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These two types of models are difficult to distinguish, because they are mathe-
matically very similar. In fact, models of type (1) can—under balancedness
assumptions—be interpreted as models of type (2) with some inequality restric-
tions on the eigenvalues of the covariance matrix. Conversely, models of type (2)
can be forced into the framework (1) if one allows for negative variance compo-
nents, i.e., formally negative values of the variances on some of the error terms.
Thus, (1) and (2) are just two different ways of stating almost the same model,
and this has been the origin of much confusion. However, all difficulties seem to
disappear if one thinks of the type (1) models as models for finite subarrays of
infinite arrays, in the spirit of Section 5. The variances on random effect terms in
a type (1) model then become interpretable as proper population variances,
which certainly cannot be negative. For example, consider measurements y,; of
the same quantity with similar instruments i = 1, ..., m, each repeated n times,
J =1,..., n. In this case, the variance on the error term ¢; has a straightforward
interpretation as the variance on the baseline error of an instrument from the
population of instruments of this kind, whereas the variance on ¢,; is the
variance on measurements corrected for baseline error. Conversely, consider an
example of a finite array which cannot be extended arbitrarily in the j-direction,
say a field trial with blocks i = 1,..., m and plots j=1,..., n within each
block. In this case, the random effects interpretation is usually not meaningful,
because the plots within a given block cannot be regarded as a sample from some
infinite population. The intrablock variance component may very well turn out
to be negative (negative correlation between plots in the same block), and even if
it is positive, it cannot be taken as a measure of variation to be transferred to
some other design with a different block size.

Model (2) is, mathematically, the nice one. Model (1) is a model for incomplete
data from an infinite array model of type (2), and as such implies some
mathematical problems (estimates on the boundary, etc.). These problems are
similar to (though less serious than) those coming up when a stationary time
series (also a nice model) is restricted to a finite time interval.
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It is a pleasure to have the opportunity to discuss this paper. Dr. Speed
lucidly presents a concise and consistent notion of ANOVA which is yet broad
enough to touch on time series and harmonic analysis of groups. His most
important contribution, however, may be to have reminded us that the title
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question is still an open one. It is indeed astonishing how many apparently
distinct general mathematical formulations the analysis of variance has received
since it became a standard component in the statistical repertoire. I attribute the
confusion that still persists about the nature of this essential technique largely to
the fact that there are three different ways to construct and/or to justify a
particular sum of squares decompositon. A decomposition may be intuitively
reasonable: This is the view of ANOVA taken by many practitioners. It may be
useful under an assumed stochastic model for testing certain hypotheses of
interest about the data: This is the view of ANOVA which we as mathematical
statisticians like to believe is the only correct one. And, finally, a decomposition
may arise naturally from an abstract mathematical structure which has more or
less explicit connections to both intuition and a stochastic model, the view of
ANOVA examined by Dr. Speed in this paper. Moreover, theoretically and in
particular troublesome cases, none of the three approaches commands absolute
precedence. It is an empirical fact, for example, that the model which is assumed
for a collection of data often depends on the ease and intuitive simplicity of the
consequent analysis. In many cases, though, the analyses obtained by the three
approaches coincide, and Speed’s research can be regarded as a useful summary
and unification of such situations.

However, an important conception of ANOVA is conspicuous by its absence
from Speed’s discussion, and the reader may be left wondering how all of this fits
into what comes out on the computer as

ANALYSIS OF VARIANCE.

Rightly or wrongly, the idea that ANOVA is identical to regression analysis is
probably the most widespread conception of what ANOVA is in general, a fact
which is both revealed by and partly due to the acceptance of the results of
popular general regression software, such as PROC GLM on SAS or ANOVA on
GENSTAT, as general ANOVAs. The input for such programs is, formally, a
linear model for the expected value of the data, of the form

(1) Ey)eu,+u, + -+,

where the #,’s are vector subspaces spanned by different subsets of the indepen-
dent variables. The program then fits the data to the concentric spaces ¥; =

‘ ~o%;. Let V,y denote the predicted data at the ith stage of the fit, where V is
the projector onto 7. The ANOVA is taken to consist of the differences between
the prediction sums of squares at successive stages of the fit, which is the same as

(2) Iyll? = IToyll® + -« +IT, ¥

where T, is the projector onto I, = ¥, T; = V,— V,_, is the projector onto
T, =9,Nn¥;Y fori=1,...,r, and T, , the projector onto the residual space
J,,, = 7;*.In what sense does Speed claim to have answered his title question,
then, if he has not covered this common case, beyond passing such analyses off as

“arbitrary?” I will try to indicate how a connection can be drawn.
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Speed’s definition of ANOVA consists essentially of restricting to association
schemes a matrix formulation equivalent to the definition of Graybill and
Hultquist (1961). Now, the association scheme approach is indisputably the
correct one for summarizing, unifying and categorizing a large class of ANOVAs,
as Speed convincingly demonstrates. I believe he errs, however, in separating
ANOVA so completely from the traditional conception that he can call the
mathematical constructions he derives for infinite random arrays true ANOVAs
even though there are no sums of squares decompositions in sight. He justifies
this separation by implying that the variance we are analyzing is a parameter of
the model [(2.3) and (3.5)], whereas the word has traditionally been applied in
this context to the observed variance, in the sense of variation, of the data—that
is, the total sum of squares. That this latter interpretation prevails is evidenced
by the notorious lack, for better or for worse, of explicit model assumptions in
much practical ANOVA.

