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The jackknife method can also be used to obtain an approximately unbiased
estimator §, of 6 = g(o2,02), ie, E(f,)—0=o(t"") for large t, without
normality assumption. The estimator § ), can be used in small area estimation to
get approximately unbiased estimators of the weights in the best predictors. It
may be noted that in the empirical Bayes literature (e.g., Morris (1983)), the
weights are unbiasedly estimated under normality assumption in the balanced
case, n;, = m.

Details of these results will be reported in a separate paper.
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Applications of the jackknife and other resampling methods to regression
analysis have been thoroughly discussed in Professor Wu'’s paper. One interesting
and stimulating aspect of his approach is the use of a weighting scheme that
takes into account the unbalanced nature of regression data. He has provided a
fundamental tool for handling very general non-ii.d. problems for which the
classical jackknife method may not work well. In Section 8, he considered
extensions of his method to several non-i.i.d. situations. More research is needed
and is being done in this area.

In this discussion, I would like to (A) propose another weighted resampling
scheme that gives an interpretation of Wu’s weighted jackknife and provides an
alternative resampling estimation procedure, (B) discuss the use of Tukey’s
pseudovalue, and (C) obtain the stochastic order of the weighted jackknife bias
estimator.

In the following, all notation will be the same as that of Wu.

(A) Another weighted resampling scheme. In the regression situation,
the information contained in different subsets of data may be quite different.
The idea of my proposed weighted resampling scheme is to take account of the
unbalanced nature of the data in the resampling process. That is, the probability
of selecting a subset of data is not a constant as is usually done, but is
proportional to the determinant of the Fisher information matrix of the corre-
sponding subset model with i.i.d. errors. We will see that the bias and variance
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estimators based on this resampling scheme are the same as those of Wu.
However, the method to be described can be directly extended to other non-i.i.d.
cases. Furthermore, this method can be applied to more general problems than
bias and variance estimation, and the variable R defined in (2) can be random
variables other than § — 6.

The weighted resampling procedure is described in detail as follows.

For any r < n, define a resampling vector P* = (P},..., P*)T by

(1) Prob(P*=1,i€s,P*=0,i&¢s)=W, foranyse S,
where W, = | XTX,|/3,|XTX,|. For a fixed P*, let s* = {i|P* = 1}. The selected
subset model is then ‘
Y. = X.B + e,
and the corresponding LSE is
* = (XLX,.) 'XZy,.

Note that under (1), the probability of selecting a subset s is W,. Denote the
expectation and probability under the resampling scheme (1) by E, and P,,
respectively. Let

(2) R=60-9,

where § = &( ,l?), 0 = g(B) for some fAunction g of B. To estimate a functional
f(R) of R (e.g., mean or variance of § — ), we calculate the resample analogue
R*. Then we use f*(R*) to estimate f(R), where f* is an appropriate
functional corresponding to f.

From

P*(B* = BAS) = m’
we have
E*B* = 2rvvs/;;s = zrngXslﬁs/erXZXsl = ﬁ’

where the last equality follows from Theorem 1. Since R = § — § = gB) - g(B)
and Ef = B, the resample analogue of R is

R* = g(B*) —g(B) = 6* - 4,

where * = g(B*). Note that ER = Ef — @ is the bias of §. The weighted
resampling bias estimator is then

3 r—k+1E R r—k+1E (0% - )
WR= T LT = L, (07 —
n-—r n-r
(3)
r—k+1

= —n:r—ers(@ - 0),

which coincides with Wu’s weighted delete-d jackknife bias estimator (9.9).
We take (r — k + 1)(n — r)"'E, as f*. Multiplying E, by the scalar factor
(r — k + 1)/(n — r) is necessary since (r — k + 1)(n — r)"'E , R* matches the
order of ER (see the theorem in part (C) of this discussion and Section 4(iii) of



1324 DISCUSSION

Wu’s paper). The weighted resampling estimator of 6 is simply
éWR =0~ BWR-

Similarly, we can estimate E(RRT) by (r — k + 1)(n — r)"'E ,(R*R*T).
Since E(RR") = E(6 — 0)(6 — 8)" is close to Vard, (r— k + I)(n—-r)~'x
E .(R*R*T) can also be used as a variance estimator for §. Note that

A prerny - T s g - oya - oy,
n—r n—-r
which is identical to Wu’s v J, ,(é) (4.1). Again the factor (r — k+ 1)/(n — r)
plays the role of order-matching (Theorem 1 of Shao and Wu (1985)).

As an example of another functional f, let us consider the estimation of the
skewness E(§ — 6) of @ in the case of scalar 4. By using a similar argument,
E(d — 6)? can be estimated by (r — & + 1)(n — r) E  R*3,

(B) Tukey’s pseudovalue. As pointed out in Section 5, Tukey’s pseudo-
value works well for the i.i.d. case, but its extension to non-i.i.d. situations needs
further theoretical investigation. Hinkley (1977) suggested the use of weighted
pseudovalues for the delete-1 jackknife. His method gives the same jackknife
point estimator as Wu’s but does not provide a suitable variance estimator (see
the discussions in Section 5 and in Shao and Wu (1985)). The following discus-
sion shows that a better and more natural method is to use a weighted
resampling scheme (1) instead of weighting the pseudovalues. All the results
obtained coincide with those in part (A).

