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1. Introduction. We consider the one-dimensional additive model Y = & +
X. If X is a (standard) normal random variable and ¢ is completely unknown
then of course §(y) = y is the minimax estimator. This same estimator is no
longer minimax, however, given the added prior information |#| < s. In fact, the
minimax estimate is then Bayes with respect to a least favorable prior distribu-
tion that is supported on [ —s, s]. This distribution was investigated by Casella
and Strawderman (1981) for small values of s, and by Bickel (1981) and Levit
(1980a-c) and Levit and Berhin (1980) for large values of s. Our interest was
captured particularly by Bickel’s somewhat surprising result that if the least
favorable distributions are rescaled to [—1,1] then they converge weakly, as
s = o0, to a distribution with density cos?(7x/2) [the distribution with mini-
mum Fisher information among all those supported on [—1,1], see Huber
(1974)], and the corresponding minimax risks behave like 1 — 72/s% + o(1/s2).
Moreover, Bickel produced a family of estimates that have this risk asymptoti-
cally, and proved that they have the property that s(y — 8(y)) is approximately
a tan(7y/(2s)).

The main point of this paper is that all the above mentioned results of Bickel
(1981) remain valid without the normality assumption. Namely, all that is
needed is that the specified distribution of X be such that EX =0, EX2 =1
and EX* < o0. We prove actually a slightly stronger result, Theorem 2, wherein
X may be any member of a family of distributions that satisfies a weakened set
of requirements. We do not know, however, whether these requirements are
necessary, except for the fact that some moment higher than the second has to
be bounded.

Suppose Y, = ¢ + X;, i = 1,..., n. The results of this paper can then be used
if we replace the vector of observations by a one-dimensional statistic that
preserves the translation structure, e.g., the sample mean. If the distribution of
X, is specific enough we may use the best invariant estimator for ¢, i.e., the
Pitman estimator. When this estimator is also a sufficient statistic then the
above reduction does not lose any information. If, however, Y, =&, + X;, i =
1,..., n, then no easy reduction is possible and only partial results are known.
Speckman (1982) restricted attention to linear estimates for the vector of means
and then found the form of the minimax estimate. Melkman and Micchelli (1979)
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did not require linearity, a priori, but assumed that the distributions of X; have
compact support.

2. Main results. Let K be some family of distributions on the line such that
forall K € K

(a) [xK(dx) =0,
(b) Vy = [x2K(dx) < 1,
(c) for some y >0 and p,,, >0, [|x)* K (dx) < py,, < 00

and, finally, for some p, < oo there is a K € K such that [x*K(dx) < p, while
(d) sup{foK(dx): K €K, [x*K(dx) < u4} =1.

Note that K may consist of a single distribution, i.e., the error distribution is
known to have zero expectation, variance 1 and finite fourth moment.

Suppose we observe Y =9 + X, where it is known that ¢ € [—s, s] and
X ~ K for some K € K (but unknown otherwise). The risk of an estimate & for a
specific ¥ is

R(3,9,K) = [[9 - 8(% + )| K (dx).
Thus the maximum risk of an estimate § is
R,(8) = sup{R(5,9,K): |9 <s, K € K}.

Our interest is in finding that family of estimates which minimizes R_ asymptot-
ically in s. This is an easy task when attention is restricted to linear estimates
[see Speckman (1982) for a multidimensional generalization].

PROPOSITION 1. The estimate 8 (x) = [s2/(s% + 1)]x minimizes R, over all
estimators that are linear functions of the observations. Moreover R (8!) =
s2/(s? + 1).

PrOOF. A linear estimator is of the form 8(y) = a + by, hence

R(8,9,K) =[a+ (b—1)9]" + b2V,
R,(8) =[la| + |b— 1)s]* + b2
Clearly R, is minimized by setting a = 0, b = s2/(s?+ 1). O
For these linear estimators lim,_,  s%[1 — R (8!)] = 1. As we will see this is

the appropriate normalization also for the general, nonlinear estimators. Conse-
quently we call a family of estimates, {§,: s > 0}, asymptotically minimax if

lim s2[1 — R (8,)] = max!.

THEOREM 2. Define the family of estimates {8,: s > 0} as follows: Let a,,
s >0, be such that 0 < a, < 1,lim,_, ,a, = 0,lim,_,  a,s"®"*D = oo, where y
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is taken from condition (c) of the definition of K. For s > 0 define

T a
vi(y) = {(1 - as)ﬂtan[(l - as)gy], <1+
0, otherwise,
and define
1y
8(y)=y- ;\Ps(;)-

This family is asymptotically minimax and moreover

lim s%[1 — R (8,)] = =%

REMARK. Note that, for simplicity, §, was permitted to exceed s, and is
therefore inadmissible. A more reasonable estimate would crop 8, to [ —s, s].