Well, as Speed says, one can define ANOVA to mean whatever one wishes.
But the point is that direct consideration of sums of squares and their properties
can lead to a much wider class of ANOVA than those which Speed covers,
including in particular those with nontrivial expectation terms such as (1). Such
ANOVAs are indeed arbitrary with respect to the general matrix formulation:
They are associated with a particular but nonunique decomposition of the
relationship algebra into one-sided ideals [see James (1957) and Tobias (1986)].
However, as decompositions of the total sum of squares, these ANOVAs can be
uniquely specified by the characteristics of the component sums of squares. For
example, under a Gaussian model with the trivial dispersion structure V = o¢2I,
the decomposition (2) satisfies the following:

(3a) all the component sums of squares are multiples of (possibly
a noncentral) x? random variates;

(3b) IIT...y||%/0? is a central x% random variate, with maximal
degrees of freedom subject to this centrality; and

(3¢) E||T.y|?/trace(T;) > 62 where the inequality is strict if and
¢ only if E(y) has a component in J, fori = 0,..., r.

Thus, we can compare ||T.y||?/trace(T.), the mean square due to the ith
expectation component, to an unbiased estimate of o2, ||T.,,y||%/trace(T.. ,),
the residual mean square, to see whether %; is needed in the model after fitting
Uy, ..., %, Furthermore, (2) is the only decomposition satisyfing (3). A corre-
sponding result holds for the more complicated dispersion models which Speed
considers, and it forms the basis of nonorthogonal mixed-effect ANOVA. It
should be recognized that Speed himself has participated in some of the most
important recent work on nonorthogonal ANOVAs, those associated with gener-
ally balanced designs [Speed (1983) and Houtman and Speed (1983)]. In the
spirit of Speed’s equation (3.2), a necessary and sufficient matrix condition for
the existence of ANOVA'’s such as we are thinking of can be given, and it turns
out to be a natural extension of the condition of general balance. See Tobias
(1986) for details.
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So what is the relation between expectation-model ANOVA (E-ANOVA) and
dispersion-model ANOVA (D-ANOVA)? Superficially, they share characteriza-
tion as decompositions of the identity matrix into orthogonal idempotents, but
the decompositions arise in different ways: For an E-ANOVA the idempotents
are projectors onto spaces which depend on the order in which model terms are
fit; while for D-ANOVA they are projectors onto common eigenspaces and are
independent of any computational method. The connection is just this: For
many common structures there is a natural order in which to fit terms which
gives rise to the same projectors as those derived from the full spectral analysis.
Such structures include, in particular, all of the classical factorial structures and
their finite extensions discussed by Speed in Section 6, in which the terms of the
expectation model (1) correspond to filters. The coincidence of the two ap-
proaches is due to several special characteristics of these structures. For one
thing, all of the parameters associated with any particular term in the model are
equally replicated, so that the projector for that term is a scalar multiple of the
relationship matrix associated with the corresponding filter [Speed’s R,’s in
(6.2)]. The commutativity of these matrices is again also important, and finally,
there is the fact that for any two terms %; and %; in the model, %; N %, is also
in the model: This is equivalent to the closure of L(F) with respect to
intersection. See Tjur (1984) for details. In fact, in this case a fitting order which
will make the E-ANOVA and the D-ANOVA coincide is just any well-ordering of
the terms which contains the partial-ordering on the filters. The emphasis on a
particular “natural” order is important: There are other conceivable fitting
orders which will not give rise to the eigenspace projectors, and in some
situations such alternatives will be appropriate [see Nelder (1977), where the
problem is discussed under the heading of marginality]. Only in this sense are
E-ANOVAs arbitrary, that they require, in addition to the terms themselves,
specification of the fitting order.

I have two further observations on the paper. First, I regard the restriction of
the general matrix formulation of D-ANOVA to association schemes as unneces-
sarily limiting: It adds no substantial mathematical or intuitive apparatus to the
problem, and if it comes to approaches which include “almost all examples” a
great deal less generality is really needed, probably no more than Nelder’s simple
block structures [Nelder (1965)]. Personally, I find the core mathematical re-
quirement for the existence of such ANOVA’s in (3.3) and assumption (iv) for
association schemes, which can be stated succintly as:

The symmetric matrices A, span their algebraic closure.

Finally, the discussion in Section 7 of the connection between ANOVA and
decompositions of groups is especially fortunate. Since James’ forward-looking
1957 paper on the similar relation between ANOVA and decompositions of
matrix algebras, the idea has been whittled at by various people, but the explicit
relation between Gel’fand pairs and ANOVA in general has not, to my knowl-
edge, been drawn before. It is a bit discouraging to find that this mathematically
interesting correspondence does not appear to be statistically fruitful—that the
group theory is much harder than the standard combinatorial approach and does
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not buy anything in the end. Still, it should not be ignored that the symmetries
of a collection of data—that is, the permutations with respect to which it is
invariant, in the sense of the statistical information it contains—are often the
most basic way of getting at the structure of the collection. Certainly the
dispersion model basis matrices A, do not appear intuitively in the mind of
the experimenter; the individual factors as equivalence relations might, but not
their nesting structure, at least not for structures of any complexity. But, I
assert, what the experimenter should always be able to answer, upon a little
reflection, is the question, “In which ways can we arbitrarily swap around the
data without affecting the conclusions we should make?”” Thus, the group theory
approach may have useful ramifications for practical statistical consulting, in
discovering in the first place from the experimenter what the structure of the
data is.
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We must respect the many long steps that Speed has taken to understand,
focus and describe a mathematical structure for what R. A. Fisher may have
sensed in introducing the analysis of variance before 1925. But we dare not
regard it as telling us why the analysis of variance deserves the great practical
importance that it has held throughout recent decades.

I am not equipped to comment adequately on the mathematical niceties and
careful craftmanship of Speed’s paper. I do have an obligation, however, to point
out why what he describes as the analysis of variance is not the core of what is
practiced in so many areas of application.



