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critical, but so it is in nonparametric methods in which statisticians are quite
happy to consider parameter dependent reference sets. Here is our recipe for
straight line regression, referring to Professor Wu'’s paper.

First set (on the computer) the value of 8. Then evaluate the

2i=li— xlTB

Bootstrap the z, values (keeping the x; values fixed). Regress each bootstrap z*
set back on the x; values to obtain a ﬁ* value for each bootstrap. Smooth the
set of £* to obtaln fl ,8|/3) Note that f depends on the set value 8. Put 8 = ﬁo
the value obtained from the original (unbootstrapped) z; values and we have our
generated likelihood L(B). Here B plays the role of the statistic 7.
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The overwhelming response to the paper reflects great interest and perhaps
confusion in the bootstrap and the jackknife. The contributions of the discus-
sants make the discussion informative, valuable and diverse. Their comments,
even though I do not always agree with them, help clarify certain points, suggest
new ideas and results, and in some cases prompt me to study the issues more
carefully. Most of these comments can be grouped into five broad categories. My
reply will concentrate on the major points of interest in each category.

Among the new ideas and results to which my response will not be directed,
let me mention: robustification of resampled values (Beran), two interesting
applications from genetics (Felsenstein and Mitchell-Olds), examples of incon-
sistency of bootstrap estimators (Olshen and Srivastava), use of weighted
jackknife in variance components model (Rao and Prasad), results on the
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stochastic order of some bias estimators (Shao), and an efficient simulation code
(Wynn and Ogbonmwan). The counterexamples given or alluded to by Olshen
and Srivastava may be taken as a caveat concerning the indiscriminate use of
resampling methods.

1. A sharpened jackknife. The classical jackknife can be made more
versatile in several ways.

(i) The delete-d jackknife, with d - o0 as n — oo, can handle function
estimation (as well as moment estimation) and nonsmooth parameters.
(ii) The subsets can be chosen in a more efficient way by using Hadamard
matrices and other combinatorial techniques.
(iii) Proper weighting allows the jackknife to handle nonexchangeable prob-
lems.

With this in mind, let me now respond to some of the comments.

Felsenstein argues that, in the construction of evolutionary trees the extrapo-
lation factor (r — &k + 1)/(n — r) should be avoided. This is in agreement with
our finding (Rao and Wu (1986)) in a different context. If the parameter B
is confined to a particular region (e.g., positive), the resampled estimate B,
can be outside the region, which may cause serious problems. The subset size
(n + k — 1)/2 is a sensible choice here. He mentions the possibility of dropping
half the observations at random as an alternative to the bootstrap but cannot
see any advantages in doing so. I think there may be advantages in numerical
efficiency if the half-samples are dropped in a balanced manner such as in
(7.5)-(7.8).

Freedman’s example shows that the jackknife, weighted or not, does not
provide a good guide to the distribution of the estimator if the errors are
heteroscedastic, skewed and long-tailed. The jackknife is not alone in this regard.
Even for iid. errors (but with heavy tails), the bootstrap can have similar
difficulties according to the results of Athreya (1987) and of Ghosh et al. (1984)
(see also Olshen’s discussion.) A similar phenomenon was observed for plain i.i.d.
errors with finite second moments (Wu (1986)), in which I prove that the
histogram of the delete-d jackknife consistently estimates the asymptotic distri-
bution of the estimator (say, the one-sample mean) iff d and n — d > .
Therefore, only the delete-d jackknife with unbounded d and n — d provides a
good guide to the distribution of the estimator.

Ghosh questions the use of a delete-d jackknife for nonsmooth parameters. It
is shown in Shao and Wu (1986) that, for a class of nonsmooth functionals,
including the sample median, the jackknife variance estimators with d = Oo(n)
are consistent. It does rectify the deficiency of the delete-1 jackknife. He is right
in questioning the robustness of the jackknife (or other resampling) estimators
against correlated errors. Estimators that are consistent for correlated errors are
available in the econometrics literature.

