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A LARGE SAMPLE STUDY OF THE BAYESIAN BOOTSTRAP!

By ALBERT Y. Lo

SUNY at Buffalo

An asymptotic justification of the Bayesian bootstrap is given. Large-
sample Bayesian bootstrap probability intervals for the mean, the variance
and bands for the distribution, the smoothed density and smoothed rate
function are also provided.

1. Introduction. Let X, X,,..., X,, be iid. random variables having an
arbitrary unknown distribution function F. Denote (X, X,,..., X,) by X.
Given a specific functional 8(F,X), depending on both' F and X, the problem is
to access the “posterior” opinion of 6(F,X) given X = x. A Bayes approach to
this problem is to construct a prior distribution on the space of F'’s and then use
the posterior distribution of (F,X) given X = x to summarize the “posterior”
opinion of 6(F,X) given X = x. Recently, Rubin (1981) introduced the Bayesian
bootstrap method by constructing a random distribution D, by replacing the
jump-sizes of the empirical distribution function by the gaps of n — 1 ii.d.
U(0,1) random variables and suggesting that the conditional distribution of
0(D,,X)|X = x can be used as the posterior distribution of 8(F,X)|X = x.

A great advantage of Rubin’s constructive approach is that the Monte Carlo
method can be applied to simulate the approximated posterior distribution
2{0(D,,X)|X = x} for any given functional 6. Specifically, let X = x be a fixed
sample.

Step 1: Simulate n —1 iid. U(0,1) random variables
(independent of the X ’s) and denote the ordered statistics of
the U’s by 0=U;, ,<U;, < - < Uictin-1 <

(1.1) U, =1Lt A, ,=U., ,-U_y , 1, J=1,...,n,be
the n gaps of the U, ,_,’s. Construct a random discrete
distribution function D, with weights A, , at x; for

Jj=1...,n.

Step 2: Repeat Step 1 a large number of times, say B
(1.2)  times, to obtain D,, D,,,..., D, and compute
0(D,,x),...,0(D,p,x), denoted by 6,, ..., 05, respectively.

Step 3: The empirical distribution function of 4,,..., 85,
(1.3) putting mass 1/B on 6, for j=1,..., B, approximates
2{6(D, X)X = x} for a large B. : '

The convergence of the above algorithm (i.e., Step 3 with B tends to infinity)
follows from the law of large numbers since 8,,..., 05 is an ii.d. sample from
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2{0(D,,X)|X = x}. For the same reason, if the number of Bayesian bootstrap
replications is large, E[6(D,,X)|X = x] < oo implies that the sample average of
0,,...,0p is near E[0(D,,X)|X = x] and E[0%D,,X)|X = x] < oo implies that
the sample variance of 8,,..., 05 is close to the conditional variance of 8(D,, X)
given X = x, etc.

The following example illustrates the Monte Carlo steps (1.1)—(1.3).

ExampLE 1.1. To obtain a 95% probability band for the distribution F,
consider the absolute deviation of D, centered at the empirical distribution
function on the reals given by

(1’4) 0O(Dn,x) = SupIDn(x) n(x)l = sup ‘ n(k): n—1 n(k)/n"

1<k<e

where e is the number of distinct observations, n(k) =X, ;. ,d; for k=
1,...,e and {d,,...,d,} is the configuration of the ties of the X’s (i.e., the
numbers of observations tied at the smallest value, the next smallest value, etc.).
The result of 1000 BB replications of the above functional for the fifteen GPA’s
of the law school data in Efron (1982) is displayed in Figure 1. The 95th
percentile point of 6,(D,,X) is 0.31 and hence a 95% Bayes probability band of
D, is given by F, + 0.31. Note that if £{6,(D,,X)|X = x} approximates the
posterior distribution £{f,(F, X)|X = x}, then the above band is approximately
a 95% Bayes probability band for the unknown F.

This article is the result of an investigation into the first-order approximation
of the conditional distribution £{6(D,,X)|X} to the posterior distribution
£{0(F,X)|X} for a variety of functionals. The approximation is to be interpreted
in the sense that the distance (say, the distance induced by weak convergence)
between £{6(D,,X)|X} and 2£{0(F,X)|X} tends to zero for almost all X. (A
sufficient condition is that they both have the same weak limit for almost all X.)
Our study indicates that, if the prior probability is a Dirichlet process [Ferguson
(1973)], the approximation is valid. This result, however, is not surprising since
Rubin’s choice of D, is related to the work of Ferguson (1973) in the sense that
£{D,|X} is a Dirichlet process with shape measure X,8y. Thus Theorem 1 of
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Ferguson (1973, Section 3) implies that one may view £{D,|X} as Z{F|X} where
F has a “flat” Dirichlet process prior.

