possible one and was made for the sake of simplicity but also because it could be
adapted to treat more general cases as we shall see. A natural extension of the
classes ®,(H, L) is a class of unbounded functions, with unbounded support, but
some specified restrictions on the tails and the growth near the mode. The
problem is what type of restriction to ask for. Different restrictions will lead to
different rates. A possible way of dealing with this is as follows: For given H, L
and n we know how to get a suitable estimator g,. It is proved in Birgé (1984b)
that those estimators could be robustified. Let us call g, the robustified version.
The robustness property can be expressed by the fact that if f is the true
density [not necessarily belonging to ©,(H, L)] and d(f,®,) < ke [¢ given by
(3.2)], then

R,(&,. f) < Ck(S/n)"?

and C is a universal constant. If we consider two nondecreasing sequences
{H,},{L,}, our computations will produce corresponding sequences S,, p,, &,
and, as soon as d( f,0,(H,, L,)) < ke, for suitable &,

R(8,,f) < Ck(S,/n)">.

Any pair of such sequences {H,},{L,} defines a class of functions f, not
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necessarily bounded or with compact support, satisfying
d( f’ @2(Hn’ Ln)) < kEn, nx>1,

and the property of belonging to such a class amounts to restrictions on the tails
and growth at the mode of the functions in the class.

REMARK 5. A reasonable question is why did we choose S = Log(HL + 1)
rather than S = Log(HL) which seems more natural. The main reason is
technical: Our bounds are intended to be used for large values of HL. In this
case it does not make a big difference but our proofs for upper bounds naturally
lead to HL + 1, rather than HL, and this choice makes results simpler. A serious
drawback of this choice is the restriction (2.4) on lower bounds which does not
allow for small values of HL. This comes from Proposition 1. It would obviously
be possible to get similar lower bounds with S = Log(HL) and the restrictions
would be weakened and allow for smaller values of HL, but it does not seem that
our proof for upper bounds could be extended to this case: hence our choice for S.
Nevertheless, when HL is small, the densities involved are close to uniform and
some asymptotic results of Groeneboom suggest that, in this case, the risk should
be smaller. This leads to the idea that a good choice should be S = Log(HL). It
would not change much for large HL but would improve the bounds in the case
of small HL. We suspect that different proofs would be needed in this case and
the upper bounds do not seem to be easy to get.

REMARK 6. Roughly speaking, the minimax risk for decreasing or unimodal
densities behaves like (S/n)'/? and, although our results are intended to deal
with finite n, it is interesting to compare them to asymptotic results for this
problem. The only other theorems dealing with integrated risk and decreasing
densities are from Groeneboom (1985). These concern the Grenander estimator
[see Grenander (1980)]. This estimator which is given by the slope of the smallest
concave majorant of the empirical c.d.f. is especially designed for estimating
decreasing densities, but unfortunately, we do not know anything about its risk
for finite n; the only result concerns its asymptotic risk at a given point. Let us
denote this estimator by F,. Groeneboom proved that for smooth f it satisfies

1/3

limn!R (K, f) = 0.82 ‘L(i)—;ﬁ—) dx,

and in a private communication he explained that if it is restricted to ©,(H, L),
the largest values of the functional [|f(x)f’(x)|"/® dx occur when the density is
hyperbolic on [0; L]:

t
ith HL = —————.
mrL ¢ Log(t + 1)

f(x) =

The function ¢/Log(t + 1) being increasing, ¢t > HL as soon as HL > e — 1 and
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it can be checked that
L
L)) dx = [Log(t + )] = [Log(HL + 1)]*",

which implies that if HL > e — 1,
limn'°R,(R,, f) = 0.655'/3.
n

This appears to be in accordance with our preceding results. In fact, the
situation is slightly more complicated because for HL = 10, Log(t+ 1) =
3Log(HL + 1) while for HL = 1 + x, with small x, ¢ = 2x and Log(¢ + 1) =
2 Log(HL). This suggests that our difficulties in the choice of S, as explained in
Remark 5, are due to the very nature of our problem.

5. Conclusion. The minimax risk for the classes considered in this paper is
of order [Log(HL + 1)/n]'/3, at least when HL is not close to one. But a few
interesting questions still remain open:

— Is it possible to replace Log(HL + 1) by Log(HL) when HL is close to one?

— How does one improve the ratio between the upper and lower bounds for the
minimax risk, which is roughly 40 when S/n is small? This is clearly too big
and some closer approximation to the minimax risk should be desirable, at
least when n is not too small.

— The most important point is, How to find a reasonably practical estimator
which achieves the bounds given by (3.7) and, if possible, an adaptive version,
in order to cope with the fact that in practice S is unknown and has to be
estimated. For the case of decreasing densities, we shall solve this problem in
a forthcoming paper; but for unimodal densities we do not know of any
practical solution apart from the usual histograms or kernel estimates as
described in Bretagnolle and Huber (1979), which will not give the proper
bounds (for large S) simply because they do not make use of the monotonicity
properties of the densities and treat them as ordinary functions with bounded
variation as mentioned in the Introduction.