Singh points out that the nonsingularity requirement of X7X, for every s is
too restrictive. It is only required for proving exact results. In fact any method
(including the bootstrap) that resamples from ( y;, x,) will have the same restric-
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tion. This is not a serious problem if r is substantially bigger than % and the
problem is not ill-posed. Since the proportion of such subsets will then be small,
they can be discarded in the resampling without affecting the estimator’s
performance. His question about the jackknife histograms can be readily answered
by a result from Wu (1986). In addition to the asymptotic normality of the
jackknife histogram (see the above response to Freedman), I show that the
jackknife histogram possesses a desirable second-order property (i.e., capturing
the second-order term of the Edgeworth expansion) if r is chosen to be ap-
proximately 0.724n.

2. Bootstrap and modeling. A main theme of the paper, which most
discussants seem to agree on, is that ‘“no resampling methods, no matter what
the computing power is, can replace good work in modeling and analysis.” This is
in contrast to the euphoria in the earlier literature on the bootstrap (Efron and
Gong (1983), Section 1). My example ((6.14)-(6.17)) on bootstrapping the pu
parameter illustrates the kind of difficulties that can result from routine and
blind use of a resampling method. Efforts in understanding the parameters of
the model will alleviate such problems, which is also pointed out by Efron and
Tibshirani.

Another example provided by Tibshirani is the misspecification of the mean
component of the regression model. This is a more serious violation, because the
bias it induces dominates the variance. His defense of the unweighted bootstrap
as a way of estimating the variability of the (inconsistent) estimator fails to
address the more important issue of bias.

Carroll and Ruppert and Srivastava emphasize the importance of carefully
modeling the heteroscedasticity of errors. Resampling methods such as the
weighted jackknife can be used to take care of the residual heteroscedasticity.

I find Efron’s schematic diagram very useful in relating resampling to the
original sampling. What the diagram depicts is the simulation approach to
statistical inference, which predates the bootstrap. Such a simulation approach
includes the bootstrap, the jackknife and many others. There are, however,
situations in which this approach is not applicable. One such example is when y
is obtained from unequal probability selection without replacement. Another
example, provoked by the comments of Tibshirani and Weber, is the familiar
heteroscedastic linear model with a small number of replications for each x,.
Since there are not enough observations for estimating each error distribution,
one may have to be content with estimating the moments (e.g., variance) rather
than the distribution. Methods based on matching the first two moments such as
those in Section 7 are intended only for this.

Several of the jackknife variance estimates can be expressed as

n
(XTX) 7" Lol (XTX) "
1

Beran and Efron point out that this can also be obtained by a heteroscedastic
bootstrap of the residuals. However, this equivalence between the jackknife and
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the bootstrap breaks down in nonlinear situations. Take, for example, the binary
regression problem. The weighted jackknife is applicable (see Section 8), whereas
the heteroscedastic bootstrap, which is based on resampling the residuals, is not.

3. Conditional and unconditional inference. This issue is raised by Efron,
Hinkley, Olshen and Tibshirani. The justification of the unweighted bootstrap
as an unconditional procedure requires the strong assumption that the x,’s are a
random sample from the population. Is this assumption tenable or verifiable? In
data analysis, how often do analysts bother to find out what the sampling design
is? On the other hand, a conditionally valid procedure such as the weighted
jackknife does not require such a stringent condition on the sampling design.

Olshen questions the appropriateness of the exchangeability assumption (A)
for nonexchangeable models such as those in the paper. In the proposed weighted
approach, the nonexchangeability in the model is accounted for by weighting
adjustment, not by resampling. Shao’s proposal does it the other way. Hinkley’s
conditional bootstrap, which I find very interesting, is another way of handling
nonexchangeability.

4. Bias and variance of a variance estimator. The paper’s overemphasis
on bias and lack of other theoretical properties have invited criticism (Efron,
Ghosh, Rao and Prasad, Singh and Tibshirani). Some of these properties have
already been studied in Shao and Wu (1985). Let me mention results that are
relevant to the discussion. Consider the heteroscedastic case. It is obvious that
the usual estimator 6 (= v,) is inconsistent. For the consistency of vy, and v,,
the condition
(1) h,= max x7(XTX) 'x, > 0

1<i<n

is necessary. On the other hand, the consistency of v sy does not necessarily
require (1) (Shao and Wu (1985), Theorems 6 and 3). Next consider the orders of
(bias)? and variance. The variances of the four estimators are of the order n=2A,,.
The squared biases of v,,,, v; and vy, are of the order n~2h2, but the squared
bias of © is generally of the higher order n~2. Therefore, the bias of the ordinary
estimator © (and the bootstrap estimator v,) plays a more dominant role and
should be given greater attention. Tibshirani comments that the biases of v; and
v, are of the same order, which is in agreement with the preceding results. A
more refined analysis (Shao and Wu (1985), Theorem 7) shows that, in a
qualitative sense, v, has a bigger bias than v Jy- In summary, v,,, has stronger
theoretical justifications than the others.