Our study also indicates that asymptotically the Bayesian bootstrap and the
bootstrap of Efron (1979) are essentially equivalent in the sense that for almost
all sample sequences they achieve the same limiting conditional distribution at
the same n!/2-rate for a variety of ’s [the finite sample similarities between the
BB and the B have already been pointed out by Rubin (1981) and Efron (1982)].
This result raises the question that if a Bayesian can use either the B or the BB
as his/her bootstrap, which one is better and in what sense? (Apparently the last
question is equally applicable to a frequentist.) We do not know a clear-cut
answer to this question.

The results obtained in the following sections relate to the article of Rubin
(1981) in the same sense as Bickel and Freedman (1981) and Singh (1981) relate
to the paper of Efron (1979). [Note, however, that Singh (1981) also provides
some second-order properties of the bootstrap.] In Section 2, we show that, for
almost all X, D,, a posterior Dirichlet process and a bootstrap empirical process
F* (ie., the chemical distribution of the bootstrap sample), centered and
rescaled, can be approximated by a Kiefer process in absolute deviation with rate
O(n~Y*(loglog n)/*(log n)'/2). This approximation is applied to derive a large-
sample BB probability band for F' in Section 3. We then discuss the large-sam-
ple theory for the Bayesian bootstrapping the mean and the variance in Section
4. In Section 5, the approximation is applied to show that the smoothed BB
density approximates a smoothed posterior Dirichlet process density and to
construct large-sample probability bands for the smoothed density and rate
function. Section 6 collects proofs.

REMARK 1.1. During the first revision, the author was informed by Kjell
Doksum that the bootstrap part of Theorem 5.1 in Section 5 was obtained
independently by Jhun (1985). During the second revision, the author was again
informed by Kjell Doksum that the questions concerning the Bayesian bootstrap
in Sections 3 and 4 were discussed independently by Hjort (1985).

2. Strong approximations and the bootstraps. Since the bulk of the
functionals 6( F, X) of interest can be written, at least approximately, as g(D,) —
8g(F,), where g is some appropriate functional, a unified treatment of the
asymptotic theory can be achieved by studying the behavior of d,, = n'/?(D, —
F,} for large n’s. Our goal is to approximate the d,-process by Brownian bridges
for almost all X. In fact, we will prove the following: One can construct a
rescaled Kiefer process which approximates d,,, d* (d* = n'/?(F* — F,}) and
d,, (d, = n"*D,, — F)) (F* and D,, are the empirical distribution function
of the bootstrap sample and a posterior Dirichlet process with shape measure «,
respectively; the precise definitions are given in the next two paragraphs) in
supremum distance with rate O(n~*(loglog n)/*(log n)/?) for almost all X.
An interpretation of this result is that the supremum distance between any two
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of them is bounded essentially by n~'*(loglog n)'/*(log n)'/? for almost all X;
hence their weak limits, conditioned on X, should be identical for almost all X.

The following notation will be used. Let U;, U,, ..., U, beiid. U(0,1) random
variables independent of the X’s. Using the first n —1 U’s, we define D,
described in (1.1) explicitly as follows:

(2'1) Dn(x) = Z Aj: nSXj: n(x)’ —00 <X < 00,
Jil<j<n

where 8, is a point mass at x and the X ,’s are the ordered statistics of the
sample. Next is some notation for a bootstrap empirical process. The left-con-
tinuous inverse of F,, denoted by F), %, is defined by F,, '(s) = inf{x: s < F,(x)},
0 <s<1. For each n>1,let X =F;U) for j=1,...,n. It follows that
X*,..., X,* is an ii.d. sample from F, and hence is a bootstrap sample. Let F *
be the empirical distribution function of X*,..., X,*. Note that E[F*|X] =
E[D,X] =F,.