ProOF. We present here the skeleton of the proof, referring the reader
interested in the more technical details to the Appendix.
First we show that sup s2[1 — R(8,)] = w2 To that end consider

R(3,, 0, K) = [|-x+ étps(ﬂ} f)]2K(dx)

2

= VK— — [xy, (0+ )K(dx) + —f¢ (ﬂ+ )K(dx)
(1)

= —f¢s(ﬂ + )k(x)dx

1
+ —f¢2(0 + )K(dx) + o( )

where the function k(x) = [*tK(dt) is positive, unimodal with the mode at
zero, and [k(x)dx = V. In the Appendix (1) is Justlﬁed and the following

lemma is proven.

LeEMMA 3. If p,,., < o, but not necessarily p, < oo, then
[v, (a+ )k(x)dx Vewl(9) + o(1),
[¥i8+ 2 )K(dx) = 42(9) + o).

Therefore we conclude that

1 1
R(8,, 59, K) = Vg — —[2Viy(9) - Y2(9)] + o(s—z)

. 2 W
(l—as)erK_Sm (1_03)5 1
+ O(—f)

sup R(8,,s9,K) =V, — [ .

|9<1 S

3
2

1-— —

cos’(1 — a,) 2
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and finally that
l1-a 2 1
R(8,)=1- [(——l] + o(—2).
s s

It remains to establish that no other estimator can do better. To that end we
consider the Bayesian problem where & is a random variable with a known
distribution,

p(G, K) = Eg (8 = 85(Y))" = [ [[8 — 85(9 + 2)]"G(d9)K (dx),

with 6, the Bayes estimate of & given y. We want, of course, a distribution G
which is unfavorable as possible. An excellent candidate for the least favorable
distribution is one found by Bickel (1981). Thus we will use G(x) = G(x/s),
where the distribution G has density

T
cos?—t, f <1,
@) an)={3zH M
0, 1t > 1.

This is the distribution that minimizes the Fisher information among all distri-
butions supported on [ —1,1], Huber (1974). Note that for any estimate &

R,(8)= sup f[ﬂ — 8(9 + x)] 2K (dx)
|¥<s, K€K

> [[# - 8(3 + x)]’G,(d9)K(ax) > p(Gy, K),
and hence we need only show that

lim 32(1 — sup p(G,, K)) <72

§—>00 KeK

Now from Y = E(3|Y) + E(X|Y) = 65(Y) + E(X]Y) we get
Vi =EE(® - Y)|Y = E{E(@ ~ 85(Y))Y + (E(® - Y)|Y)2}.
Hence
p(G, K) = Vg — Eg, x(EX|Y)’
and in particular
Jxg,(y — x)K(dx)]”
/&y — x)K(dx)

REMARK. Here and wherever appropriate the integrand is considered to be
zero whenever its numerator is zero.

p(G,, K) = Vi — f[ dy.

Integrating the numerator by parts we get

3 b(Gur K) = Vi~ 1K),
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where

I(K) = dy.

X\ _ 2
/ e - ) ]|
x
2 - —
Vi fe(y - < K(ax)
The following lemma is proven in the Appendix.

LEMMA 4. If [x*K(dx) < py < oo, then

im0 - [ =

Thus
lim s (1 - supp(Gs,K)) = lim inf I(K) <z?
§— 00 KeK s—o0 Ke

This concludes the proof of the theorem. O

Clearly the unfavorable distribution G, defined in (2) is the least favorable in
some sense. Certainly if {F,: s > 0} is a family of distributions such that F, is
supported on [ —s, s] and at least as unfavorable as G,, i.e.,

sup p(F,, K) > sup p(G,, K),
KeK KeK
then
lim 32(1 — sup p(F,, K)) =72
§— 00 KEK

This is so because for any § R (8) > p(F,, K), and in particular for §,,

7%= lim s%(1 — R (4,)) < lim 32(1 — sup p(F,, K))
(4) s 00 5= 00 KeK
< lim 32(1 — sup p(G,, K)) <
§— KeK

A stronger uniqueness result for G is the following.

PRrOPOSITION 5. Let {F,: s > 0} be a family of distributions such that F is
supported on [ —s, s], and define F,*(y) = F(sy), |y| < 1. If

sup p(F,, K) > sup p(G,, K),
KeK KeK

then any weak limit of a subsequence {F*, F*,...}, s; = o, is equal to G.

