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Latent variable models represent the joint distribution of observable
variables in terms of a simple structure involving unobserved or latent
variables, usually assuming the conditional independence of the observ-
able variables given the latent variables. These models play an important role
in educational measurement and psychometrics, in sociology and in popula-
tion genetics, and are implicit in some work on systems reliability. We study
a broad class of latent variable models, namely the monotone unidimensional
models, in which the latent variable is a scalar, the observable variables are
conditionally independent given the latent variable and the conditional
distribution of the observables given the latent variable is stochastically
increasing in the latent variable. All models in this class imply a new strong
form of positive dependence among the observable variables, namely condi-
tional (positive) association. This positive dependence condition may be used
to test whether any model in this class can provide an adequate fit'to
observed data. Various applications, generalizations and a numerical example
are discussed.

1. Introduction. Latent variable models for multivariate distributions arise
in a wide variety of applications. Examples include: factor analysis models for
the multivariate normal (e.g., Lawley and Maxwell, 1971), binary response
models for dichotomously scored (1 = correct, 0 = incorrect) exam questions
(e.g., Rasch, 1960, Birnbaum, 1968, Bock and Lieberman, 1970, Goldstein, 1980,
Lord, 1980, Bartholomew, 1980, Tjur, 1982 and Cressie and Holland, 1983), latent
trait models for graded responses (Samejima, 1969 and Andersen, 1980), factor
analytic models under exponential family distributions (Bartholomew, 1984),
latent structure models for discrete data (e.g., Goodman, 1974) and certain
genetic models relating (observable) phenotypes to (latent or unobservable)
genotypes (e.g., Crow and Kimura, 1970 and Elandt-Johnson, 1971).

All of these latent variable models involve an observable (or manifest) random
vector

(1.1) X=(X,..., X))

and an unobservable (or latent) variable U, which may be either unidimensional
or vector valued. We show that certain general classes of latent variable models
imply that the manifest variables {X;} must exhibit strong forms of positive
association. This result often leads to s1mple tests of the goodness-of-fit of classes
of latent variable models. Our strongest results concern one-dimensional
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monotone latent variable models (defined in Section 2.2) and may be used to test
the hypothesis that the observable distribution of X may be represented by a
unidimensional latent variable model—i.e., informally, to test for the existence
of a one-dimensional latent variable U that underlies a set of data.

The paper is organized as follows. Section 2 defines various classes of latent
variable models. Section 3 reviews the relevant notions of positive association
needed in this paper. Section 4 gives our main results on the types of positive
association that must obtain among the manifest variables for various types of
latent variable models. In Section 5 we consider the case of dichotomous
manifest variables of special relevance to item response models used in educa-
tional tests. Section 6 gives both theoretical and practical examples to illustrate
the results.

2. Latent variable models. In any latent variable model, the manifest
variables, X = (X,..., X)), and the latent variable, U, are assumed to have a
joint distribution over a sample space (or population). The manifest variables,
which are real or integer valued, can be observed directly while the latent
variable is unobserable. In general, U may be either a vector or a scalar;
however, when we restrict attention to a scalar latent variable, we will allow the
notation to emphasize the restriction by writing U in place of U.

In this section, we shall discuss several general classes of latent variable
models defined by the conditions that the joint distribution of (X, U) is assumed
to satisfy. Our purpose here is to give a precise definition of the models that
concern us.

2.1. Latent conditional independence. A basic condition on (X, U) is that of
latent conditional independence. (In item response theory, this condition is
called local independence; e.g., Lord, 1980.) The conditional distribution func-
tion of X given U is given by

(2.1) F(x,,...,x,u) = P(X; < xp,..., X, < x,|JU = u),
and the condition of latent conditional independence states that X,..., X, are
conditionally independent given U or
J
(2.2) F(xy,...,x,u) = 1_[1F}(xj|u)
j=
for all x,...,x, and u.

In (2.2) F{(x,|lu) is the conditional distribution function of X ; given U = u,
ie.,

(2.3) F(xu) = P(X; < x,JU = u).

A variable U for which latent conditional independence holds is often said to
completely “explain” the association structure between the manifest variables,
X,,..., X;. Presumably, the sense in which U “explains” this association is that,
given the value of U, there is no association between the X ’s. While this notion
of a “latent explanation” for observed association has a long history, by itself
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latent conditional independence is a vacuous assumption as the following theo-
rem illustrates.

THEOREM 1 (Suppes and Zanotti, 1981). If X has only a finite number of
possible values then there always exists a one-dimensional latent random vari-
able U such that (X, U) satisfies latent conditional independence.

The proof of Theorem 1 when X is a 0/1 vector is given in Suppes and Zanotti
(1981) and it is easily generalized to the discrete case covered by Theorem 1. Any
continuous distribution on RY may be approximated arbitrarily well by a
discrete distribution of R”7, and Theorem 1 applies to each such discrete ap-
proximation. Furthermore, in Theorem 1, U is not unique. In practical terms,
latent conditional independence taken alone is neither a mathematical assump-
tion—since for some U it is, in effect, always satisfied—nor a scientific hypothe-
sis—since it places no testable restrictions on the behavior of observable data.
These considerations emphasize the importance of other conditions in addition
to latent conditional independence. Conditions such as linearity, monotonicity or
functional form are not incidental conveniences, but rather they are the features
of latent variable models that give them testable consequences in observed data.
In Section 2.2, we discuss an important class of such conditions.