Next, we define a “posterior Dirichlet process” D,,. Let Y, ..., Y, be indepen-
dent standard exponential random variablesand ;= Y, + --- +Y;, j=1,..., n.
Let {p(x); —o0 <x < o} be a gamma process with finite shape measure a.
That is, u(x) is an independent increment process and, for each x, p(x) is a
gamma (a(x); 1) random variable. We assume that {X;}, {U;}, {Y;} and {p(x)}
are independent and are defined on a rich enough probability space (2, #, P)
and the elements of Q are denoted by w. Define D,, by

(22)  D(x) = [p(x) + S, D,(x)]/[m(0) +8,],  —o00 <x < o0,

Given X,,..., X,, p(x) + S,D,(x) is a gamma process with shape measure
a + X8y and hence D,,|X,..., X, is a Dirichlet process with shape measure
a + ;8. Therefore, 2{6(D,,,X)|X = x} = £{0(F,X)|X = x}, where F has a
Dirichlet process prior with shape measure a. Denote the centered and rescaled
posterior Dirichlet process n'/*(D,, — F,} by d,,,.

We now present some standard results on a Kiefer process. A Brownian
bridge {B(s); 0 <s <1} is a Gaussian process with a zero mean function
and a covariance function defined by E[B(s;)B(s;)] = min{s;, s,} — 5;8,.
A Kiefer process {K(s,t); 0<s<1, 0<t} is a two-parameter Gaussian
process with a zero mean function and a covariance function defined by
E[K (s, t,)K(s;, ty)] = (min{s;, s;} — $,5;)min{¢,, ¢,}. Note that for
each ¢t >0, {t2K(s,t);0 <s <1} is a Brownian bridge and that
{K(s,n + 1) — K(s, n); n > 1)} is a sequence of independent Brownian bridges.
For more properties of B(s) and K(s, t), see Csorg6 and Révész (1981).

We also denote sup_ , < , <., by sup,, n~/*(loglog n)/*(log n)'/? by i(n), and
the sample sequence X,,..., X,,... by X. The symbol O(-) is used in the usual
Landau sense. When the corresponding relation holds with probability one, the
constant of O(-) could be a finite random variable.

Denote the conditional distribution of X, {U;}, {Y;}, {#(x)} and {K(s, ?)}
given X by P(-|X) and the “true” distribution function by F,. The main result of
this section is the following approximation theorem.
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THEOREM 2.1. There exists a Kiefer process K(s, t) that is independent of
X and a Fy-null set N of sample sequences such that X & N implies

(23)  supldy(x) - 0V (Fx),n)| = O(Um)) a.s. [PC1X),
(2.4) sup|d*(x) — n"'2K(Fy(x),n)| = O(i(n)) a.s.[P(-X)]
and )

(25)  sup|du,(x) —n" K (Fyx), )| = O((n) a.s. [P(-1X)).

The proof of this theorem is given in Section 6. Note that Theorem 2.1
provides the Bayesian and the bootstrap analogies of Finkelstein’s LIL law for
an empirical distribution function, which is perhaps of interest from a prob-
abilist’s viewpoint. Specifically, let

B, = d,/(2loglog n)l/z, Barn = 4.,/ (21oglog n)l/2
and '

B* =d*/(2loglogn)"”.

COROLLARY 2.1. For X & N, on a set with P(-|X)-probability one, B,, B,,
and B* are relatively compact with respect to the supremum distance on
(— 00, ) with limit points {h(Fy(-)); h € K} where K is the Finkelstein set
[ page 608 in Finkelstein (1971)] containing absolutely continuous (with respect
to Lebesgue measure) functions h defined on [0,1] such that [[h'(s)]?ds < 1
and h(0) = h(1) = 0.

The proof of this corollary is given in Section 6.

REMARK 2.1. A more careful analysis reveals that the conclusions of Theo-
rem 2.1 and Corollary 2.1 hold on the set of sample sequences X such that

(2.6) lim supsup n'/2|F,(x) — Fy(x)|/(2loglog n)"” < 1.
X

3. The Bayesian bootstrap of a distribution function. In this section, we
discuss the large-sample effect for the Bayesian bootstrap of the unknown
distribution function F and construct a large-sample BB confidence band of F
given a sample X,..., X, from a continuous F;. This band is then compared
with the exact (up to Monte Carlo accuracy) BB band obtained in Example 1.1.
First, we state a direct consequence of Theorem 2.1.

THEOREM 3.1. For X ¢ N,

(81)  |sup|d,(x)| - n K (Ex), n)]| = 0(2(n)) a.s. P(-1X)
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and
(3.2)  statement (3.1) remains valid if d, is replaced by d* or d,.