Define a generalized pseudovalue for any s € S, by

. r—k+1 A
Ps=0—ﬁ(@—0)'

Iftk=1land r=n- 1, the factor (r — &k + 1)/(n — r) is equal to n — 1 and Ds
becomes Tukey’s pseudovalue 6 — (n — 1)( HA(,.) - 0).
Let p* be a random variable satisfying

P,(p*=p,) =W, foranyse S,.

Analogous to the usual jackknife, the weighted delete-d jackknife estimator of
can be defined as

R . r—k+1 PO N A
(5) oJ,r=E*p*=2er9ps=0_ Tzr‘/‘/;(os_a) =0—BWR’
where BWR is defined in (3) and d = n —r. Thus ) ;. » 1s identical to éWR defined
in (4). For the special case of d = 1, § )7, n—1 also coincides with Hinkley’s delete-1
jackknife estimator.

Similarly, we can obtain the weighted delete-d jackknife variance estimator

by

n—r r—k+1

©6) mE*(p* - 0)(p*-0)" = Tr_ers(és - 6)(4,-6)"

= DJ, r(é)‘
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The factor (n — r)/(r — k + 1) on the left side of (6) is necessary for order
matching. If k=1land r=n-1,(n—r)/(r—k+ 1) =1/(n — 1) is the same
as in Tukey’s jackknife variance estimator.

(C) The stochastic order of the bias estimator. In this part we study
the stochastic order of the weighted delete-d bias estimator Byr (3). Under
certain conditions (see Shao (1986)), the bias of 6 has order n ~1, Hence a natural
requirement for BWR is that the stochastic order of Byy is O ),(n ). Another
requirement for By, which ensures that the weighted Jackkmfe estimator 6 -
reduces bias, is that

EByr=E6-60+L,

where L is of a smaller order than n~!. This has been studied by Shao (1986)
under some smoothness conditions on the function g.

The stochastic order of By is given in the following theorem. One conse-
quence of the theorem is that

Vn By — 0 in probability.

Hence Vn (6 ;. » — 8) converges to a normal limit distribution 1f Vn (0 — 0) does. A
special case of this result for the delete-1 jackknife and o2 = o2 for all i was
proved in Weber and Welsh (1983) under the stronger COndlthIl that g has a
bounded second-order derivative in a neighborhood of 8. A similar result for the
unweighted jackknife can be found in Miller (1974). We state the following
lemma first, whose proof can be found in Shao and Wu (1985).

LEMMA. Suppose that ¢? are uniformly bounded, (X TX)"'=0(n"1') and
lim (n=r)h,=0 whereh = maxlSlSnx,(XTX) x,. Then for any § > 0,

lim Prob(||8 — BIl < 8,18, — Bll < 8 foralls € S,) = 1.

THEOREM. Suppose that g is a function from R* to R™ with Lipschitz-con-
tinuous firsi-order derivatives in a neighborhood of B. Then, under the same
conditions as in the lemma,

Byr=0,(n7).

Proor. From Theorem 1 of Wu’s paper and the mean-value theorem, we
have

R r—k+1

Byg = TZrWL[G(S"s) - G(A)(B, - B),

where G(¢{,) and G(B) are m X k matrices whose jth rows are the gradient of
the jth component of g at { ; and B, respectively, and §,; is on the line segment
connecting B and B Let

= {IB - Bl <8118, ~ Bl <5 foralls €8,}.
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Then by the Lipschitz-continuity of g in a neighborhood of 8, there is a § > 0
such that on A%,

IG(5,) = G(A)Il < cllB, - Al
where c is a positive constant. Let I, be the indicator function of A%. Then
r—

k+1 A s 011
———EW[E(IGR.) - G(AILy)EIB, - AI*]"”

IA

E |B wrlas|

r—k+1
c———3,W,E||B, - BII?
n—r

CTr[E”J, r(ﬁ)]

=0(n™"),
where the last equality follows from Theorem 1 of Shao and Wu (1985). Hence
BWRIA;’, =0,(n7").

IA

From the lemma, Prob(A%) — 1 as n - oo. Thus

BWR= Op(n_l). O
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We would like to congratulate the author on a very interesting paper, and
discuss some issues arising from jackknifing nonlinear models (Section 8). Much
of what is presented here is based on Simonoff and Tsai (1986); V is the n X p
matrix of first partial derivatives of f(-) with respect to 0, while W is the
n X p X p array of second partial derivatives.

1. Alternative weighting schemes. The weighted jackknife originally sug-
gested by Hinkley (1977) was applied to nonlinear models by Fox et al. (1980),