An interesting open question concerns the degree of smoothness or regularity
that can be assumed for the conditional distributions Fj(x;u) in Theorem 1
(regarded as functions of u). The construction given by Suppes and Zanotti is
not smooth at all but the nonunianeness of U suggests that smooth representa-
tions may be possible.

2.2. Latent monotonicity. We say that a latent variable model satisfies the
condition of latent monotonicity if the functions

1 — F(xlu) = P(X;> x|U = u)

are all nondecreasing functions of u for all values of x and for j =1,..., J. In
case U is a vector, latent monotonicity requires that 1 — F(x|u) be nondecreas-
ing in each coordinate of u.

The idea behind latent monotonicity is that higher values of u imply sto-
chastically larger distributions of X, for each j; ie, X|U =us stochastically
larger than X |U =w’ifu>u'. When X;isa0/1 Vanable latent monotonicity
is equivalent to the requirement that the item characteristic curve (this is the
term used in the psychometric literature but, in the case of a multidimensional
u, r;(u) defines a surface or hypersurface rather than a curve),

(2.4) r(a) = P(X;=1U = u),

be nondecreasing in u, so that a higher value of u implies a higher probability
that X; =1 for each j = 1,2,. , J. Latent monotonicity is a natural condition
when U is a scalar intended to represent an “ability” or an “attitude” that is
measured by the J dichotomously scored (1 = correct or affirmative, 0 = incorrect
or negative) exam or questionnaire items. Higher values of U are then associated



1526 P. W. HOLLAND AND P. R. ROSENBAUM

with a greater chance of a correct or affirmative response to each item. Holland
(1981) defines and studies a weaker type of monotonicity condition for the case
of binary X’s that is useful even when latent conditional independence does not
hold.

If a latent variable model satisfies both latent conditional independence and
latent monotonicity, then we shall call it a monotone latent variable model. The
following lemma states that, for a monotone latent variable model, not only are
the probabilities P(X; > x|U = u) nondecreasing functions of each coordinate of
u, but so are the conditional expectations E(g(X)|U = u) for all nondecreasing
functions of X.

LEmMMA 2 (Kamae, Krengel and O’Brien, 1977).  If (X, U) satisfies the condi-
tions of latent conditional independence and latent monotonicity, then for any
bounded function g(x) that is nondecreasing in each coordinate, the conditional
expectation

E(g(X)|U = u)

is nondecreasing in each coordinate of .

The proof of this lemma is given in several places. It is a special case of a
general result of Kamae, Krengel and O’Brien (1977, Proposition 1). A straight-
forward proof is given by Ahmed, Leon and Proschan (1981, Lemma 3.3) and, in
the case of binary X, by Rosenbaum (1984, Lemma 1).

Another interpretation of Lemma 2 is in terms of the stochastic ordering of
distributions. For two random vectors X and X’ of equal dimension, the distribu-
tion of X is said to be stochastically larger than that of X’ if E(g(X)) > E(g(X"))
for all bounded functions g(-) that are nondecreasing in each coordinate (e.g.,
Lehmann, 1955, Marshall and Olkin, 1979, Tong, 1980, Section 6.3, and Eaton,
1982, Section 3). The conclusion of Lemma 2 says that if each coordinate of u is
at least as large as the corresponding coordinate of w’/, then the conditional
distribution of X given U = u is stochastically larger than that of X given
U = u’. Thus, for monotone latent variable models, not only are the distribu-
tions of each coordinate of X stochastically ordered by the coordinatewise partial
ordering of the vector u, but the multivariate distributions of X are stochasti-
cally ordered by u.

2.3. Latent unidimensionality. 1If, in a monotone latent variable model, U is
a scalar, then we call the model a unidimensional monotone latent variable
model. Unidimensional models are of special interest for several reasons. First,
they are often the most parsimonious of the latent variable models, usually
involving the fewest parameters and leading to the simplest descriptions. Second,
as we show in Section 4, unidimensional models lead to stronger forms of positive
dependence than do multidimensional models. Third, a scalar U easily lends
itself to the interpretation as an underlying “true” quantity that is fallibly
measured by the observable responses in X—e.g., the true “ability” that is
fallibly measured by the exam responses X. Though suggestive, this interpreta-
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tion is often justly criticized. Rubin (1982), for example, has argued that it is at
least confusing to say that the observable X is somehow less “true” than the
unobservable and hypothetical U.

2.4. A stronger type of latent monotonicity. When X |U has a density or a
discrete mass function, f/(x|u), and U is unidimensional, there is a stronger form
of latent monotonicity that we will use later. The latent variable model is latent
TP, if for each j

25) det[ f(xlu)  fi(xlu) ] o

fi(x'lu)  f(x'|u’)

for all x > x’ and u > u’.
If f; is strictly positive (2.5) can be expressed in an “odds ratio” form, i.e.,

Bet) f(ele)
fj(x/‘u) fj(xlu,) B

(2.6)

for all x’ > x, u’ > u.

The TP, condition (2.5) arises in various areas of probability and statistics
(Karlin, 1968), and its multivariate generalization (Karlin and Rinott, 1980) will
play an important role in Sections 3 and 4.

It is well known that (2.5) implies latent monotonicity when U is one-dimen-
sional, and that the converse is false (e.g., Barlow and Proschan, 1975, Section
5.4). Hence, latent TP, is a stronger form of latent monotonicity. However, when
the X; are binary, latent TP, and latent monotonicity are equivalent—a fact we
use in Section 5.