If F, is continuous, Z{n~?sup, |K(Fy(x), n)|} = £{sup, ., <1/B(s)|} where B
is a standard Brownian bridge. According to (3.1), F, + n~1/2\ gives a (1 — a)
asymptotic BB probability band for F' where A is defined by

a= Y (—-1)""exp(—25202).
Jil<j<oo

For example, a = 5% corresponds to A = 1.359 and if the sample sizeis n = 15, a
95% large-sample BB probability band for F is F, + 0.35. This result compares
favorably with the exact BB band given in Example 1.1.

Suppose F; is arbitrary yet nondegenerate. Given the sample X,..., X,
there will be distinct X ’s for n sufficiently large. We have

sup|d,(x)| = supn'/? D,(x) — F,(x)|

X x
(3.3) e
=n sup |Un(k): n—l_n(k)/nl'
1<k<e
Hence, given X|,..., X, sup,|d,(x)| is a continuous random variable, implying

that a Bayesian bootstrapper can choose a unique c, (depending on the sample)
such that

(34) P{Sup|dn(x)| =< Cn|X1,..., Xn} =1—-a

and a (1 — a) BB probability band for F is given by F, + n~'/%c,. Example 1.1
exemplifies the case of a« = 5% and n = 15, obtaining F, + 0.31 as the 95% BB
band. Note that ¢, converges to ¢, which is the (1 — a)-percentile point of the
continuous random variable sup,|B(Fy(x))| [Bickel and Freedman (1981)] and
can be approximated by the (1 — a)-percentile point of sup,|B(F,(x))| in view of
Lemma 6.2 in Section 6.

On the other hand, given X,,..., X,, sup,|d*(x)| is a discrete random
variable supported by at most n points and, according to Bickel and Freedman
(1981, Corollary 4.1), a frequentist bootstrapper chooses the sequence {c,} such
that

(3.5) P{sup|d*(x)| <c Xy, ., x,,} >1-a
x
Here the choice of c,, is not unique. However, c, also converges to c.

REMARK 3.1. If Fj is continuous and supported by a finite interval, the weak
convergence arguments in Lo (1983, 1986) can also be modified to provide the
asymptotic results in this section.

4. The Bayesian bootstrap of the mean and the variance. In this
section we discuss the large-sample effect of the Bayesian bootstrap of some
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simple functionals of the form 6(F,X) = g(F) — g(F,). We only consider the
following simplest linear and nonlinear g’s:

gi(H) = [xH(dx),
(4.1)

g:(H) = [ [(x - y)*H(dx)H(dy) = 2var(H).

For these g’s, provided that F, is supported by a bounded interval, the limit of
2{g(D,) — g(F,)|X} can also be obtained as direct consequences of Theorem 2.1
and an integration-by-parts argument. The situation is more delicate if F;, has
unbounded support, and we give the results in the follgwing theorem. Note that
according to Bickel and Freedman (1981) and Singh (1981), a frequentist
bootstrapper would obtain the same limiting distributions under the same
conditions.

THEOREM 4.1. [x2Fy(dx) < oo implies

(42)  2{n?[g(D,) - &(F,)][o(F)] X} - N(0,1) a.s.[F],

where [6,(F,)]? is the variance of F,, and if, in addition, [x?a(dx) < oo, (4.2)
remains valid with D, replaced by D,,,.
[y*Fy(dy) < oo implies

(4.3)  2£{n?[gy(D,) — &:(F,)][0x(F)] "X} - N(0,1) a.s.[F],

where
2 2 2 2
(ool B = 4 | [ = 57° R )| B - [ BT,
and if, in addition, [x*a(dx) < oo, (4.3) remains valid with D, replaced by D,,,.

ProOF. We only prove (4.3) since the proof of (4.2) is similar and in fact
simpler. Note that

(4'4) nl/z{gZ(Dn) - gZ(Fn)} = n1/2 Z Aj: nAjn + nl/zA(Dn’ Fn),

Jil<j<n
where A;, = 2{ [(X; — y)*F,(dy) — 8x(F,)} and
(45)  A(D, F,) = [ [(x =)D, - F)(dx)(D, - F,)(dy).
Expand A%(D,, F,) and compute E[A*(D,, F,)|X] with the joint moments of

{4, ,» j=1,...,n}, which is a Dirichlet random vector. Using the strong
consistency of U-statistics, we conclude

(4.6) nE[A(D,, F,)X] =0(n™') as.[F,].
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Since £{A;. ;s j=1,...,n} =LZ,/(Z, + -+ +Z,); j =1,...,n}, where the
Z’s are iid. random variables (independent of the X’s) having a standard
exponential distribution and (Z, + --- +Z,)/n —» 1 with probability one, it
suffices to show

(4.7) A{n_l/z > ZjAjn|X}—>N(0,[02(F0)]2) as.[F,].

