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A CLASS OF LINEAR REGRESSION PARAMETER
ESTIMATORS CONSTRUCTED BY NONPARAMETRIC ESTIMATION

By J. A. CRISTOBAL CRISTOBAL, P. FARALDO RocAa AND
W. GONZALEZ MANTEIGA,

Universidad de Santiago de Compostela

Given a (p + 1)-dimensional random vector (X,Y) where f is the
unknown density of X, the pararneters of the multiple linear regression
function a(x) = E(Y/X = x) = xB may be estimated from a sample
{(X,, Y, (X, ,,)} by mmlmlzmg the functional §(B) = f(8,(x) —
xB )2f,,(x) dx, where &, and f,, may be any of a large class of nonparametric
estimators of a and f The strong consistency and asymptotic normality of
the estimators so obtained are proved in this article under conditions on
(X,Y) that are less restrictive than those assumed by Faraldo Roca and
Gonzalez Manteiga for p = 1. This class of estimators includes ordinary and
generalized ridge regression estimators as special cases.

1. Introduction and statement of the results. Let (X,Y) be a (p + 1)-
dimensional random variable such that Y is related linearly to X in accordance
with the model Y = XB, + ¢, where B, is a p-dimensional parameter vector and
¢ a random error which is independent of X and such that E[¢] =0 and
Var[e] = o2. The vector B, has the property of being that value of the vector 8
that minimizes

(1) w(B) = E[(Y-XB)"] = [(y—xB) du(x, y) = E[&],

where p is the probability measure associated with (X, Y). From a theoretical
viewpoint, estimation of 8, from a representative sample {(X,, Y),...,(X,,Y,)}
involves first approximating the integral in (1.1) by some function of 8 con-
structed using the sample values, and then finding the value of 8 that minimizes
the function so obtained. The least-squares estimator, for example, is obtained
by minimizing

12) (B == L (- X = [y x8) duix, )

where p¥ is the probability measure associated with the empirical distribution
function F), of the sample.

A very general class of estimators may be defined as those obtained by first
using the sample to construct a nonparametric estimate &,(x) of the regression
function a(x) = E[Y|X = x], and then defining the estimator f, itself as the
value of 8 that minimizes

(1.3) $(B) = [(aa(x) - xB)* dQ,(x),
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where §, is a weighting function. Individual members of this class correspond to
particular nonparametric estimators &, and weighting functions Q,. For exam-
ple, the least-squares estimator obtained by minimizing (1.2) is the special case in
which &,(x) = X7, Y1y ,(x) and Q,(x) = (1/n)L7_ 1 _,, .1(X;), where I, is the
indicator function of C. However, advantages may be expected to derive from
the use of nonparametric estimators smoother than the extremely unsmooth
function applied in this case [see Titterington (1985) for a general discussion of
smoothing techniques]. For instance, we have shown elsewhere [Faraldo Roca
and Gonzalez Manteiga (1985)] the good behavior of the following estimator with
respect to least squares when mean-squared error is used for comparison. This
class of regression parameter estimators is obtamed by restricting &, and Q, to
the forms

G, (x)= Y Y8,(x,X,)/ Y 8,(x,X;), with0/0 treated as 0
i=1

i=1

and

2,(x) = [ Fu(t) e
= Zf 8. (¢, X,) dt,

i=1 —®

where {§,: R? X R? - R}m m(n)— o 18 @ sequence of measurable functions and
fn(t) X 8,.(t X;)/n is a nonparametric estimator of the density of X, f,
which is assumed to exist. Almost all nonparametric estimators that have
actually been used are, in fact, of this form [Wertz (1978), Susarla and Walter
(1981) and Collomb (1985)]. In the rest of this article we shall confine our
attention to nonparametric estimators of this class, and we shall refer to the
corresponding regression parameter estimators as smooth regression estimators.

The almost sure consistency of smooth regression estimators was proved by
Faraldo Roca and Gonzalez Manteiga (1985) for p = 1 when Y and the support
of f are bounded and certain fairly unrestrictive assumptions about the sequence
8,, are made. The main purpose of the present article is to extend this result to
multiple regression while considerably relaxing the condition on Y.