2.5. Examples of monotone latent variable models. 'The following examples
of monotone latent variable models will be discussed again in Section 6.

(i) Item response theory in educational testing and psychometrics. In an
examination consisting of J dichotomously scored questions or items, let X, = 1
if item J is correct, and X, = 0 if item J is incorrect. Write r,(u) for the item
characteristic curve P(X; = 1|U = u)—i.e., for the probability of a correct (or
right) response to item j given the value of a scalar latent variable U. Rasch
(1960) assumes that the item characteristic curve has the form ry(u) = 1/(1 +
exp(a; — u)) with parameter a;, whereas Lord (1980, 1982) assumes r(u) = v, +
(1 —v;)/{1 + exp(a; — B;u)} with parameters 0 < y; <1, a; real and B; > 0.
Latent monotonicity is the condition that higher values of U—the latent
“ability” —imply a higher probability of correctly responding to each item. Item
response models represent the joint distribution of the item responses X in a
population of examinees as

J
(2.7) P(X =x) = f}:[lrj.(u)xj{l () (),

where F{(-) is the distribution of “ability” in the population. Expression (2.7) is
the condition of latent conditional independence (2.2).
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(i) Systems reliability theory. In systems reliability theory (e.g., Barlow and
Proschan, 1975), the X;’s indicate whether or not the jth of </ components of a
system is functioning, with X; = 1 if the component is functioning and X; = 0 if
the component has failed. In this case, a monotone latent variable model might
attempt to describe the pattern of association in component failures X with
reference to certain latent stresses that have detrimental effects on all compo-
nents; here, higher levels of stress are indicated by lower values of U.

(iii) Factor analysis for multivariate normal X. A linear factor analysis
model (Lawley and Maxwell, 1971) for continuous X involves the assumption
that

(2.8) X = AU + e,

where U is a multivariate normal vector of latent factors, e is a </-dimensional
vector of J mutually independent normal random deviates which are also
independent of U, and A is a fixed matrix of factor loadings. When all of the
factor loadings are nonnegative, (2.8) is a monotone latent variable model; when,
in addition, U is a scalar and A > 0 is a vector, then (2.8) is a unidimensional
monotone latent variable model. If U is a scalar and A is a vector of 1’s, then
(2.8) reduces to the “true score theory” for composite exams (Lord and Novick,
1968, Section 4). More generally, a nonlinear unifactor model of the form

(2.9) X=£fU)+e

for scalar U, independent deviations e, and monotone increasing vector valued
function f(-), is a unidimensional monotone latent variable model.

(iv) Population genetics: segregation analysis. For convenience, consider
sibships of fixed size J—i.e., J offspring of common parents. Let X, j=
1,2,..., J, indicate whether (X; = 1) or not (X; = 0) the jth sib has a specific
(observable) phenotype which is completely determined by the presence (AA or
Aa) or absence (aa) of a single dominant allele (A). As in Table 1, let the scalar U
be the conditional probability of the trait given parents’ unobservable genotypes;
Le., U = P(X; = 1|Parent’s Genotypes). Then the X;’s are conditionally inde-
pendent given U and, with this coding of the genotype, satisfy a monotone
unidimensional latent variable model, both in the population as a whole, and in
any subpopulation defined by the parents phenotype. Indeed, the distribution of
X is exchangeable (Kingman, 1978):

(2.10) P(X =x) = Yux{1 — u}? " P(U = u).

While Table 1 is confined to one of the simplest models of inheritance,
condition (2.10) holds quite generally for sibships, providing only that an off-
spring’s manifest phenotype depends only on its parents genotypes: the unidi-
mensional latent variable U is the “segregation parameter” (cf. Elandt-Johnson,
1971, Chapters 17 and 18).

(v) Latent class models for dichotomous responses. In latent class models
for dichotomous responses, the binary manifest variables X = (X, X,,..., X))
are assumed to be conditionally independent within each latent class, that is,
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TABLE 1
A unidimensional monotone latent variable model for traits in sibships

Parents’ Parents’
Phenotypes Genotypes Probability of the Trait Given
(Observable) (Unobservable) Parents’ Genotypes

Mother Father Mother Father U=PX; =1|U) for Jj=12,...,J

A? A? AA AA 1
A? A? AA Aa 1
A? aa AA aa 1
A? A? Aa AA 1
A? A? Aa Aa 3/4
A? aa Aa aa 1/2
aa A? aa AA 1/2
aa A? aa Aa 1/2
aa aa aa aa 0

conditionally independent given a discrete nominal variable U takiﬁg values in
an unordered finite set S (e.g., Goodman, 1974), so

(2.11) PX=x)= ) HY {1 =y} P(U =u)

ueS i=1

with 0 <y,, <1 for all u€ S and i=1,2,..., J. Such a variable U always
exists if we perm1t S to contain 27 elements. If S contains only two elements,
then we may always number them 0 and 1, and then relabel some coordinates of
X by replacing some X; by 1 — X, to obtain a unidimensional monotone latent
variable model.

3. Some types of positive multivariate association. In this section we
first review three important types of positive association that apply to multi-
variate distributions. Since we will be applying these ideas to the manifest
variables of a latent variable model, random vectors will be denoted by X =
(X,,..., X,). After this review, we define three parallel but stronger types of
posmve association that will be used in our discussion of unidimensional mono-
tone latent variable models in Section 4.

3.1. A review of three types of positive multivariate association. KEsary,
Proschan and Walkup (1967) define the notion of associated random variables as
follows.