Jil<j<n
According to Lindeberg’s theorem, (4.7) is valid if for any ¢ > 0,

(48) nt T E[(2,4,)L(e)X] 50 as.[F],

Jil<j<n

where I; (&) is the indicator function of the event {(Z,A;,)? > ne}. Since Z, is a
standard exponential random variable which is independent of X, the left-hand
side of (4.8) becomes

(4.9) nt ¥ (4,) (X, F),
Jil<gj<n

where
h(X;, F,) = {[(en)l/zlAjnr1 + 1]2 + 1}exp{—(en)1/2|Ajn|‘1}.

Denote (X; + +++ +X,)/n by p,, (1,)* — g(F,) by a, and expand (4;,)>
Expression (4.9) becomes

YB[(X,)'R( Xy, F)%] - 40,E[(X,)°1(X,, F,)%]
(410)  +(4(p,) + 20,)E[(X,)*h(X,,F,),]

~2a,p,E[ X, h( Xy, F)%] + (a,)"E[R(X,, F,)%])},

where %, is the o-field generated by the Borel functions of X,,..., X, depend-
ing symmetrically upon X|,..., X,,. Denote the intersection of the decreasing %,
by &£,.

4 It suffices to show that the five terms appearing in (4.10) converge to zero a.s.
[F,]. Take the first expectation, denoted concisely by E[V,%,]. Note that
V, — 0 as. [F,]. Next, |h(X,, F,)| < 2 implies that |V,| is dominated by 2|X,|*
which is integrable. By the generalized martingale convergence theorem of
Blackwell and Dubins (1962, Theorem 2),

(4.11) E[V%] - E[ lim Vnm] =0 as.[F,].
Simjlar arguments applied to the other terms complete the proof.

The second part of (4.3) follows from the first part and the fact that
2{n**[ g« D,) — gxD,,)]|X} — a point mass at zero as. [F,]. O
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Theorem 4.1 is not directly applicable in the construction of large-sample BB
probability intervals since the o(F,)’s are not known. The following results
bridge this gap.

COROLLARY 4.1. Theorem 4.1 remains valid if [o,(F,)]? and [o,(F,)]? are
replaced by [6,(F,)]? and [o,(F,)]?, respectively.

ProOF. This result follows from the fact that [o,(F,)]% - [o(F,)]? and
[04(F,)]? = [0x(Fy)]? as. [F,] and Slutsky’s theorem [Bickel and Doksum
(1977)]. O

The construction of large-sample BB probability intervals for g,(D,), and
hence for g;(F'), i = 1,2, is routine and is omitted.

5. The smoothed Bayesian bootstrap. In this section we assume that the
“true” distribution F| has a density (with respect to Lebesgue measure) given by
fo(s) = dF(s)/ds. Then the lumpiness of D, and D,, may not be desirable. One
way out is to attribute some smoothness to D, and D,,, and to substitute the
smoothed D, for D, in Step 1 of the algorithm. We define the smoothed D, as
follows: Let w be a prescribed kernel (density) on (— o0, c0) and b(n) = n~? for
some & € (0, 3). For any distribution function H of the y’s, let

(5.1) fulslH) = b(n) ™" [w((s - y)/b(n))H(dy).

We call f.(s|F), f.(s|D,), f.(s|F*) and fs|D,,) the smoothed density, the
smoothed BB density, the smoothed B density and the smoothed posterior
Dirichlet process density. Note that £{f.(s|D,.)|X} = 2|{f(s|F)||X} for
a Dirichlet process prior on F, and that E[f(s|D,)|X]= E[f(s|F*)|X]=
f.(s|F,) which is the classical kernel estimate.