The proof of this proposition, given in the Appendix, is a modification (to
incorporate smoothing of F,) of the proof of Theorem 2.1 of Bickel (1981).

We close this section with some observations concerning the sharpness of the
conditions of Theorem 2.



MINIMAX ESTIMATION 437

Comparing the assumptions for Lemmas 3 and 4 we see that condition (d)
imposed on the set K was used only to ensure the existence of a distribution so
bad that no estimator can handle it better than 8. To show the sharpness of this
condition we need therefore to present a distribution with unbounded fourth
moment for which there is a better estimator than §,.

COUNTEREXAMPLE. Take K to be a distribution with density k(x) = ¢/|x|°
for |x| > x,. Certainly [|x|*k(x)dx < 00, 0 < a < 4 and [|x|*k(x)dx = 0. To
prove that for this K the minimax risk in estimating ¥ is less than 1 — 72/s5% we
will look at the behavior of Ej K(EX |Y)? in the expression p(F, K) = Vj —
Ep x(EX| Y)?, F € F, where F, is any family of distributions supported on
[—s, s]. Now, the proof of Propos1t10n 5 demonstrated that

lim inf 1nf s2EF K{x(lYl <s)(EX|Y) } > 7?,

§— 00

where x(-) is the indicator functlon It remains to prove that

lim inf 1nf s2EF K{x(]Yl > s)(EX|Y) }

s—o0 Fe
Given any distribution F the marginal distribution A of Y is such that
h(y) = ¢/|3y)° for |y| > 2s. Certainly |E(X|Y =y)| >s for |y| > 2s, since
X =Y - 0 and |0| < s. Hence

/°°_‘iy_>l c

s°Ep, x {x(1Y] > 25)(EX|Y)"} > e 75 .
2s Y 4 3°2

35
Nevertheless, some restriction on moments higher than the second is neces-
sary, as the following proposition shows.

ProOPOSITION 6. Let M be the family of distributions on the line such that
K € M if and only if [xK(dx) = 0 and [x*K(dx) = 1. For this family the linear
law 8X(x) = [s2/(1 + s%)]x is minimax and its risk is s%/(1 + s?).

Proor. Without loss of generality we can restrict ourselves to estimates 8
which are antisymmetric. For fixed s consider the distribution K, that has a
mass of 1/(1 + s2) at —s and a mass of s2/(1 + s?) at 1/s. Clearly K,eM,
and hence for any estimate §,

1+ s? 2 s?
) —-s| = 5
s 1+s

Proposition 1 implies therefore that here too the linear law is minimax. O

R(5,5,K,) = ——(8(0) - )" + liz[

APPENDIX

Before turning to the proofs of the various lemmas we consider briefly the
derivation of formula (1). The difficulty with the integration by parts is that
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is not absolutely continuous. Put differently, the integration is not over the
whole real line but rather from ¢, = —(1 + &)s — isa, to t, = (1 — #)s + 3sa,.
Hence to prove (1) we should show that

tl/s(l + %)[f:tK(dt) + [t tK(dt)] = 0(512.)

But
a, a 7
\Ps(l + —) < wtan[(l - —)77] < e
2 2 sin—a,
2
and
® ¢, Boy
tK(dt) — | tK(dt) < tK(dt) < ——.
L (dr) = [* K (de) f.t L () <
Hence
. is_ o 4 ’ . 7 nu’2+y _
slin;\ps(l + )[ftz tK(dt) + f_wtK(dt)] < slin; T Al =0
2 S

PrOOF OF LEMMA 3. The rationale of the proof is that for x small compared
to s, Y%(? + x/s) is essentially y(9), while for x large k(x) is small. Accord-
ingly we break the interval of integration up into the region inside [—s”, s*],
B = 2/(2 + 3y), and the region outside this interval. When |x| < s

x [x] x| ¢
1d+ —) —yi(3)| < — ") |t—0 < —) < 553
w0+ ) vo)] < Dresssup{vi(e)i 1= 01 s ) = ai
and so
x _ ¢
e+ — | —gu(P) |k dx| < ——— Vk.
sup, fIxISSB[xPS( \ s) il )] (x) R
On the other hand for |x| > s? and s large enough
x a, cy
¢;(0+ —)' < ¢;(1 + ——-) < —=,
s 2 a;:
T Koy
k(x)dx < x2K(dx) + sP x|K(dx) < 2——.
'/|‘.7c|2s‘9 ( ) |x|2s‘9 ( ) '/|‘x|2s‘*I l ( ) SBY
Hence
< 2_0_2_ M’2+‘y

f|x|2sﬂ%(ﬂ + E)E(x) dx

2 oBy
a, s
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and finally

X\ _ ¢,V 2¢,1
Sl 9+ R e = Viewi(9)| < 5 + =g

0.

a?s By s§— 00
The proof of the second equality is entirely similar. O

PrOOF OF LEMMA 4. Denote the integrand in the definition (3) of I, by
wy(y, K). Since we expect the integrand to approach [g’(y)] 2/g(y), which for
ly] = 1 is 0/0, we break the interval of y-integration into the region inside
(—1,1) and the region outside it.