DEFINITION 3.1. Associated random variables (Esary, Proschan and Walkup,
1967). The distribution of a random vector X is ( positively) associated (A) if

(3.1) Cov( f(X), 8(X)) = 0
for all nondecreasing, bounded functions, f(-) and g(-).
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When Definition 3.1 holds for the distribution of X, then X is said to be
associated.

In Definition 3.1, f(x) and g(x) are nondecreasing in each of their </ coordi-
nates. It is well known that if X is one-dimensional then X is associated, and if
the coordinates of X are independent then X is associated. See Esary, Proschan
and Walkup (1967) for proofs of these and other properties of associated random
variables.

Karlin and Rinott (1980) define a second type of multivariate positive associa-
tion, MTP,, for a random vector X with a density or discrete mass function
which we shall denote by p(x). For the history of this type of positive associa-
tion, see Karlin and Rinott (1980) and the references given there. For two
J-vectors x and x* let max(x, x*) and min(x,x*) be defined by

max(x, x*) = (max(x,, x¥),...,max(x , x%))
and
(3.2) min(x, x*) = (min(x,, x§),...,min(x;, x%)).

Hence, max(x, x*) and min(x,x*) are the coordinatewise max and min of the
two vectors, x and x*.

DeFINITION 3.2. MTP, (Karlin and Rinott, 1980). The distribution of a
random vector X is multivariate totally positive of order 2 (MTP,) if X has a
density or a mass function p(x) such that for all x,x*,

(3.3) p(max(x,x*)) p(min(x, x*)) > p(x)p(x*).

If X is two-dimensional, then MTP, and TP, defined in Section 2.4 are
equivalent. Examples of MTP, random vectors X include:

(i) independent variables,

(i) multivariate normal X in which the partial correlation between each pair
of coordinates of X given the remaining coordinates is positive (Karlin and
Rinott, 1983, Fact 3 and Theorem 3),

(iii) binary variables with an attractive interaction potential (Preston, 1974,
Proposition 8.1, page 60),

(iv) binary variables that satisfy a monotone unidimensional latent variable
model (Holland, 1981, Theorem 3).

Later, in Corollary 11 and the counterexample in Section 6.1, we strengthen
(iv) above; specifically, we show that all monotone unidimensional latent vari-
able models for binary X imply a form of positive dependence for X that is
strictly stronger than MTP,,.

In the statement of Theorem 7 in Section 4 we will need to observe that the
definition of MTP, in (3.3) makes no use of the fact that p(x) is a density and
can be applied to any nonnegative function of several variables. In Theorem 5 we
will apply it to the function p,(x,|u) regarded as a function of (x,, u).

The third type of positive association was defined by Joag-Dev (1983).
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DEeFINITION 3.3. SPOD (Joag-Dev, 1983). The distribution of a random
vector X is strongly positively orthant dependent (SPOD) if and only if the
following three conditions are satisfied for any set of constants c,,...,c,; and
any partition (B, B) of A = {1,..., J}:

() {X;>c, je A} 2 P{X;>¢c; j€ B)P{X;> ¢, j<€ B),

J =" J =" nd
(i) P(X;<c;, jEA} 2 P{X;<cj, je BYP(X;< ¢, j€ B},
(iii) P{X;> ¢, i€B; X;<c;, je B} _
< P(X,>c,i€B}P(X <c, j<B).

SPOD is a generalization to multivariate X of the concept of positive quadrant
dependence for bivariate X as discussed by Lehmann (1966). A characterization
of binary SPOD distributions in terms of latent variable models is given by
Holland (1981, Theorem 2).

The following theorem summarizes the well-known relationships between
these three types of positive dependence. The first implication of Theorem 3 is
given by Karlin and Rinott (1980, Corollary 4.1), and is related to the FKG
inequality (Fortuin, Kasteleyn and Ginibre, 1971). The second implication in
Theorem 3 is obvious.

THEOREM 3 (Karlin and Rinott, 1980). If a random vector X is MTP, then
X is associated, which in turn implies that X is SPOD.

The implications in Theorem 3 are strict in general; counterexamples to their
reversal appear in Esary, Proschan and Walkup (1967).

3.2. Three stronger forms of positive association. Rosenbaum (1984) defines
a stronger form of Definition 3.1, which we call conditionally associated random
variables. Parallel stronger forms of Definitions 3.2 and 3.3 are conditional MTP,
and conditional SPOD. It is these stronger forms of MTP,, association and
SPOD that are relevant to the study of unidimensional monotone latent variable
models.

The general form of each of these stronger “conditional” types of positive
association is the same. In each case we will consider all possible ways of
partitioning (and rearranging) the random vector X into two components which
we denote by

(3.4) X = (Y,Z).

Then the positive association condition is required to hold (almost surely) for the
conditional distribution of Y given any (measurable) function h(Z) of Z. We give
the formal definitions of CMTP,, CA and CSPOD now.

DEFINITION 3.4 (CA). The distribution of a random vector X is conditionally
associated if, for any partition (Y,Z) of X and any function h(Z), the condi-
tional distribution of Y given h(Z) is associated.
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CMTP,

l L

CSPOD

e

SPOD

Fic. 1. Summary of interrelationships among six definitions of positive multivariate association.

DEFINITION 3.5 (CMTP,). The distribution of a random vector X is condi-
tionally MTP, if, for any partition (Y,Z) of X and any function h(Z), the
conditional distribution of Y given h(Z) is MTP,.