In the rest of the section, we discuss the large-sample behavior of
£{ f,(s|D,)|X}. Specifically, we find the limit of Z{sup,|f,(s|D,) — f.(s|F)||X}
for almost all X where the supremum is over a bounded interval. It will be shown
that the same limit is also achieved by z{sup,|f(s|F*) — f(s|F,)||X} and,
2{sup,|f(s|D,,) — f{(s|F,)|X}, implying that for large sample sizes the smoothed
BB differs little from the smoothed B and the smoothed posterior Dirichlet
‘process. The basic idea of the proof is due to Bickel and Rosenblatt (1973).
'Assume that the densities w and f, satisfy a set of regularity conditions, say
A1-A4 in Bickel and Rosenblatt (1973). Define Y,(s) by

Y,(s) = [nb(n)/fo(s)]*{ fu(s1Ds) = fu(sIF,)}
(5.2) i
= [b(n)/fo(8)] 77 [w((s - x)/b(n))d,(dx), 0<s<1.

Using Theorem 2.1 instead of Brillinger’s theorem [Brillinger (1969)] and arguing
as in the proof of Theorem 3.1 of Bickel and Rosenblatt (1973), we obtain the
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following proposition:

PROPOSITION 5.1. Let g(w) = [w?(x)dx and b(n) = n~% 0 <8 < }. Then,
for almost all sample sequences X, '

(5.3) P{(28 log n)lﬂ[g(w)_l/2 sup |Y,(s)|— an] <x X} — exp(—2e7%),

0<s<1

where
a, = (286logn)"? + (28 log n) " /*{log[ K,(w)/7'/?] — (log 8 + loglog n)/2},
if (a) of Al holds and K (w) = (w*(A) + w*(—A))/(2g(w)) > 0, and otherwise
a, = (28log n)"? + (26 log n)” " log[ Ky(w)/(27)],
where Ky(w) = [[w'(x)]* dx/(28(w));
(5.4) statement (5.3) remains valid if d,, in Y, is replaced by d* or d,.
Evidently, a large-sample probability band for f,(s|F), 0 <s <1, given X,

can be obtained if we replace fy(s) by f,(s|F,) in the denominator of Y,. The
resulting process, say Z,, obeys

sup lZn(s) - Yn(s)l

0<s<1

(5.5) < sup |Y(8){£u(sIF) = fo(8)} [ Fu(sIED] 7|

0<s<1

= sn(log n)_1/2 sup IYn(s)I sup |[ fn(len)] ! |’
0<s<l1 0<s<l1
where e, = (log n)"/?sup, < ; <1|f(51F,) — fo(s)|. Our goal is to show that
SUPg < s <11Zn(8) — Yu(s)| = 0 in P( |X)-probability a.s. [F,]. Since
(log n)~/?supy _ , .1|Y,(s)| is bounded in P(-|X)-probability as. [F;] by Pro-
position 5.1, it suffices to show that ¢, tends to zero a.s. [F,]

LeEMMA 5.1. In the present context, e, tends to zero a.s. [ F;].

The proof of this lemma is given in Section 6.

Similar arguments applied in the bootstrap and the posterior Dirichlet cases
with Y, and Z, defined analogously give the following theorem.

THEOREM 5.1. Proposition 5.1 remains valid if Y, is replaced by Z,,.

The above Theorem 5.1 justifies the use of the smoothed BB to construct a

probability band for the smoothed density. In addition, according to Theorem
5.1, given X,,..., X,, a (1 — a) large-sample probability band for the smoothed
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density f,(s|F) is given by
(5:6) f.(:1F,) £ [£.(-1F,)g(w)]*[nb(n)] 7*{(28 log n) "*A + a,,},

where A is defined by exp(—2e ) =1 — a.

The construction of large-sample probability band for the corresponding
smoothed hazard function is simple. The hazard function r of F is defined by
r(x) = f(x)[1 — F(x)]"! atid a smoothed BB hazard function is defined by

(5.7) ru(siD,) = [(s1D)[1 = F(s)] ', 0<s<1.

Note that r, is well defined for sufficiently large n. Denote
E[r(s\D,)X,,-.., X,] -

by r(s|F,), i.e.,

(5.8) ri(slF,) = f(sIF)[1 - F(s)] 7', 0<s<1.

Since

(59)  [nb(n)(1 — F(s))/r(sIF)]*{r(sID,) — 1,(s|F,)} = Z,(s),

where Z, is given in Theorem 5.1, we can apply the last theorem to obtain a
(1 — «) large-sample probability band for r,(s|F') given by

. r(- 2 nb(n)(1 — F. (-]~ V2
by O [RCIE)E)] [ab()(1 - E()]

X{(28 logn) *A + an}.