THEOREM 1.4. If the support of f is bounded and

(i) sup,$,.(x, u) = O(mP), Vx € RP;
(ii) 8,(x, u) = 8,(u, x), V(x,u) € R2P
(iii) 3, (x,u)du =1and §,(x,u) = 0if |x — u|| > ce(n), wherec € R* and
g(n) » 0 when n - oo [m = O(1/¢(n))]; then
(2) if E[Y*] < o0, B, > B, a.s;
(b) if E[|(X,Y)||%] < oo with y > 0 such that E[|Y|**"] < oo,
‘/;(ﬁn_ﬂo) _)Np(O, A)» asy/—r;/m—>0,

where A = ¢¥(E[XX]) .
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Note that conditions (i)-(iii) on the §, are satisfied for a wide class of
nonparametric estimators including histogram estimators, kernel estimators
whose kernels have compact supports and estimators constructed using the
sequence of §,, described by Susarla and Walter (1981). The proof of part (a) of
Theorem 1.4, which is given below in Section 2, is based on the use of Mallows
metrics similar to those used by Freedman (1981) and Bickel and Freedman
(1981) in the field of bootstrapping regression models. Part (b) is proved by
showing that the asymptotic behavior of ﬁn is like that of the least-squares
estimator.

Hitherto, one of the main attempts to construct regression parameter estima-
tors with mean-squared errors smaller than that of the least-squares estimator
has consisted in the development of ridge estimators. These were first introduced
to circumvent the purely computational problem posed by the fact that the
least-squares estimation matrix X n)X(n) [X(n) indicated in the following
theorem] is frequently ill conditioned [Hoerl and Kennard (1970)], but were later
given a Bayesian interpretation over such estimators [see Vinod and Ullah
(1981)]. In Section 2 below we shall prove the following result:

THEOREM 1.5. Let K be a symmetric, positive one-dimensional kernel such
that (K(z)dz =1, [2K(2)dz =0 and [22K(z)dz < oo. If X(n) is the n X p
matrix formed by (X,,..., X,) and Y(n) the n X 1 matrix (Y,,...,Y,)!, consider
the smooth regression estimator obtained by taking

s = o L)

1 XU
- s )
This estimator is the ordinary ridge regression estimator
Be=[X(n)X(n) + kL] " X{(n)¥(n),

with k = ne(n)*2’K(z) dz.
Furthermore, the smooth regression estimator obtained by taking
Sn(x, u) = |4, K *[A,(x — u)],

where
1/¢ 0
A,=G l G*
0 1/e,

[G being the matrix of the unique transformation such that X(n)X(n) = GAG!
with A positive and diagonal] is the generalized ridge regression estimator

k, 0 -1

Bkg = | X(n)X(n) + G G'| X%(n)Y(n),

0 k

with k; = ne?(2’K(z) dz.
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Note that the problem of choosing ridge factors % or k;, which optimize the
efficiency of the estimator, or at least improve on that of the least-squares
estimator, is reformulated as the problem of choosing the appropriate windows
e(n) or ¢; for the kernel K, whose nature also affects efficiency. For a given
kernel, the optimal windows are functions of the sample variances. In the
reformulated generalized case (b) the differences between the variances in differ-
ent directions are thus taken into account when estimating the density of X, and
this is done by using a sequence §,, of the kind introduced by Deheuvels (1977).

Finally, we point out that the class of smooth regression estimators is much
wider than that of ridge estimators. It is to be hoped that awareness of this may
lead to improved estimators being sought and found among other members of
the same class.

2. Proofs.

ProoF OoF THEOREM 1.4. (a) The conditions imposed on (X, Y) imply that
E[|(X,Y)]|*] < . Let T, be the set of probability measures y in R?*! for
which [||(x, ¥)||* dy(x, ¥) < co. The Mallows metric

afep)= ot (B[l - @)

where (X,Y) and (Z,V) are random vectors whose associated probability
measures are, respectively, a and B8, makes T, a metric space [see the Appendix
of the article by Bickel and Freedman (1981) for more details].