DEFINITION 3.6 (CSPOD). The distribution of a random vector X is condi-
tionally SPOD if, for any partition (Y,Z) of X and any function h(Z), the
conditional distribution of Y given h(Z) is SPOD.

It is evident that Theorem 3 implies a corresponding theorem which orders
the three “conditional” positive association definitions. Again, the implications
are strict. It is stated as Theorem 4 which follows.

THEOREM 4. If a random vector X is CMTP, then X is CA which in turn
implies that X is CSPOD.

Figure 1 summarizes the interrelationships among the various types of posi-
tive dependence. MTP, and CA are not comparable in the sense that neither
implies the other in general.

In Section 5, we will show that in the special case where X is a 1/0 random
vector the three conditions, CMTP,, CA and CSPOD, are all equivalent. No such
equivalence holds for MTP,, A or SPOD in the J-dimensional, binary case.

4. Positive association in monotone latent variable models. The prin-
cipal conclusion of this section is that multidimensional latent variable models
lead to positive association for X when U is itself positively associated; however,
a unidimensional model leads to (stronger) forms of positive conditional
association for X. Our strongest, and probably most useful, results concern
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unidimensional, monotone latent variable models. For this reason we discuss the
unidimensional case first.

4.1. Conditional association and unidimensionality. Our first result concerns
the strongest of the positive association conditions, CMTP,. It is given in the
following theorem.

THEOREM 5. If a latent variable model (X,U) satisfies the conditions of
latent conditional independence and latent unidimensionality and, in addition,
is latent TP,, then the distribution of X is CMTP,.

Proor. Let (Y,Z) be any partition of X, let h(Z) be arbitrary, let the
conditional density or mass function of Y given h(Z) = t be denoted by p(y|t),
and let o,(u) denote the conditional probability measure of the scalar U given
h(Z) = t. Then by latent conditional independence,

(4.1) p(ylt) = ffjlf,( ylu)odu),

where f,( y;lu) is the conditional density or mass function of Y; given U = u. Now
ITf(ylu) is MTP, in (Y, U) by (2.5) and the fact that products of TP, functions
are MTP, (e.g., Karlin and Rinott, 1980, Proposition 3.3). That p(y|t) is MTP,
for fixed t follows immediately from (4.1) and Proposition 3.4 of Karlin and
Rinott (1980), with their g(-) identically equal to 1. O

The next theorem, which applies to a larger class of latent variable models,
gives the result for CA.

THEOREM 6. If a latent variable model (X, U) satisfies the conditions of
latent conditional independence and latent unidimensionality, and, in addition,
is monotone then the distribution of X is CA.

Proor. The proof is the same as Rosenbaum’s (1984) proof of his Theorem 1.
Since it is brief and provides insight we repeat it here. We need to show that

E(g./(Y)g,(Y)h(Z)) = E(&,(Y)h(Z))E(g,(Y)h(Z)),

where (Y, Z) is any partition of X, h(Z) is arbitrary, and g,(+), g,(-) are bounded
and nondecreasing. The proof uses the two facts that (i) the coordinates of Y are
independent given U and are therefore associated given U, and (ii) U is a scalar
and is therefore associated. Clearly we have

E(gl(Y)gZ(Y)lh(Z)) = E(E[gl(Y)gz(Y)|U]|h(Z)),

from latent conditional independence of Y and Z given U. Therefore,

E(g(Y)g,(Y)h(Z)) > E(E[g(Y)|U] E[g,(Y)|U]Ih(Z)),

from the fact that the coordinates of Y are independent given U and
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independent random variables are associated. Thus,
E(g(Y)g:(Y)h(2)) = E(E[g,(Y)IU](Z))E(E[&,(Y)IU]h(Z)),

from Lemma 2 and the fact that U is a scalar and scalar random variables are
associated. Hence

E(g(Y)gy(Y)h(Z)) = E(g,(Y)h(Z))E(85(Y)h(Z)),

from latent conditional independence and the definition of conditional expec-
tation. O

Theorems 5 and 6 show that unidimensional monotone latent variable models
place strong and testable conditions on the distribution of the observable data,
X. (See Sections 6.2 and 6.3 for examples.) An interesting open question is
whether every observable distribution of X that is either CMTP, or CA can be
given a monotone unidimensional latent variable representation. In the case of
binary X, Holland (1981) has shown that the weaker form of positive depen-
dence, SPOD, does imply that a latent variable representation exists for X
within a larger class of latent variable models. In this larger class of unidimen-
sional latent variable models, conditional independence is replaced by a more
general condition called “local nonnegative dependence.”

4.2. Positive association and multidimensional latent variables. If U is
allowed to be a vector of arbitrary dimension with an arbitrary distribution
F(u), satisfying no restrictions, then any multivariate random vector X has a
representation as a monotone latent variable model satisfying latent conditional
independence. A referee pointed out that this is easily seen by taking U to be X
itself. In contrast, when the latent vector U is restricted to be MTP, or
associated, then the observable distribution of X itself is restricted. This section
states two such results.

THEOREM 7 (Karlin and Rinott, 1980). If a latent variable model (X,U)
(i) satisfies the condition of latent conditional independence, (ii) has conditional
densities f{x,|u) that are MTP,, as functions of (x;,u), and if in addition (iii)
the distribution of U is MTP,, then the distribution of X is MTP,.

Proor. Follows from applying Proposition 3.4 of Karlin and Rinott (1980) to
the density of X|U as their f and the density of U as their g. O

The second result was proved by Jogdeo (1978).