'

Apparently, using the bootstrap part of Theorem 5.1, a frequentist
bootstrapper obtains the same bands.

REMARK 5.1. The results in this section hold for the bands restricted to a
finite interval. They can be extended to cover the case of a sequence of finite
intervals with widths tending to infinity at an appropriate rate; see Rice and
Rosenblatt (1976) for details.

6. Proofs. We proceed to prove Theorem 2.1. The proof given here is based
on the strong approximation method developed by Komlos, Major and Tusnady
(1975). Following Brillinger (1969), we first establish a series of lemmas which
will imply the main results. The first lemma extends a part of the Chung-
Smirnov LIL law [Csorgd and Révész (1981)] from a continuous F, to an
arbitrary one and is well known. The proof is inserted for completeness. Denote
the empirical distribution function of U, U,,..., U, by G,.

LEMMA 6.1.

(6.1) limsupsupn!/?|F,(x) — Fy(x)|/(2loglogn)* <1 a.s.[F,].
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PROOF. Let F; ! be the left-continuous inverse of F; defined by Fy '(s) =
inf{x; s < Fy(x)}, 0 <s <1. Denote the empirical distribution function of
Fy YUy, ..., Fy(U,), putting mass n~' on each F; '(U), by H,. Evidently,
Z{H,; n>1} = £{F,; n>1}. Next, H(x) = G,(Fy(x)) for each v and each x
implies
(6.2) sup|H,(x) — Fyx)| = SuplGn(F(x)) Fyx)| < SupllG (s) —sl.

An application of the Chung—Smirnov LIL law implies that (6.1) holds if F, is
replaced by H,, and hence the result. O

LEMMA 6.2. Let K(s, t) be a Kiefer process. Then
(6.3)  sup|K(F,(x),n) - K(Fy(x),n)|=0(n"%(n)) a.s.[P].

Proor. This result follows from Lemma 6.1 and Theorem 1.15.2 in Csorgo
and Révész (1981), which provides a Holder condition for a Kiefer process.
The arguments are standard [see page 146 in Csorgé and Révész (1981)] and
are omitted. O

LEMMA 6.3. There exists a Kiefer process K(s, t) that is independent of X
such that
(6.4)  supld,(x) — n"2K(F,(x),n)| = 0(ln)) a.s.[P],
X

(6.5) sup|d*(x) - n"V2K(F,(x),n)| = O(n"**log’n) a.s.[P]

and
(6.6) sup |d,,(x) — n"Y2K(F,(x),n)| = O(i(n)) a.s.[P].

PrROOF. Define a,(s) = n**G,(s) — s}, 0 <s <1. The KMT inequality
[Theorem 4 in Komlés, Major and Tusnady (1975)] implies the existence of a
Kiefer process K(s, t) such that

(6.7) sup |a,(s) —n"V?K(s,n)|= O(n"*log’n) as.[P].

0<s<1

We prove (6.5) first. Note that for this K(s, ),
sup|d*(x) — n"V2K(F,(x), n)]

sup|n/%{(G,(F,(x)) — F(x)} — n"2K(F,(x), n)|
(6.8) *

A

sup |n/%G,(s) — s} — n"V?K(s,n)|

O0<s<1
= 0(n"%log’n) as.[P],
where the first equality follows from F *(x) = G,(F,(x)) for each w and each x



372 A Y.LO

and the last equality is by (6.7). Next, note that
sup|d,(x) — n"VIK(F(x), n)|
x

< sup |nVYU, ,_, —j/n} — n**K(j/n,n)|
1<j<n

< sup |nV2{U, ,_, —Jj/(n—1)} - n"Y2K(j/n,n)|
1<j<n

+(n—1)""nl2

69) < sup n/3{U;,,.,—j/(n-1))

l1<j<n-1

~(n-1)"'K(j/(n-1),n - 1)

+ sup '(n - 1) 'n2K(j/(n-1),n - 1) — n"Y2K(j/n, n)l

1<j<n-1
+(n—-1)"'n12
=A,+ B, + (n—1)"'n2
It remains to bound A, and B, appropriately.
A,<2 sup |a, (U, ) - (n=1)"V’K(U,, ,,n-1)|

l<j<n-1
+2(n-1)"" sup K(Uj:n_l,n——l)—K( / ,n—l)l
1<j<n—1 n—1
6.10 -
(6.10) <2 sup |an_l(s)—(n—1) l/2K(s,n—1)|
0<s<1
+2(n-1)""? sup |K(s,n~1) - K(G,_,(s),n—1)]
0<s<1

=0(l(n)) as.[P],

where the last equality follows from (6.7) and Lemma 6.2.
Next we bound B,.