APPENDIX

LEMMA A.l. Suppose J and K are two nonintersecting sets having the same
measure under p: p(J)=u(K)=1/2 and f and g are positive functions
satisfying

g(x) =M1 +¢), forxed, gx)=M, forx € K,
f(x) =M1 +¢/2), forxelI=JUK.
Then

&) [11(x) = g(x) | du(x) = e/,

@ [T ~ ) ) < gy 1+ )

64(1 + ¢)
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ProoF. (i) is immediate. For (ii), we put 8 = ¢/(2 + ¢). Then

3 [T - VB e X RNy

=lM(1 + %s)[l - %(\/ITS_ + \/i—_s)}.

Expanding the last bracketed term in power series we find
-3 (41 3)
- 82: 1

i>1
IMe e \21-3- ... -(4i+1)
(2+e) 6-8- - -(4i + 4)

+ X

i>1

—_— 1
16 2+ ¢

IMe? L+ 15 €2 > e \2
< — ——
T 16(2 + ¢) 48 (2+3)2 i20(2+e)

5¢2 a
64(1 +¢) |

IMe? 14
T 16(2 + ¢)

PROOF OF PROPOSITION 1. It is easily checked by differentiation that

x(1 +x/2)

, forx > 0.
1+x

(A1) Log(l1 + x) <
If A is defined by (2.1), we can also check, using polynomial bounds for
logarithms, that
(A.2) ALog(l +¢) <e, fore>0.
From the definitions and (A.2) we deduce that
1+¢ SA
=——[1+e?-1], p<—+1x
pe(l + e/2) e

Using (A.1) and the fact that ((1 + ¢)* — 1)/x is increasing with x for x > 0 we
get

= Log(1 + e)

(1 + ¢)Log(1 + ¢)

[S + Log(1 + e)]e(1 + £/2) [(1 +e)es — 1]

AL <

< [S + Log(1 + &)] [(1 + e)eS — 1].
To complete the proof we just have to check that
[S+ Log(1+¢)] '[(1+e)eS—1] <HL=e5-1,
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or, equivalently, if S=1+ ae, a > 0,
ela+ (1 —a)el*] < (e'*% — 1)Log(1 + ¢).
Since Log(l + €) > ¢ — ¢2/2 it is enough to check that
(e'*** —1)(e/2—a)+1<0.
This is a decreasing function of a if ¢ < 1.12 and it is then enough to prove that
(e'*3¢/4—1)(2e —3) +4 <0, for0<e<1.12.
We get a convex function of ¢, which is negative for ¢ = 0, and then has a unique

positive root. It suffices to check that this root is larger than 1.12. O

PRrOOF OF PROPOSITION 2. Our choice of p and ¢ implies that

3 552) 2 (1 3¢ 7e2\?

ne

n<— |1+
A 8jSA(2 + ¢)°

64

Also, some easy but tedious computations can be made to check that if B < 1/5
and n > 3,

1-(1-8)*" <2nB[1 - 2nB]* < 2B[1 - 2B]?,
the requirement on B being satisfied for ¢ < 7/4. We finally get from (2.2)
4

[ 3
— |1 -(1-=B|(2B)"*
41 +¢/2) | ( 8 )( )
€ -1 ) 3 ) 3e  7e2\% 2 . 3e N 7¢?
= — _ —_—— _— 4+ — — —_— —
4(1 + &/2) ] 100 4 12 5 4 12
€ 3 3e 7¢? 3 3e 7e2\3
— ot == — 4+ —|1- — + —
4(1 + ¢/2) _5 10 30 250 4 12
3 € 7e2 3 3 7e%\?
=—f+ ——|-—+—|1-—+—]| |.
20 40(1 + ¢/2) 3 25 4 12

The bracketed term is easily seen to have only one positive root ¢, < 7/4 and
o = 0.187. Since 1 — 3¢/4 + 7¢2/12 has the minimum value 85,/112, we get

R 3+ € 7e2+31 3e+7323
M2t ware| 3 T 4" 12

3 N € 7e? N 3 /85 )3
>—e+ —m—|—-——+ —|—| |.
=20 0(1+es2)| 3 2 ( 112

The conclusion follows if we replace € and ¢, by their values. O

R(n) =
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PROOF OF PROPOSITION 3. In the preceding constructions we can always
choose I, in such a way that a mode of f belongs to I,,. Then, if f(x,) =f;, I; is
the length of I, and f_; < f, (the other case being symmetrical), we have

-1 1 4%
(A.3) Y Lfig+ Y lhifiy + i <1
i=—p, i=1

Define f, = l{lf,i f(x) dx. Since y, = 0 and y, = H, for any i we can find some
J =1 with

fi=Ay_;+(1 =Ny, O0<Ac<L

We shall take g; to be y;_, if A > § or y; if A < 7. This defines an element g of
F(¢) (g being unimodal just as f) which will be used as an approximation of f.
Let us check (3.4). Since

fi=y =1 =N)eL M1 +e) ",
fi=L (1 +e) '@+ (1-2)e) - 1]
and for A > %

_ _ (Lf, + 1)e(1 = \) e . .
fmg=l=y = Tara e Sz L)

An analogous bound holds for A < ; which implies

l;e
2+¢

flklfl—g(x)ld’cS (fi+L7).