THEOREM 8 (Jogdeo, 1978). If a latent variable model (X,U) satisfies the
conditions of (i) latent conditional independence and (ii) latent monotonicity and
if in addition (iii) the distribution of U is associated then the distribution of X
is associated.
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4.3. Unidimensionality amid multidimensionality. If U is of dimension two
or more, then it is possible that some subset of the coordinates of X depend only
on a single coordinate of U. This subset is “unidimensional,” although X as a
whole is not. Let (Y,Z) be a partition of X into two nonoverlapping sets of
coordinates, and suppose that (X, U) has a latent variable representation which
need not be monotone. Then Y is monotone and unidimensional if for each
coordinate Y; of Y

(4.2) P(Y; > y|U =u) = P(Y; > y|U, = u,)

is nondecreasing in u, for each y, where U, is the first coordinate of U. The
following extension of Theorem 6 may be proved by a parallel argument.

THEOREM 9. If a multidimensional latent variable model for (X, U) satisfies
latent conditional independence, and if the subset Y of coordinates of X is
monotone and unidimensional in the sense that (4.2) holds, then the conditional
dzstrzbutzon of Y given h(Z) is CA for any choice of the function h( ), where

= (Y, 2).

Informally, Theorem 9 states that a monotone, unidimensional subset, Y, of
the coordinates of a multidimensional X exhibit conditional association in every
subpopulation defined by any function of the remaining coordinates of X.

5. The case of binary X. Our own work on latent variable models grows
out of the binary case, i.e., the X, are 0/1 variables. This is due to the wide
applicability of such models to data from educational tests. The results of
Section 4 have a simplicity in the binary case that we wish to emphasize in this
section.

In the binary case, the three conditions CMTP,, CA and SPOD are equiv-
alent. This is proved in the next theorem, whose conclusion is summarized in
Figure 2.

TueEOREM 10. If X is a binary random vector then the following three
conditions are equivalent:

(i) X is CMTP,,
(i) X is CA,
(iii) X is CSPOD.

ProoF. Because of Theorem 4 and Figure 1 it is sufficient to show that
CSPOD implies CMTP,. Select a partition (Y,Z) of X and a function h(-). We
need to show that CSPOD implies that for each fixed y,y*

P{Y = max(y,y*)}|h(Z)} P{Y = min(y,y*)h(Z)}
> P{Y = y|h(Z)} P(Y = y*/h(Z)}.

Partition and rearrange Y into (W,, W;, W,) where (a) W, contains those coordi-
nates of Y for which y, = 0 and y* = 1, (b) W, contains those coordinates of Y

(5.1)
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cspop & ca <> ourp,

MTP,

SPOD

F16. 2. The case of binary X: interrelationships among definitions of positive assoctation.

with y, =1, y* =0 and (c) W, contains those coordinates of Y with y, = y*.
Assuming CSPOD, it follows that

P{W, =1, W, = 1|W,,h(Z)} P{W, = 0, W, = 0|W,,h(Z)}
> P{W,=0,W, = 1|W,,h(Z) }P{W, =1, W, = 0|W,,h(Z)},
which implies (5.1). O

If we now apply Theorem 5 or 6 to the binary case, we obtain the following
corollary which gives our strongest result for testing binary response models for
latent unidimensionality.

CoroLLARY 11. If X is binary and (X, U) is a unidimensional, monotone
latent variable model then the distribution of X is CSPOD or equivalently CA or
equivalently CMTP,.

In a way that is quite different from Corollary 11, Stout (1986) also develops
necessary conditions for unidimensional, monotone latent variable models when
X is binary.
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6. Examples.

6.1. A Counterexample: MTP, does not imply CSPOD, CA or CMTP,.
Table 2 displays a distribution that is MTP, but does not satisfy the conditions
CSPOD, CA or CMTP,. An even simpler example of this phenomenon assigns
probability 1/4 to each of the four (X,, X,, X;, X,) vectors (1,1,1,1), (0,1,0,1),
(1,0,1,0) and (0,0,0,0), so that the conditional distribution of (X,, X,) given
X, + X, = 1 is perfectly negatively associated.

6.2. Some implications of positive conditional association for the examples of
Section 2.5.

(i) Item response theory. By either Theorem 5 or Theorem 6, if a unidimen-
sional monotone item response model is to describe the joint distribution of </
dichotomously scored exam items, then every pair of items (X;, X;) must have a
nonnegative (population) correlation. But not only must these first-order correla-
tions be nonnegative, many conditioral correlations must be nonnegative as well.
For example, there must be a nonnegative correlation between X; and X ; among

TABLE 2
A counterexample: a distribution that is MTP,
but not CPSPOD, CA or CMTP,

a. The joint MTP, distribution of four dichotomous variables
(to obtain probabilities, divide each count by 288)

X,

X, X, X, 1 0
1 1 1 27 27
1 1 0 9 9
1 0 1 12 12
1 0 0 24 24
0 1 1 18 36
0 1 0 6 12
0 0 1 8 16
0 0 0 16 32

b. The conditional distribution of (X, X,) given X, + X, =1
(to obtain probabilities, divide each count by 144)

X4
1 0
1 30 48
X,
0 30 36
odderatia . X3 3
_ = — = — <
sTato = S48 a
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all examinees with a given total score on the remaining items; i.e.,

(6.1) COV(XL,XA Y Xk)zo.

k+i,j

Equivalently, the (population) odds ratio must be at least 1 in each 2 X 2
subtable of the 2 X 2 X (J — 1) contingency table recording the values of X, by
X, by X, .; i X, This observation has been used in Rosenbaum (1984) to test the
unidimensionality /conditional-independence /monotonicity assumptions of item
response theory in the College Board’s 1982 Advanced Placement Examination
in Biology; see also Holland (1981) for closely related procedures. Rosenbaum
(1985) develops a related method for judging whether the item response patterns
in two populations of examinees can be represented by a monotone unidimen-
sional model with a higher distribution of U in one population.