For y > 1 revert back to

(v )R de = s e - =)t

whence, using Cauchy-Schwarz,
Lo Zpers]
b Je(y- 2 )K(a0) =)

lwfx“’g(y— %)K(dx)dy

=sf0°°fx2g(1 + E—;——x)K(dx)dz.

Now for z < x, 0 < g1 + (z — x)/s) < [sin(7/2(z — x)/s)| < (7/2)(x — 2)/8,
whereas for x < z, g(1 + (2 — x)/s) = 0. Hence

00 2 z—x) z 0 2 _
sfo fxg(1+-——s K(dx)dzszfo fzx (x — 2)K(dx) dz
T o0 pX T
- 2 _ —
-2f0 fox(x 2) deK(dx) < o
Since also

<———0
4 S s§— 00

sg(1+‘ z—x) 7% (z — x)°

pointwise, it follows from the dominated convergence theorem that

lim flwws(y, K)dy=0.

§— 00

Similarly one proves that
lim f_lws(y, K)dy=0.
s§—=00 Y-

Turning our attention now to the interval [ —1,1], observe that the problem is
to show that w(y, K) is bounded there. Indeed, once this is accomplished the
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dominated convergence theorem assumes that

f_‘lws(y, K)dy—s [ 11 [‘i((j))] dy,

because both g and g’ are continuous and bounded.
Now for |y| < 3, wy(y, K ) is uniformly bounded since its denominator satisfies

= St ol 527 e =5

for s > So and s, such that [*/* K(dx) > 0.
When { < |y| <1 a slightly more delicate argument is needed. Choose s, also
such that fs°/2xK(dx) > 0.Since g(x) > (1 —x)2for0<x <1,

o~ ZJwtar s>+ 2 e

f()s"/z(l —y+ ;)2K(dx)

v

v

aQy O
2t 1=y +a(l- »)%

for some a,, a,, a, > 0 (and independent of s).
To bound the numerator use |g’(x)| < 72/2(1 — x), x < 1, so that

‘fg’(y - g)i(x)dx‘ < %2'/;(02—1)(1 —y+ %)E(x)dx

w? B3
< —|Q=-y)Ve + —|,
2 [( ¥) Vg s ]
since | lx|k(x) dx = 315. Combining these estimates and denoting ¢ = s(1 — y)
b, + bt + b,t?
wl(y, K) < ——————,
ay+ al + ayt
which clearly is bounded for ¢ > 0 as a, a,, a, are all strictly positive. O

PROOF OF PROPOSITION 5. Let H be any distribution supported on [—1,1]
with H’ = h such that A’ and h” exist and are bounded. Let F, — F*. Fix any
¢ > 0 and denote F = F* » H(- /¢) and F, = Fx«H(-/¢). It is easy to see that
foralli=1,2,... and K€ K

—[ ° VK_
o(F,,K) <p F,.(s—),K = Vg + 3 I(K),
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Hence the assumption of the proposition implies that
(A1) liminf inf I(K) <n?

i—»oo Ke
We are going to show that (A.1) implies that F, —, G. Now, the families of
distributions K and {k; K € K} are both tlght “as Loy < 0. Moreover
sup, f,(t) < e~ U+ Vsup,h/)(¢), j=0,1,2. Therefore with f = F’ we have for
all y

limsup sup | f(y) - ff(y— — K(dx)\
i—»oo KeK
< limsup| /() = fi(»)|
+ limsup sup f(y) - f(y - i) K (dx)
isw KeKYx|<s/? 8;

+ limsup sup

i»o0 KeK |x|>s

f'_i(y) - f(y - s%)lK(dx) =0.

In exactly the same way one proves that

AL O S A IR

sup
KekK

Using now Fatou’s lemma

-5 ea
d;

i
a4

1 1+e¢ ..
11Ln_1> glf I}nf I(K) > I}relfK 7 f lim inf

(A2) (ra e ff,-(y— %)K(dx)
l+e [f/(y)]2 w?
B f are F(2) V=TT

Reasoning analogously to the proof of Bickel (1981, Lemma 2.1), we conclude
from (A.1) and (A.2) that F,* = G. O
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