Also using some classical bound on the bias we get

L(fi = fisr)s i1,
2f |fi-f(x)|de < {I(H~f_), i=0,
b L(fi= fio1)s i< -1

Putting everything together we find

[Zliﬁ+ LY,

J1#(x) - g(x)] dx <

€
2+ ¢

1 D; -1
+§[Zli(fi_fi+1)+ X Wi fioy) + Hly = 11|,
i=1

i=—p,
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which implies using T, f,/; = 1, (3.3) and then (A.3),
2e
2+ ¢

1 p—1
+ ‘2' (1 + 3)l0f1 te Z Lifir + (1 + e)lof—l

=1

[1#(x) - g(x)]dx <

-1

te Z Lifioy + Hly— f_1lo}

i=—p,+1
2¢
2+¢

+ %[(1 +e)lof, + (1 +e)lof_,

IA

+e(1 = Iyf_)) + Hly — f_ 1)
2¢
2+ ¢

2¢ e2+e) e s[ 82]
+ +-=—|5+ .

IA

l
+§O[H+(1+e)f‘] +%

T 24 2 E-—Z_ 2+ ¢

Equation (3.4) follows from the assumption that ¢ < 1/10.

To get (3.5) we start with a simple combinatorial problem: Given g + 1
increasing numbers y; ...; ¥,, what are the different ways of choosing p of them
Xy;...; X,, possibly with repetition, but in such a way that the resulting
sequence is nondecreasing? We can easily do it by choosing p numbers among
{0;...; g}, ordering them to get k, < k, < --- <k, and fixing x; = y, . The
number of choices of the &,’s is the number of combinations with repetitions of p
numbers among g + 1 which is known to be ("; ") [Riordan (1958)]. For a given

I, and g, = y; the number of choices for g is then (P‘}:j )(”p :j ) which implies,
taking all possible values of j and I,

p . .
card F(e) < ksup ). (pl +])(p2 +J),
plvp2j=1 pl p2

the supremum being over all relevant values of p,, p,. Now, since x_, > —L/2
and x, < L/2, we find

L>1,

-1+ pil(l +e) + pil(l + e)i]

i=0
=H ' [1+e)”+ (1 +e)-2—¢
(this also being valid if p, or p, is 0), or, equivalently,
LH=(1+e’-1>0+e)+(Q1+e)-1-(1+¢)

and this implies that p, + p, <2p — 2 as soon as p > 2. By assumption
p = 1358 > 13.5Log2 = 9.36, then p > 10,

(p1+j Prt+J) _ P-1+12_l(2p)2 'ﬁl”l :
Dy p, |7\ p-1 4\pP)|icjp+i

I
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if we define IT7_ " to be 1. This implies

i=p
2
i(p1+j)(p2+j)<l((2p)!) [1+ p_,_ plp-H F
P i P )T 4 (p»)t 2p—-1 (2p-1)(2p—2)
Using Stirling’s expansion we find with p > 10,
k 4mp(2p)*? 2p P k
card F(e) < — p f) [ P ] < 0.336—2%7,
4 (27p)°p* 2p -1 p
Also using e* — 1 > x and p > 13.5S
LH eS—1 p p
- = — S _1)=— il
k< - +1 eS/P—1+1<(e 1)S+lssexp(2p/27),

which achieves the proof. O

LEMMA A.2. Suppose that A, B, S are positive constants and n, p positive
integers satisfying

p—1<(2BS/A)"’n'/? + 2S/3 < p.
Then

p—1\2 S 3(2SA’B\'/® 1[28A%\*3
A( ) + Blexp|—| - 1| < = + = B3,
n P 2 n 8\ n

ProoF. Consider the function f(x) = C(x/n)"% + exp(S/x) — 1 as a func-
tion of x, with C = A/B. If ¢t = (28C?/n)*/? and x,= (2S/C)¥*n'/® + 28/3,
then

f(xe) = t(1 + £/3)% + exp[t/2(1 + t/3)_1] - 1.
Some expansions and numerical computations prove that for ¢ > 0,
t(1 + t/3) + expt/2(1 + /3)7"] — 1 < 3t/2 + 12/8,

which gives a bound on f(x,). The choice of p then leads to the conclusion. O
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