(ii) Systems reliability theory. A pattern of association among component
failures that is commonly used in deriving bounds on the reliability of a system
(Esary and Proschan, 1970) does result from a monotone latent variable model of
the type described here. Specifically, if (2.7) holds for a vector of latent stresses
whose distribution is associated and with each r,(u) nondecreasing in U, then the
component failures are themselves associated (i.e., Theorem 8). When the latent
stress is unidimensional so that Theorems 5 and 6 apply, similar bounds may
often be obtained for system reliability conditional on the state of certain
components or subsystems.

(iii) Linear factor analysis for multivariate normal X. Under the unidimen-
sional monotone linear factor model—i.e., under (2.8) with scalar U and A >
0—all partial correlations between pairs of coordinates of X given any set of
linear functions of the remaining coordinates are nonnegative. This condition
will imply that all first-order correlations among the coordinates of X must be
nonnegative, but it is a much stronger condition than this. Violations of these
conditions indicate that the monotone unidimensional model does not hold.

(iv) Population genetics: segregation analysis. Since many genetic disorders
are comparatively rare, it is common in studies of human sibships to examine
only sibships containing affected individuals. Various methods of obtaining such
sibships—so-called “methods of ascertainment” —are common (e.g., Levitan and
Montagu, 1977, Chapter 10 and Elandt-Johnson, 1971, Chapters 17 and 18). One
such method is single selection: all children in a population containing at most
one sib from each sibship (such as the fifth grade of a particular school system)
are screened for the trait (or phenotype); whenever the trait is found, the entire
sibship of the affected child is added to the study. In this formulation, there is at
most a single identifiable child in each sibship who can lead to inclusion of the
sibship; this child is called the proband or index case. Let X, indicate the
presence (1) or absence (0) of the trait in the proband, and let X,,..., X,
indicate the presence or absence of the trait in the remaining children of the
sibship, arranged from youngest (X,) to oldest (X ). Ascertainment by single
selection is, in effect, sampling conditional on X, = 1. Our results in Section 4
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TABLE 3
A cross tabulation of sibships exhibiting positive partial
assoctation under single selection

Youngest Sib
Number of Other Excluding the Oldest Sib Excluding the
Sibs Affected Proband (X,) Proband (X))
J-1 X.1=1 X.l=0
Z X, =0 Xy=1 LA Mo
Jj=3 X, =0 N1 Moo
J-1 X,=1 X,=0
Z X =1 X, =1 nyy, Ry,
J=3 X, =0 Ror, oo
J-1 X,=1 X,=0
Z XJ=J—3 X, =1 Ry g-3 Ny, g-3
j=3 X,=0 nor,g-3 L

Notes: (a) Let m,,. = E(n,,.), where E(-) denotes expectation under (2.10).
(b) Positive dependence implies m,,, - my,, > my,, - my,;,. (¢) Symmetry implies
Mg = Myy,-

show that under the model (2.10)

(a) X is CMTP, in the population, and
(b) the distribution of X,, Xj,..., X, given that X, =1 is CMTP, in the
sample obtained by single selection.

Thus, single selection does not eliminate the strong positive dependence within
sibships. In particular, (2.10) implies nonnegative association (and symmetry) in
each of the 2 X 2 contingency tables in Table 3: a departure from nonnegative
association and symmetry would indicate a departure from a strictly genetic
model (2.10), perhaps indicating effects of:

(a) parental age of conception (e.g., Stene and Stene, 1979), possibly resulting in
asymmetry (e.g., my; > m,;),

(b) an exposure over a short time period of the population to an environmental
hazard affecting prenatal development, possibly resulting in few sibships
with both oldest and youngest affected (i.e., m,; - myy; < myy; - myy;), or

(c) in studies of behavioral traits, the effects of being an older or younger sib.

With sibships of randomly varying sizes—that is, with X’s of varying
dimensions, say J =3,...,M with P(J =j|X,, X,,..., X;) = P(J =j) for
J = i—we may concatenate the one table for J = 3, the two tables for J = 4, the
three tables for J = 5, etc., forming a single 2 X 2 X R table, in which each
2 X 2 slice is positively dependent and symmetric. Clearly, the above argument
does not require ordering (X,, X;,..., X,) by age within sibships; any order
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involving nongenetic factors may be used to test (2.10). Sibships would not have
randomly varying sizes if the manifestation of the trait reduced the chance of
having additional children.

(v) Latent class models for dichotomous responses. To obtain a unidi-
mensional monotone latent variable model from a latent class model with two
classes—i.e., a model with |S| = 2—the coordinates of X must be relabeled so
P(X;=1U=1) 2 P(X;=1|U = 0) for all ;. By Theorem 6, with a sufficiently
large sample, this relabeling may be carried out in practice even though U is
unobserved: simply label the X/’s so that the part-whole covariance,
cov( X, Y7 X)), is positive for all j. If no such relabeling exists, or if, with such a
relabeling, there are other violations of the positive dependence implied by
Theorems 5 and 6, then no latent class model with two classes can describe the
observable distribution of X. (Some ambiguity would result even in large samples
if the population part-whole covariance is exactly zero for some J, but this is not
a serious problem in the applications with which we are familiar.)