Simonoff and Tsai suggest the estimator RLQM, which performs well in their
simulation study. For linear models, RLQM reduces to

n
2 vriam = 02 XTX) 'Y (1 — w,)xxT(XTX) 7,
RLQ i v
1

which is not consistent. Additional comments will be given later. Another
estimator v. ., proposed by Srivastava, is also inconsistent.
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The small sample behavior of variance estimators is a more difficult subject.
An attempt is made here to understand qualitatively the stability of v, vy,
and ©. From the form of v,

2
r

l_wi

n
v = (XTX)7' Y xxT(XTX) 7,
1

there are two contributing factors to its possibly big variance: (i) w; that are
close to 1 and (ii) variability in r2. To bound the influence of the large w,’s,
1 — w; is replaced by its average 1 — k/n in vy, (2.6). To bound the influence of
the variability of each r?, albeit at the expense of a bigger bias,

n r.2

3) r—

T
—x;x]
T1—-k/n "7

in vy, is replaced by
1 n n
2 T
— Yl
n 11

which results in the estimator 6. The bigger root mean squared error (rmse) of
0y (than that of vy,,) appears to be caused by a few big values of w;. Another
way to stabilize v, is to bound the w; values. That is, define

w, ifw<c
,=
‘ ¢ ifw>c
and

2
T

]._wil

n—k -1 T(xTyx) !
(4) v(c) = m(XTX) 2 xx (XTX)
Consider again the form of vg;qy (2). The influence of the w; is diminished by
using the weight (1 — w;)?> and, like ¥, 62 is used instead of (3). A simple
approximation to vgyqu 18

(5) b, I = average of (1 — w,)’,

which is obtained by taking the average of (1 — w;)? from the middle matrix of
VpLqm- In the simulation study (Table 1A) ud outperforms vg;qy. Their small
variances in this situation appear to come from the smallness of the coefficients
(1 — w,)? rather than the justification given in Simonoff and Tsai (1986).

We reran the simulation study reported in Table 1 for these new estimators.
Their rmse’s are given in Table 1A. (The rmse’s of the variance estimators
considered in the paper are independent of the 8 values.) The simple estimator
ud outperforms vg; v (& = 0.596) and the other estimators. In fairness to vy,
and v, it is possible to reduce their rmse’s in this particular situation by using
the modification cvy;y and cv, ), ¢ < 1. By bounding the w; values in v, the
resulting estimator v;,,(0.4) is comparable to vj,,. The message is clear: Im-
provement in rmse in this situation is mainly achieved by downweighting.
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TABLE 1A
Root mean squared errors of several variance estimators (3000 simulations).
Unequal variances (o2 = x,/2).

(0,0) 0,1) 0,2) 1,1) 1,2) (2,2)
I3} 1.24 0.46 0.038 0.23 0.022 0.0024
Oy 0.99 0.52 0.052 0.31 0.033 0.0038
0,1)(0.4) 0.80 0.41 0.041 0.25 0.026 0.0030
Opa) 0.77 0.40 0.040 0.24 0.026 0.0029
VRI.QM 0.74 0.46 0.049 0.30 0.033 0.0038
ud 0.71 0.39 0.040 0.26 0.028 0.0031
TaBLE 1B

Root mean squared errors of several variance estimators (500 simulations).
Unequal variances (o2 = 2.5/|x, — 5.5)).