B,<2(n-1)"" sup |K(j/(n-1),n~1)~K(j/n,n~1)

1<j<n-1
+2(n—-1)""* sup |K(j/n,n)—K(j/n,n—1)
(6.11) 1<j<n—1
+(n-1)"n""2 sup |K(j/n,n)|
l1<j<n-1

= B,, + By, + B,,.
‘ éirst, B;, < (n—1)"'n"Y2sup, ., .,|K(s, n)] = O((n)) as. [P] by the LIL

3n =
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law for a Kiefer process. Next,
B,,<2(n—-1)""? sup |K(s,n) — K(s,n— 1) = O(l(n)) as.[P].
0<s<1

Finally, B,, = O({(n)) as. [P] by the Hoélder condition [Theorem 1.15.2 in
Cso6rgd and Révész (1981)] for a Kiefer process.
Statement (6.6) follows from (6.4) since

(6.12) S\ipldan(x) — d,(x)] < [p(e0)n™?] /[1(e0) + 8,].

It remains to note that the K (s, t) process is defined on the sequence {U;} and
hence can be chosen to be independent of X if (£, %) is rich enough. O

LEMMA 6.4. There exists a Kiefer process K(s, t) that is independent of X
such that

(6.13) sup|d,(x) — n"Y2K(Fy(x),n)| = O(l(n)) a.s.[P]
and :
(6.14) (6.13) remains valid if d,, is replaced by d * or d,,,,.

Proor. Note that
sup|d,(x) — n" VK (Fyx), n)|

< sup|d,(x) — n"V2K(F,(x), n)|
+n""2sup|K(F,(x), n) — K(Fy(x), n)|.

Lemma 6.2 and (6.4) of Lemma 6.3 imply (6.13). Similarly, Lemma 6.2 and (6.5)
and (6.6) of Lemma 6.3 give (6.14) O

Proor oF THEOREM 2.1. Apply Fubini’s theorem to Lemma 6.4. O

PROOF OF COROLLARY 2.1. Let v, = n'/*{F, — F,}. Finkelstein’s theorem [as
extended by Richter (1973) for an arbitrary F,] states that with Fj-probability
one {y,; n > 1} is relatively compact with respect to the supremum distance on
(— o0, 00) with limit points {A(Fy(+)); A € K}. By the extended KMT theorem
[Remark 4.4.3 in Cs6rg6 and Révész (1981)],

(6.15) sup|y,(x) — n"V2K(Fy(x),n)| = O(n"?log?n) as.[F],

for some Kiefer process K(s,t), implying that {K(F,, n)/(2nloglogn)/?
n > 1} is almost surely relatively compact with respect to the supremum
distance with limit points {A(Fy(-)); h € K}. The conclusion then follows from
Theorem 2.1. O
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ProOF OF LEMMA 5.1. Since (logn)/?sup,_, 1|E[ f(s|F,)] — fo(s) = 0
(this result follows immediately from elementary analysis), it suffices to show
that (lOg n)l/zsuPOSS sllfn(len) - E[ fn(SIFn)]I —0as. [FO]

Denote n~'/%log?n by r(n). Let K(s,t) be the Kiefer process given by
Theorem 4 in Komlés, Major and Tusnady (1975). The integration by parts and
the assumption Al [in Bickel and Rosenblatt (1973)] can be applied to give
fa(sIF,) — E[ f.(s|F,)]

sup

0<s<1

(6.16) —[b(n)n] " fw((s - x)/b(n))d{K(Fyx), n)}.

=0(r(n)b(n) 'n"%) as.[F,].
It suffices to show that a.s. [ Fj]

L, = (logn)"?[b(n)n] " sup

(6.17) 0=s<1 fw(z—(:t—;)d{K(E’(x)’ n)}’

- 0.

However, the last statement follows from

(618) L, < (logn)”*[b(n)n] ™" sup |K(s,n)|flw()|dy~0 as.[F],

0<s<1

by the law of the iterated logarithm for a Kiefer processif 0 <8 < . O
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