Now (1.1) and the conditions on ¢ imply that

Bo=B(r) = {e(w)} ELX'Y] = {e(n)} " [x'ydn(x, ),

where &(p) = [x%xdp(x, y). B, may likewise be expressed in the form

A= Bli,) = {e(8,)) " [xyd,(x, ¥),

where 1, is the probability measure associated with the distribution

1 o«
F(x,)= Y —[ 8X,t)at
(X, Y)|Y,<y) M7~

= [ (/x 8, (u,t) dt) dF,(u,v).
(—o00, —00)\Y—00
If {p,} is any sequence of probability measures in T, such that d,(u,,p) = 0,
then &(p,) — e(p) and B(p,) = B(p) = B, [see Lemma 3.1 in Freedman (1981)].
In what follows we shall therefore prove part (a) of Theorem 1.4 by showing
that d,(fi,, p) > 0 as. Since d,(p,, p) > 0 iff p, > p weakly and
S, N dp(x, ¥) = [II(x, ¥)I* dp(x, y) [see Lemma 8.3 in Bickel and
Freedman (1981)], we shall actually prove (I) that almost surely fi,, = p weakly,

and (II) that [|i(x, YII* di(x, ) = [l(x, Y)II* dp(x, ) as.
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(I) Let
AI_/(‘”:’_OO)(/ 5 (u, t)dt) d(F(u,v) - Fu, v)),
(00, ¥)
A, = /( _w)(f 5 (u, t)dt) dF(u, v),

A3=f((”) (/ 8. (u, t)dt—l)dF(u v).

00, —00)

Then FA,i(x, y) — F(x, y) = A, + A, + A;. With the condition (iii) on the §,, it
follows that g,(u,v) = (f* 0, (4, t)dt —1) > 0if u <x and g,(u,0v)+1 -0
if u > x; since |g,(u, v)| < 1, the dominated convergence theorem yields A, — 0
and A; - 0.

For A,,

A, = f("‘ y)d(F(u v) — F(u,v))

— 00, —00)

+/(x+ce,.,y) (/ 8 (u,t) dt) d(F,(u,v) — F(u,v))

(x—ce,, — )
=F(x—ce,,y) — F(x — ce,, y)
X+ Ce,
+f (f 8, (u,t) dt) d(F(u, y) — F(u, y)).
Using one integratlon by parts, we finish the proof of (I) with the theorem of
Wolfowitz (1960) because
|A,| < Csup|E,(u,v) — F(u,v)| > 0 a.s.withC constant.
(IT) Let

™M=

g
I

T [l = 1X014)8,(x, X,) ax,

.
I
—

13

Y2 (112 = 1X01%)8,(x, X,) d,

.
I
—

B
(4
Il
S|= S| |-
=

(x4 + ¥2)° - E[I(x, ).

™M=

~.
I
—

Since
1 n
JIG N din(x, 7) = — E [(I2l? + ¥2)*8,(x, X,) e
i=1
and /[[(x, )I* du(x, ) is E[I(X, Y)|], then

S, D1 dia(x, v) = [ )1 dilx, 7) = &+ 4, + 4.

A, — 0 as. by the strong law of large numbers, and the fact that A, - 0 as.
follows from Bennett’s inequality [Bennett (1962)], the compactness of the
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support of f and the conditions on the §,,. Finally Schwarz’ inequality shows
that
1/2

1 n 2/1 n 2
14,] < 2(; X Y) (; .§1[ SO0 = 1X012) |3, X0) dx] )

The strong law of large numbers and reasoning similar to that used for A, now
show that A, — 0 a.s. too.

(b) The proof is analogous to that for p = 1 [Faraldo Roca and Gonzalez
Manteiga (1985)]. O

Proor or THEOREM 1.5. We present only the proof of part (b), since that of
part (a) is both similar and simpler.
By (1.3),

B, = [fx‘xdﬂn(x)]_lfx‘&n(x) dQ,(x)
= [/x‘xf;(x) dx] - fx‘&n(x)f;(x) da.

By virtue of the choice of §,,,

g, = [il /x‘x8m(x, X)) dx]_l{ g‘,l /x‘ (X, X;) dx Yi]

= {é [x%| A K*[ A (- X,)] dx} <§1 [594nK *[An(x-X,)] dei}.

Putting z = A, (x — X,) for 1 = 1,..., n now yields

g, = Zn‘, f(A,;lz+Xi)t(A,;lz+Xi)K*(z)dz]i/(A,;12+Xi)tK*(z)szi

i=1

R & 0 n
= X!X, + nG G‘fzzK(z) dz | Y Xy,
i=1 2 i=1
0 &,

by virtue of the properties of K and the orthogonality of G. O
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