(0,0) ©,1) ©,2) 1) ,2) 2,2)
0 1.22 0.46 0.038 0.22 0.019 ©0.0019
V1) 0.82 0.44 0.038 0.26 0.024 0.0022
0,1y(0-4) 0.74 0.39 0.033 0.24 0.020 0.0018
Vp1) 0.76 0.42 0.036 0.26 0.022 0.0020

Efron’s simulation produces dramatic results in favor of ¢ (= v,) for the
particular variance pattern |x; — 5.5|. Here high leverage (big w;) goes with big
o,. However, the conclusion depends on the setting chosen. We repeated his
study by changing the variance pattern to

o 25
¢ "%, — 55/’

where small leverage goes with big o;. The results are given in Table 1B. The
picture here is different from the one painted by Efron. The estimator ¢ for
Var( ,@0) now trails behind the other three. The modified estimator v (04) is
slightly better than vy, which in turn is slightly better than v (1)

It is clear that simulation alone does not provide a reliable guide to the
relative performance of various variance estimators. The small-sample behavior
of a variance estimator depends on x; and e; in a complicated manner. A
thorough theoretical investigation is called for. Some of the questions are already
outlined in Efron’s discussion. Such a study should include MINQUE and
related methods. Rao and Prasad note one such result for a special case (Rao
(1973)).

5. Asymptotics and coverage probability. At the suggestions of Beran,
Efron, Hall and Hinkley, I have included in the simulation study the stu-
dentized bootstrap, where (v;,)"/? is used as the standard error estimate. The
results are given under TBOOT in the last row of Tables 3 and 4. Except for
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TABLE 3A
Error rates for six methods (3000 simulations). Nominal rate = 0.05.
Unequal variances Equal variances
B, Bs
- 0.25 —-0.35 - 0.25
left right left right left right
VHJ(1) 0.013 0.121 0.067 0.088 0.020 0.082
VHJ8 0.003 0.066 0.031 0.061 0.006 0.053
VBOOT 0.002 0.111 0.026 0.072 0.004 0.040
VLIN 0.005 0.130 0.034 0.075 0.005 0.046
PBOOT 0.071 0.100 0.089 0.097 0.047 0.041
TBOOT 0.147 0.098 0.096 0.087 0.049 0.034
By = —0.25 and unequal variances, it gives improvement over the bootstrap

percentile method (PBOOT). However, it still performs worse than VLIN and
other #-intervals. In an unpublished study I have found the studentized bootstrap
intervals to be too liberal for heavy-tailed distributions. The study of Loh (1987)
shows that in some situations it can give unduly large intervals.

So far I have considered only two-sided intervals. Singh and Hall point out
the difference in asymptotic coverage probabilities between one-sided and two-
sided intervals. According to Singh’s formulas, the studentized bootstrap should
give the best one-sided intervals. Is this supported by its small-sample perfor-
mance? To answer this, the error rates of the various intervals in Table 3 are
separated into two parts, those to the left and those to the right of the intervals.
The results for selected parameter values and methods are given in Table 3A.

Singh’s asymptotics correctly predict that the two (left and right) error rates
are more evenly distributed for the histogram-based methods PBOOT and
TBOOT. But on more important grounds his asymptotics seem to fail com-
pletely. Indeed, TBOOT has very high error rates on both sides, contrary to his
formula P(u < Lg ,) = ja + o(n~'/?). Here the lengths of the TBOOT inter-
vals are comparable to the others. Asymmetry is a requirement for good
confidence intervals. It alone does not guarantee that the intervals are good. I
had no misunderstanding when I wrote “This is very disappointing in view of
the second-order asymptotic results on the bootstrap.” I understand and appreci-
ate the large sample validity of these results. The question is whether they can
deliver their promise in the small- or moderate-sample situations. I am not
surprised that they do not. The coefficients of an Edgeworth expansion, on which
the asymptotic justification is based, are functions of moments. Can moments be
used to adequately describe the delicate behavior in the tails? Before these issues
are properly addressed, I will stick to my original claim that “theoretical results
that can explain small-sample behavior are needed.”

The problem of finding nonparametric confidence intervals is a difficult one.
Many methods have been proposed. It is fair to say that so far no clear winner
has emerged (see, for example Loh (1987); Loh and Wu (1986)). This goal is



1350 DISCUSSION

perhaps too ambitious. Bahadur and Savage (1956) showed that it is impossible
to find nonparametric confidence intervals without any restriction on the distri-
bution F. In practice one should have some knowledge about F (I sound more
like a Bayesian now!). By narrowing the class of distributions F' belongs to, such
intervals may be obtainable. As Efron says, the problem is far from being solved.

Acknowledgment. I sincerely thank the Editor and the Associate Editor
for their efforts in organizing the discussion.
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