6.3. Do multiple choice items and an essay score measure a unidimensional
latent variable? As an illustration, we apply the results of Section 4 to a
practical example for which available methods are inadequate. There is, in
educational measurement, a debate concerning the use of essays in national
testing programs. On one side is the view that essays and multiple-choice items
measure different skills and abilities, that the ability to organize thoughts and
write about them cannot be tested using multiple choice items, and there is even
the fear in some circles that if testing programs stopped using essays, some
teachers would stop teaching students to write. Against this is the uneasiness of
individuals observing the operational aspects of scoring essays, who question the
reliability of the essay scores given by armies of part-time essay readers who
score tens of thousands of essays in a couple of weeks. Even the detailed scoring
instructions and training given to essay readers do not necessarily remove the
question of the reliability of essay grading.

The question, then, may be posed as follows: Do essays and multiple choice
items measure the same thing? Or, alternatively, must we use essays, despite
their operational difficulties, to measure certain abilities that are measured by
essays but not by multiple choice items? This question can be formalized by
asking whether, within some family of monotone latent variable models for both
item responses and essay scores, a unidimensional model provides an adequate
description of empirical distributions. If it does, then one would tend to question
the added value of measures that involve essays.

To illustrate our results within this context, we examined the joint distribu-
tions of responses to the 40 dichotomous multiple choice items (1 = correct,
0 = incorrect) on the population biology subscore of the College Board’s 1982
Advanced Placement Examination in Biology, together with the ordinal 15-
point-scale response to that exam’s essay #6, also on population biology. A total
of 11,533 examinees wrote essay #86. In this case, X = (X}, X,,..., X,;) where
X,, Xy,..., Xy are binary valued, X,, takes values in the set {1,2,...,15}, and
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11,533 observations on X are available. Although there are no widely used latent
variable models for combining essay and multiple-choice responses of this sort,
we may nonetheless check whether X violates the condition of conditional
association: if it does, then no monotone unidimensional latent variable model
could describe the data no matter what parametric form it takes. Monotonicity
is a natural condition to apply both to dichotomous multiple choice items and to
scores on the essay. The IRT models of Bock (1972) and Masters (1982) for
nominal and ordered responses can be applied to mixtures of essays and multiple
choice tests. However, these models assume specific parametric forms and there-
fore might be rejected in an empirical test because of the inadequacy of the
functional forms assumed rather than for lack of unidimensionality. Masters’
model is an example of one that is latent TP,. Bock’s model is not TP, unless the
item parameters are restricted. Samejima’s graded response model (Samejima,
1969) is a monotone model.

To this end, we constructed 120 contingency tables of dimensions 2 X 2 X 40,
recording for i=1,2,...,40 and j=4,6,8 the joint distribution of {X,,
[ X, <JLXiL) 1. X}, where [event A] denotes the indicator of the event A. If
X were conditionally associated, the population odds ratio in each 2 X 2 slice of
each of the 120 2 X 2 X 40 tables would be greater than or equal to one. For each
of the 120 tables, we calculated the Mantel-Haenszel weighted combination of
odds ratios (cf., Breslow, 1981), producing one combined odds ratio per table. Of
the 120 combined odds ratios, nine were less than one. Three of those nine had
individual p-values less than .1 in a test of the null hypothesis of positive
association, with p-values of 0.008, 0.03 and 0.007, for item i = 5 and cutpoints
J = 4,6,8, respectively. Given that 120 statistical tests have been performed, this
is rather marginal evidence that at most item 5 and the essay are not measuring
a unidimensional variable.

4

We then repeated this process for the ( ‘2’)= 780 pairs of items in the

population biology subscore, grouping by the total score on the remaining items;
i.e., we looked for negative partial associations in the 780 2 X 2 X 39 tables
recording {X;, X;,23%, .. ;X,}. A negative partial association among these
variables in the population would indicate that {X,, X,,..., X,,} is not condi-
tionally associated, and therefore that no monotone unidimensional latent vari-
able model could adequately describe the observable distribution of the item
responses { X;, X,,..., X,}. Here we found a number of negative partial associa-
tions, including five with p-values less than 0.000013 = 0.01,/780 and an ad-
ditional four with p-values below 0.000013 = 0.05/780. Using the Bonferroni
inequality (e.g., Miller, 1980, page 8), it is reasonable to judge a number of the
p-values to be surprisingly small, despite the large number of significance tests.
There is, then, rather strong evidence that the item responses themselves are not
unidimensional. Thus, this analysis suggests that there is more evidence in these
data that the multiple choice items are not all measuring the same thing than
there is that the essay measures something different than do the multiple choice
items. This example was chosen to illustrate our method and, of course, does not
constitute a definite resolution of the essay/multiple choice debate. It does,
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however, suggest that quantitative methods can be brought to bear on the
question.

An interesting open question is whether better methods exist for testing the
CA condition. Two possibilities deserve consideration. First, is there a better
choice for h(Z) than ¥, ., ;X,? Stout (1986), for example, suggests grouping
examinees on the basis of an index from a preliminary factor analysis. Second,
can a single superior test for CA be obtained without applying many separate
hypothesis tests followed by a correction for multiplicity?
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